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ELLIPTIC QUASICONFORMAL MAPPING CLASSES ACTING ON
ASYMPTOTIC TEICHMULLER SPACES

EGE FUJIKAWA AND KATSUHIKO MATSUZAKI

ABSTRACT. We consider a problem of determining the group of all quasiconformal
mapping classes acting trivially on the asymptotically Teichmiiller space. In this
note, we focus our attention to elliptic mapping classes which have fixed points on
the Teichmiiller space. By observing the action of pure mapping classes on the
Teichmiiller and asymptotic Teichmiiller spaces, we seek a simple proof for a fact
that every elliptic element of infinite order acts on the asymptotically Teichmiiller
space non-trivially.

1. PURE AND ESSENTIALLY TRIVIAL MAPPING CLASSES

Throughout this paper, we assume that a Riemann surface R admits a hyperbolic
structure. The Teichmiiller space T(R) of R is the set of all equivalence classes [f] of
quasiconformal homeomorphisms f on R. Here we say that two quasiconformal home-
omorphisms f; and f; on R are equivalent if there exists a conformal homeomorphism
h: fi(R) — f2(R) such that fy'oho f; is homotopic to the identity. Here the homotopy
is considered to be relative to the ideal boundary at infinity. A distance between two
points [fi1] and [f2] in T(R) is defined by dr([f1], [f2]) = (1/2)log K(f), where f is an
extremal quasiconformal homeomorphism in the sense that its maximal dilatation K(f)
is minimal in the homotopy class of f, o f; !, Then dr is a complete distance on T(R)
which is called the Teichmiiller distance. The Teichmiiller space T'(R) can be embedded
in the complex Banach space of all bounded holomorphic quadratic differentials on R’,
where R’ is the complex conjugate of R. In this way, T(R) is endowed with the complex
structure. For details, see [13] and [19).

A quasiconformal mapping class is the homotopy equivalence class [g] of quasiconfor-
mal automorphisms g of a Riemann surface, and the quasiconformal mapping class group
MCG(R) of R is the group of all quasiconformal mapping classes of R. Here the homo-
topy is again considered to be relative to the ideal boundary at infinity. Every element
l[9) € MCG(R) induces a biholomorphic automorphism [g]. of T(R) by [f] — [fog7!],
which is also isometric with respect to the Teichmiiller distance. Let Aut(T(R)) be the
group of all biholomorphic automorphisms of T(R). Then we have a homomorphism

tr : MCG(R) — Aut(T(R))
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given by [g] — [g]«, and we define the Teichmiiller modular group of R by
Mod(R) = t17(MCG(R)).

It is proved in [2] that the homomorphism ¢r is injective (faithful) for all Riemann
surfaces R of non-exceptional type. See also [6] and [15] for other proofs. Here we
say that a Riemann surface R is of exceptional type if R has finite hyperbolic area and
satisfies 2g + n < 4, where g is the genus of R and n is the number of punctures of R.
The homomorphism ¢r is also surjective for every Riemann surface R of non-exceptional
type, namely Mod(R) = Aut(T(R)). The proof is a combination of the results of [1] and
[14]. See [8] for a survey of the proof.

In this section, we observe the action of the pure mapping class defined below on the
Teichmiiller space.

Definition 1.1. We say that a mapping class [g] € MCG(R) is strongly pure if g fixes
all ends of R, and a mapping class [g] € MCG(R) is pure if g fixes all non-cuspidal ends
of R. The pure mapping class group P(R) is the group of all pure mapping classes.

We classify mapping classes according to a certain property of the action on the Teich-
miiller space.

Definition 1.2. We say that a mapping class [g] € MCG(R) — {id} is elliptic if [g]. €
Mod(R) has a fixed point on T(R).

Our first observation in this paper is the following.

Proposition 1.3. (i) Let R be a Riemann surface having more than two ends, and let
lg] be a strongly pure and elliptic mapping class. Then [g] is of finite order. (ii) Let R
be a Riemann surface having more than two non-cuspidal ends, and let [g] be a pure and
elliptic mapping class. Then [g] is of finite order.

Proof. We will prove only statement (ii). Since [g] is elliptic, we may assume that g is
a conformal automorphism by considering a quasiconformal deformation of R. Since R
has more than two non-cuspidal ends, there exists a pair of pants Y in R with geodesic
boundary such that R—Y has three connected components and that each of the connected
components has a distinct end of R. See [9, Lemma 3.5]. Since g fixes all non-cuspidal
ends, g™ also fixes all non-cuspidal ends for all n. Then ¢g"(Y)NY # @ by the proof of
[9, Proposition 3.4]. This implies that g™(Y) is a subset of the closed §-neighborhood
Ns(Y) of Y, where § := diam(Y'). For a point yo € Y, g"(yo) € Ns(Y). Since N5(Y) is
compact, we may assume that g"(yo) converges to some point yo, € Ns(Y). Since the
group of conformal automorphisms acts on R properly discontinuously, this implies that
g is of finite order. O

We have another proof of Proposition 1.3 by using an advanced research. We say that
a subgroup G of MCG(R) is stationary if there exists a compact subsurface W of R such
that g(W)NW # @ for every representative g of every element of G, and a mapping class
[g] € MCG(R) is stationary if the cyclic group generated by [g] is stationary. Moreover,
we say that a mapping class [g] is of divergent type if the orbit (v.)(p) = {¥2(P)}nez
of each point p € T(R) diverges to the point at infinity of T(R) as n — +oo. Then it
was proved in [17, Theorem 6] that every stationary mapping class of infinite order is
of divergent type, and a pure mapping class is stationary as we have seen in the proof
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above. Since an elliptic mapping class is not of divergent type, it should be of finite
order.

In Proposition 1.3, we cannot replace the conclusion with the statement that [g] is the
identity as the following example says.

Example 1.4. There exists a Riemann surface R having more than two ends such that
there is a strongly pure and elliptic mapping class [g] on R and that [g] is not the identity.
Indeed, we consider a torus S and a hyperelliptic involution ¢ of S. Then ¢ has four
fixed points z; (i = 1,...,4) on S. For ¢ = 1,2 and a small constant r > 0, we take a disk
D; with center x; and radius r. We remove D; (i = 1,2) and z; (i = 3,4) from S and we
obtain a Riemann surface S’ of type (1,2,2). We make infinitely many copies of S’ and
we glue the copies along the boundaries of the disks. Then we obtain a Riemann surface
R of infinite type having infinitely many cuspidal ends. The hyperelliptic involution ¢
on S induces an elliptic involution g of R, which is clearly not the identity.

On the other hand, for an essentially trivial mapping class defined below, we have a
strong conclusion.

Definition 1.5. We say that a mapping class [g] € MCG(R) is essentially trivial if
there exists a compact subsurface V, of R such that, for each connected component W
of R —V, that is not a cusp neighborhood, the restriction g|w : W — R is homotopic to
the inclusion map id|w : W — R. Here the homotopy is considered to be relative to the
ideal boundary at infinity. The essentially trivial mapping class group E(R) is the group
of all essentially trivial mapping classes.

Then we have the following.

Proposition 1.6. Let R be a Riemann surface of analytically infinite type. If an elliptic
mapping class [g] € MCG(R) is essentially trivial, then [g] is the identity.

Proof. Since [g] is elliptic, we may assume that g is a conformal automorphism by con-
sidering a quasiconformal deformation of R. Since [g] is essentially trivial, there exists a
compact subsurface V; of R such that, for each connected component W of R -V that is
not a cusp neighborhood, the restriction g|w : W — R is homotopic to the inclusion map
idlw : W — R. We take such a connected component W that is not relatively compact.
If W is doubly connected, then the statement is easily proved. Thus we may assume that
W is not doubly connected. Let I' be a Fuchsian model of R, namely R = H/T', and let
g be a lift of g to H. Let I'yy be a subgroup of I" such that it corresponds to W. Then §
is the identity on the limit set A(I'w). Since A(T'w ) contains more than two points and
g is conformal, we conclude that g is the identity. Thus we have the assertion. O

2. ASYMPTOTICALLY TRIVIAL MAPPING CLASSES

In this section, we apply our observation in the previous section to the action of
mapping classes on the asymptotic Teichmiiller space.

The asymptotic Teichmiiller spaces was introduced in [12] when R is the hyperbolic
plane and in [2], [3] and [11] when R is an arbitrary hyperbolic Riemann surface. We say
that a quasiconformal homeomorphism f on R is asymptotically conformal if for every
€ > 0, there exists a compact subset V of R such that the maximal dilatation K(f|r-v)
of the restriction of f to R—V is less than 1+4¢. We say that two quasiconformal homeo-
morphisms f; and f2 on R are asymptotically equivalent if there exists an asymptotically
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conformal homeomorphism h : fi(R) — f2(R) such that f;' o ho f; is homotopic to
the identity. Here the homotopy is considered to be relative to the ideal boundary at
infinity. The asymptotic Teichmiiller space AT(R) of a Riemann surface R is the set of
all asymptotic equivalence classes [[f]] of quasiconformal homeomorphisms f on R. The
asymptotic Teichmiiller space AT(R) is of interest only when R is analytically infinite.
Otherwise AT'(R) is trivial, that is, it consists of just one point. Conversely, if R is
analytically infinite, then AT'(R) is not trivial. In fact, it is infinite dimensional. Since
a conformal homeomorphism is asymptotically conformal, there is a natural projection
7 : T(R) — AT(R) that maps each Teichmiiller equivalence class [f] € T(R) to the
asymptotic Teichmiiller equivalence class [[f]] € AT(R). The asymptotic Teichmiiller
space AT(R) has a complex manifold structure such that 7 is holomorphic. See also [4]
and [5].

For a quasiconformal homeomorphism f of R, the boundary dilatation of f is defined
by H*(f) = inf K(f|r—E), where the infimum is taken over all compact subsets E of R.
Furthermore, for a Teichmiiller equivalence class [f] € T'(R), the boundary dilatation of
[f] is defined by H([f]) = inf H*(g), where the infimum is taken over all elements g € [f].
A distance between two points [[f1]] and [[f2]] in AT'(R) is defined by dar([[f1]], [[f2]]) =
(1/2)log H([f2 © f;"']), where [f2 o f;}] is a Teichmiiller equivalence class of fy o f;! in
T(fi(R)). Then dar is a complete distance on AT(R), which is called the asymptotic
Teichmiiller distance. For every point [[f]] € AT(R), there exists an asymptotically
extremal element fo € [[f]] in the sense that H([f]) = H*(fo).

Every element [g] € MCG(R) induces a biholomorphic automorphism [g].. of AT(R)
by [[f]] — [[fog~1]], which is also isometric with respect to d4r. See [4]. Let Aut(AT(R))
be the group of all biholomorphic automorphisms of AT (R). Then we have a homomor-
phism

tar : MCG(R) — Aut(AT(R))
given by [g] — [g]«, and we define the asymptotic Teichmiiller modular group of R by
Modar(R) = tar(MCG(R)).

It is different from the case of ¢z : MCG(R) — Aut(T'(R)) that the homomorphism ¢47
is not injective, namely Kertar # {[id]}, unless R is either the unit disc or a once-
punctured disc. We call an element of Kerta7 asymptotically trivial and call Ker¢ar
the asymptotically trivial mapping class group.

In [9], we have proved the following property of the asymptotically trivial mapping
class group.

Proposition 2.1. The inclusion relation E(R) C Kertar C P(R) holds.

On the other hands, we would like to know conditions for mapping classes that is not
in the asymptotically trivial mapping class group. In [7], we proved the following.

Proposition 2.2. Let R be a normal cover of a compact Riemann surface whose covering
transformation group is a cyclic group (g) generated by a conformal automorphism g of
R of infinite order. Then [g] ¢ Kertar.

We extend Proposition 2.2 to the following theorem.

Theorem 2.3. Let R be a Riemann surface of analytically infinite type having more
than two non-cuspidal ends. Then every elliptic mapping class [g] € MCG(R) of infinite
order does not belong to Kerva.
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Proof. By Proposition 2.1, Ker aT is a subgroup of the pure mapping class group P(R).
Thus we have the assertion by proving that [g] ¢ P(R). Suppose to the contrary that [g] €
P(R). Then [g] is of finite order by Proposition 1.3. This contradicts the assumption. 0O

In [18], we extend the statement of Theorem 2.3 for all Riemann surfaces of analytically
infinite type. :

Each inclusion in Proposition 2.1 is proper, in general. In [16], a Riemann surface R
satisfying E(R) = Kertar = P(R) = MCG(R) have been constructed. In [10], we prove
that E(R) = Kertar C P(R) if R satisfies a certain condition on hyperbolic geometry.
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