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1 Introduction

The theory of Teichmüller space is studied in various fields of mathematics but the
complex-analytic approach has one advantage in a sense that it can deal with Teichmül-
ler spaces of finite and infinite type Riemann surfaces in parallel and simultaneously.
However that may be, Teichmüller spaces of analytically infinite Riemann surfaces are
infinite-dimensional and they display several aspects and phenomena different from
those of the finite-dimensional cases, and some results involve much more difficult
and complicated arguments for their proofs. On the other hand, through these gen-
eralization and unification of theories, arguments given for finite-dimensional cases
become clearer and more transparent in some occasions.

One of the recent developments of the infinite-dimensional Teichmüller theory is
brought by the fact that the biholomorphic automorphism group of the Teichmüller
space is completely determined. Namely, it is proved that every biholomorphic auto-
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morphism is induced by a quasiconformal mapping class of the base Riemann surface,
which is called a Teichmüller modular transformation. This result was first proved
by Royden [44] for Teichmüller spaces of compact Riemann surfaces, and through
succeeding researches due to Kra, Earle, Gardiner and Lakic (see [3] and [9]), it has
been proved in full generality by Markovic [31]. See the report in Volume II of this
Handbook [12]. After this, it should be natural that we investigate the moduli space
of an infinite type Riemann surface, which is the quotient space of the Teichmüller
space by the Teichmüller modular group (now known to be the biholomorphic auto-
morphism group). In fact, compared with the finite-dimensional theory, the study of
moduli spaces has not been developed yet in the infinite-dimensional case.

In this chapter, we survey recent results concerning the dynamics of modular groups
of infinite-dimensional Teichmüller spaces and their quotient spaces. As we mentioned
above, the Teichmüller modular group is the automorphism group of the Teichmüller
space induced geometrically by the quasiconformal mapping class group. Although
they can be identified with each other in almost all cases, we prefer to use “Teichmüller
modular group” since we consider its dynamics on the Teichmüller space. Occasion-
ally “mapping class group” is still used when its property as a surface automorphism
is a matter in question.

Unlike in the finite-dimensional case, the action of the Teichmüller modular group
is not necessarily discontinuous in our case. In general, we say that a group � acts on
a Hausdorff space X discontinuously if, for every point x 2 X , there is a neighbor-
hood U of x such that the number of elements � 2 � satisfying �.U / \ U ¤ ; is
finite. If X is locally compact, this is equivalent to saying that � acts on X properly
discontinuously. However, since our Teichmüller spaces are not locally compact, we
use the term “discontinuous” instead of “properly discontinuous”. Because of such
non-discontinuous action, the topological moduli space obtained simply by taking the
quotient of the Teichmüller space by the modular group does not have a nice geometric
structure, which might be a reason why this subject matter has not been so attractive.
However, assuming these facts in a positive way, conversely, we can specify the set of
points where the Teichmüller modular group does not act discontinuously, and observe
some properties of this set, called the limit set. As is well known, limit sets play an
important role in the theory of Kleinian groups and the iteration of rational maps. We
import this concept for the study of dynamics of Teichmüller modular groups. Then,
the non-homogeneity of Teichmüller space appears to be tangible and in particular
it provides an interesting research subject, which is to understand the interaction be-
tween the hyperbolic structure of an infinite type Riemann surface and the behavior
of the orbit of the corresponding point in the infinite-dimensional Teichmüller space.

The region of discontinuity is the complement of the limit set and the quotient
restricted to this set inherits a geometric structure from the Teichmüller space. How-
ever, another problem is caused by the fact that this region is not always dense in the
Teichmüller space. To overcome this difficulty, we introduce the concept of region
of stability, which is the set of points where the Teichmüller modular group acts in a
stable way. Stability is defined by closedness of the orbit. Then the region of stability
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sits in the Teichmüller space as an open dense subset and the metric completion of the
quotient of the region of stability defines the stable moduli space. As a generalization
of the moduli space for finite type Riemann surfaces, we expect that the stable moduli
space should be an object we have to work with.

In the actual arguments developed in this theory, a comparison between countability
and uncountability, such as the Baire category theorem, appears at several places.
Uncountability is expressed in the non-separability of the Teichmüller space of an
infinite type Riemann surface and by the cardinality of its Teichmüller modular group.
In various situations, ideas of our arguments lie in how to pick out countability in
the presence of these uncountable circumstances and how to use it in each specific
case. Typically, countability comes from � -compactness of Riemann surfaces and
from compactness of a family of normalized quasiconformal homeomorphisms with
bounded dilatation in the compact-open topology. Further, by considering a fiber of
the projection of the Teichmüller space onto the asymptotic Teichmüller space, we are
able to extract countability in an implicit manner.

The asymptotic Teichmüller space is a new concept for infinite-dimensional Teich-
müller spaces introduced by Gardiner and Sullivan [26] and developed by Earle, Gar-
diner and Lakic [4], [5], [6]. It parametrizes the deformation of complex structures on
arbitrarily small neighborhoods of the topological ends of an infinite type Riemann
surface. Therefore, the projection from the Teichmüller space means ignoring the
deformation of the complex structures on any compact regions, and hence, in each
fiber of this projection, all these ignored deformations constitute a separable closed
subspace in the Teichmüller space. The Teichmüller modular group acts preserving
the fiber structure on the Teichmüller space and it induces a group of biholomorphic
automorphisms of the asymptotic Teichmüller space, which is called the asymptotic
Teichmüller modular group. In this way, we can divide the action of the Teichmüller
modular group into that on the fibers and that on the asymptotic Teichmüller space.
Between these actions, a study of the action of a stabilizer subgroup of a fiber, which
is called an asymptotically elliptic subgroup, has already been developed to some ex-
tent. In this chapter we review the dynamics of asymptotically elliptic subgroups. The
dynamics of the asymptotic Teichmüller modular group will be an interesting future
research project.

In the next section (Section 2), we survey fundamental results on the dynamics of
the Teichmüller modular group, without considering asymptotic Teichmüller spaces.
We summarize results contained in a series of papers by Fujikawa [13], [14] and
[15], in particular the concept of limit set of Teichmüller modular groups and the
bounded geometry condition on hyperbolic Riemann surfaces. Concerning the stabil-
ity of Teichmüller modular groups and several criteria for stable actions of particular
subgroups, especially those for closed subgroups in the compact-open topology, we
extract the arguments from [42] and [41] and edit them in a new way.

Then, in Section 3, we add the consideration of asymptotic Teichmüller spaces.
In particular, the action on a fiber over the asymptotic Teichmüller space is discussed
in detail. We survey several results on asymptotically elliptic subgroups obtained in
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[36], [37], [38], [39] and [40]. The topological characterization of a quasiconformal
mapping class that acts trivially on the asymptotic Teichmüller space is excerpted from
[16] and [19]. As an application of this result, we explain a version of the Nielsen
realization theorem for the asymptotic Teichmüller modular group, which is obtained
in [20].

Finally, in Section 4, we construct moduli spaces and several quotient spaces by
subgroups of Teichmüller modular groups. The stable moduli space is introduced
here, which is one of the aims persued in [42]. As a quotient space by the subgroup
consisting of all mapping classes acting trivially on the asymptotic Teichmüller space,
we obtain an intermediate Teichmüller space. When R satisfies the bounded geometry
condition, this coincides with the enlarged moduli space, which is the quotient by
the stable quasiconformal mapping class group. This is a subgroup of the mapping
class group given by the exhaustion of mapping class groups of topologically finite
subsurfaces. Then the asymptotic Teichmüller modular group is canonically realized
as the automorphism group of the intermediate Teichmüller space. These arguments
are demonstrated in [19].

Throughout this chapter, our original work [19] and [42] is frequently cited as basic
references. The research announcement of [42] appeared in [33].

2 Dynamics of Teichmüller modular groups

In this section, we develop the theory of dynamics of Teichmüller modular groups
acting on infinite-dimensional Teichmüller spaces. For an analytically finite Riemann
surface, which is a Riemann surface obtained from a compact Riemann surface by re-
moving at most a finite number of points, the mapping class group and its action on the
Teichmüller space are well known and broadly studied. For an analytically infinite Rie-
mann surface whose Teichmüller space is infinite-dimensional, we also consider map-
ping classes in the quasiconformal category. Their action on the infinite-dimensional
Teichmüller space induces Teichmüller modular transformations just like in the finite-
dimensional cases. Especially in this case, non-homogeneity of the Teichmüller space
indicates an interesting interaction between the dynamics of orbits and hyperbolic
structures on the base Riemann surface. In the first part of this section, we give basic
concepts on the dynamics of Teichmüller modular groups. Then we discuss funda-
mental techniques for treating various kinds of subgroups of these groups. We also
show some application of these theories to infinite-dimensional Teichmüller spaces.

2.1 Teichmüller spaces and modular groups

Throughout this chapter, we assume that a Riemann surface R is hyperbolic, that is, it
is represented as a quotient space D=H of the unit disk D endowed with the hyperbolic
metric by a torsion-free Fuchsian group H . Without specific mention, we always re-
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gard R to have the hyperbolic structure, but when a hyperbolic geometrical aspect of R

is a matter in question, we sometimes call R a hyperbolic surface. If the limit set ƒ.H/

of the Fuchsian group H is a proper subset of the unit circle @D, then H acts properly
discontinuously on xD � ƒ.H/ and a bordered Riemann surface .xD � ƒ.H//=H is
obtained, which contains R as its interior. In this case, .@D � ƒ.H//=H is called
the boundary at infinity of R and denoted by @1R. We are mainly interested in the
case where the fundamental group �1.R/ Š H is infinitely generated, namely, R is
of infinite topological type. (Conversely, if �1.R/ is finitely generated, then R is said
to be of finite topological type. Furthermore, if �1.R/ is cyclic, we call R elemen-
tary. ) We now define the Teichmüller space for R and its Teichmüller modular group.

Teichmüller spaces in general

The Teichmüller space T .R/ of an arbitrary Riemann surface R is the set of all equiv-
alence classes of quasiconformal homeomorphisms f of R onto another Riemann
surface. Two quasiconformal homeomorphisms f1 and f2 are defined to be equiva-
lent if there is a conformal homeomorphism h W f1.R/ ! f2.R/ such that f �1

2 BhBf1

is homotopic to the identity on R. Here the homotopy is considered to be relative to the
boundary at infinity @1R when @1R is not empty. It is proved in Earle and McMullen
[10] that the existence of a homotopy is equivalent to saying that there is an isotopy to
the identity of R through uniformly quasiconformal automorphisms (relative to @1R

if @1R ¤ ;). The equivalence class of f is called its Teichmüller class and denoted
by Œf �.

The Teichmüller space T .R/ has a complex Banach manifold structure. When
R is analytically finite, T .R/ is finite-dimensional, and otherwise T .R/ is infinite-
dimensional. A distance between p1 D Œf1� and p2 D Œf2� in T .R/ is defined by
dT .p1; p2/ D 1

2
log K.f /, where f is an extremal quasiconformal homeomorphism

in the sense that its maximal dilatation K.f / is minimal in the homotopy class of
f2 B f �1

1 (relative to the boundary at infinity if it is not empty). This is called the
Teichmüller distance. In virtue of a compactness property of quasiconformal maps,
the Teichmüller distance dT is complete on T .R/. This coincides with the Kobayashi
distance on T .R/ with respect to the complex Banach manifold structure. Consult
[12], [24], [25], [28], [30] and [43] for the theory of Teichmüller space.

Quasiconformal mapping class groups

For an arbitrary Riemann surface R, thequasiconformalmapping class groupMCG.R/

is the group of all homotopy classes Œg� of quasiconformal automorphisms g of R (rel-
ative to @1R if @1R ¤ ;). Each element Œg� is called a mapping class and it acts on
T .R/ from the left in such a way that Œg�� W Œf � 7! Œf B g�1�. It is evident from the
definition that MCG.R/ acts on T .R/ isometrically with respect to the Teichmüller
distance. It also acts biholomorphically on T .R/.

Definition 2.1. Let � W MCG.R/ ! Aut.T .R// be the homomorphism defined by
Œg� 7! Œg��, where Aut.T .R// denotes the group of all isometric biholomorphic
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automorphisms of T .R/. The image Im � � Aut.T .R// is called the Teichmüller
modular group and is denoted by Mod.R/.

Except for a few low-dimensional cases, � is injective. In particular, if R is ana-
lytically infinite, then � is always injective. This was first proved by Earle, Gardiner
and Lakic [4] and another proof was given by Epstein [11]. We will discuss again this
proof in Section 2.4 later. The map � is also surjective except in the one-dimensional
case. This was finally proved by Markovic [31] after a series of pioneering works. We
refer to the account [12] in Volume II of this Handbook. Hence, when there is no risk
of confusion, we sometimes identify MCG.R/ with Mod.R/.

Bounded geometry condition

We often put some moderate assumptions concerning the geometry of hyperbolic
Riemann surfaces which make the analysis of Teichmüller modular groups easier.

Definition 2.2. We say that a hyperbolic surface R satisfies the lower boundedness
condition if the injectivity radius at every point of R is uniformly bounded away from
zero except in horocyclic cusp neighborhoods of area 1. We say that R satisfies the
upper boundedness condition if the injectivity radius at every point of R� is uniformly
bounded from above, where R� is some connected subsurface of R such that the
inclusion map R� ! R induces a surjective homomorphism �1.R�/ ! �1.R/. Then
R satisfies the bounded geometry condition if both the lower and upper boundedness
conditions are satisfied and if the boundary at infinity @1R is empty.

These conditions are quasiconformally invariant and hence we may regard them as
conditions for the Teichmüller space T .R/. For example, an arbitrary non-universal
normal cover of an analytically finite Riemann surface satisfies the bounded geometry
condition (see [13]).

A pair of pants is a hyperbolic surface with three geodesic boundary components
and zero genus, where geodesic boundaries can degenerate to punctures. When a
hyperbolic surface R can be decomposed into the union of pairs of pants, we say that
R has a pants decomposition. If R has a pants decomposition such that all the lengths of
boundary geodesics of the pairs of pants are uniformly bounded from above and from
below, then R satisfies the bounded geometry condition. However, the converse is not
true. Counter-examples can be easily obtained by considering a planar non-universal
normal cover of an analytically finite Riemann surface with a puncture (see [17]).

2.2 Orbits of Teichmüller modular groups

Except for the universal Teichmüller space T .D/, which is the Teichmüller space of
the unit disk D, and for the Teichmüller spaces T .R/ of the punctured disk or the three-
punctured sphere R, no Teichmüller space T .R/ is homogeneous in a sense that the
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Teichmüller modular group Mod.R/ acts transitively on T .R/. Actually, these are the
only hyperbolic Riemann surfaces which have no moduli. In the non-homogeneous
case, the aspects of the dynamics of Mod.R/ are different depending on the points
p 2 T .R/, and the geometric structure of the Riemann surface corresponding to p

reflects the action of Mod.R/ at p.

Limit sets

For an analytically finite Riemann surface R, the Teichmüller modular group Mod.R/

acts on T .R/ properly discontinuously. Although Mod.R/ has fixed points on T .R/,
each orbit is discrete and each stabilizer subgroup is finite. Hence an orbifold structure
on the moduli space M.R/ is induced from T .R/ as the quotient space by Mod.R/.
However, this is not always satisfied for analytically infinite Riemann surfaces. Hence,
we introduce the concept of limit set for the Teichmüller modular group Mod.R/.

For a subgroup � � Mod.R/, the orbit of p 2 T .R/ under � is denoted by �.p/

and the stabilizer subgroup of p in � is denoted by Stab�.p/. In the case where
� D Mod.R/, Stab�.p/ is denoted by Stab.p/. For an element � 2 � , the set of
all fixed points of � is denoted by Fix.�/. The set of all common fixed points of the
elements of � is denoted by Fix.�/.

Definition 2.3. For a subgroup � � Mod.R/ and for a point p 2 T .R/, we say that
q 2 T .R/ is a limit point of p if there exists a sequence f�ng of distinct elements of �

such that �n.p/ converge to q. The set of all limit points of p is denoted by ƒ.�; p/.
The limit set for � is defined by ƒ.�/ D S

p2T .R/ ƒ.�; p/ and the elements of ƒ.�/

are called the limit points of � . A point p 2 T .R/ is a recurrent point of � if
p 2 ƒ.�; p/ and the set of all recurrent points of � is denoted by Rec.�/.

It follows from the definition that Rec.�/ � ƒ.�/ and these sets are �-invariant.
In fact, we have the following fact.

Proposition 2.4 ([13], [18]). For a subgroup � � Mod.R/, the limit set ƒ.�/ co-
incides with Rec.�/ and it is a closed set. Moreover, p 2 T .R/ is a limit point of
� if and only if either the orbit �.p/ is not a discrete set or the stabilizer subgroup
Stab�.p/ consists of infinitely many elements.

The notion of limit set was originally defined for a Kleinian group and it was also
defined for the iteration of a holomorphic function as the Julia set. Some properties
of our limit set are common to the original settings but some are not. For instance, the
limit set is the smallest invariant closed subset in the original setting, but this is not
true for the case of Teichmüller modular groups.

Discontinuity and stability

The complement of the limit set should be defined as the region of discontinuity.
Hence we define discontinuity of the action at a point p 2 T .R/ as the complementary
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condition for p to be a limit point. By weakening the property of discreteness of the
orbit, we also introduce another concept of manageable action, stability, which will
be important for our arguments later.

Definition 2.5. Let � be a subgroup of Mod.R/. We say that � acts at p 2 T .R/

• discontinuously if �.p/ is discrete and Stab�.p/ is finite;

• weakly discontinuously if �.p/ is discrete;

• stably if �.p/ is closed and Stab�.p/ is finite;

• weakly stably if �.p/ is closed.

If � acts at every point p in T .R/ (weakly) discontinuously or stably, then we say that
� acts on T .R/ (weakly) discontinuously or stably, respectively. The set of points
p 2 T .R/ where � acts discontinuously is denoted by �.�/ and called the region of
discontinuity for � . The set of points p 2 T .R/ where � acts stably is denoted by
ˆ.�/ and called the region of stability for � .

Note that � � Mod.R/ acts at p 2 T .R/ discontinuously if and only if there
exists a neighborhood U of p such that the number of elements � 2 � satisfying
�.U / \ U ¤ ; is finite. When T .R/ is locally compact (i.e., finite-dimensional), this
condition is the same as proper discontinuity.

The discontinuity and stability criteria mentioned above have obvious inclusion
relations that immediately follow from their definitions. The following theorem says
that the converse assertion holds under a certain countability assumption. This fact is
based on the Baire category theorem and the uncountability of perfect closed sets in a
complete metric space.

Lemma 2.6 ([42]). Assume that � � Mod.R/ contains a subgroup �0 of countable
index (that is, the cardinality of the cosets �=�0 is countable) such that �0 acts at
p 2 T .R/ weakly discontinuously. If � acts at p (weakly) stably, then � acts at p

(weakly, resp.) discontinuously.

The region of discontinuity �.�/ is always an open set because it is the complement
of the limit set ƒ.�/ as it follows from Proposition 2.4. However, we only see that
the region of stability ˆ.�/ becomes an open set under a certain condition upon � .
This is also obtained by an argument based on the Baire category theorem.

Lemma 2.7 ([42]). If � � Mod.R/ contains a subgroup �0 of countable index such
that �0 acts on T .R/ stably, then the region of stability ˆ.�/ is open.

We regard these two lemmata as fundamental principles of our arguments on the
dynamics of Teichmüller modular groups and we utilize them in later discussion.

If � acts discontinuously, then every subgroup of � acts discontinuously. However,
this property is not necessarily satisfied for stability. This is because any subset of a
discrete set is always discrete whereas any subset of a closed set is not always closed.
By this evidence, we have the following claim.
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Proposition 2.8. Let f�igi2I be a family of subgroups of Mod.R/ such that each �i

acts stably at p 2 T .R/. Then the intersection � D T
i2I �i acts stably at p 2 T .R/.

Boundedness and divergence

Now we consider another aspect of the dynamics of Mod.R/. We classify the action
of subgroups of Mod.R/ according to the global behavior of their orbits.

Definition 2.9. Let � be a subgroup of Mod.R/. If the orbit �.p/ of some p 2 T .R/

is a bounded set in T .R/, we say that � is of bounded type. On the other hand, if
the orbit �.p/ is divergent to the infinity of T .R/, meaning that �.p/ is infinite and
each bounded subset of T .R/ contains only finitely many of �.p/, we say that � is
of divergent type.

Note that the notions of bounded type and of divergent type are well-defined for �

since these properties of the orbit are independent from the choice of p 2 T .R/.
When R is analytically finite, T .R/ is locally compact and Mod.R/ acts properly

discontinuously on T .R/. Hence every infinite subgroup of Mod.R/ is of divergent
type and of course every finite subgroup of Mod.R/ is of bounded type. However, for
a general R, there are subgroups of Mod.R/ neither of bounded type nor of divergent
type even for infinite cyclic subgroups. See [36], where we have tried to give a
classification of the Teichmüller modular transformations. If we restrict subgroups
of Mod.R/ to certain classes, then they have the dichotomy of boundedness and
divergence. We will discuss later these classes having a nature similar to the finite-
dimensional cases.

Example 2.10. Here we give an example of a Teichmüller modular transformation
� 2 Mod.R/ such that h�i acts discontinuously on T .R/ and it is neither of bounded
type nor of divergent type.

Let S be a closed hyperbolic surface of genus 3 and take three mutually disjoint
non-dividing simple closed geodesics a, b and c on S . Cut S along a and b to make
a totally geodesic surface S 0 of genus 1 with four boundary components, and give a
pants decomposition for S 0 having c and the copies of a and b as boundary geodesics.
We prepare copies of S 0 and paste them to make an abelian covering surface R0 of S

with the covering transformation group isomorphic to Z2. Then we index all the lifts
of c to R0 in such a way that cnk is the image of some fixed lift c00 under the covering
transformation corresponding to .n; k/ 2 Z2. We extend the pants decomposition of
S 0 to R0 such that the action of the covering transformation group Z2 preserves this
decomposition.

By assigning the geodesic lengths `.cnk/ to each cnk and keeping the lengths
of the other boundary curves of the pants decomposition invariant, we can obtain
various hyperbolic Riemann surfaces R. This is performed by a locally quasiconformal
deformation but it is not necessarily globally quasiconformal. A suitable choice of
f`.cnk/g gives an interesting example of a mapping class Œg� corresponding to the
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element of the covering transformation n 7! n C 1, k 7! k in Z2. For our purpose,
we define

`.cnk/ D exp
˚ � 2jkj h.2�jkj.jkjC1/=2n/

�
;

where h is a periodic function of period one defined on R such that h.x/ D x for
0 � x � 1=2 and h.x/ D 1 � x for 1=2 � x � 1. Then, we see that the mapping
class Œg� gives a Teichmüller modular transformation � 2 Mod.R/ such that h�i acts
discontinuously on T .R/. Furthermore, we can find subsequences fnig and fnj g such
that f�ni .p/g is bounded and f�nj .p/g is divergent for any p 2 T .R/. See [21].

The classification by divergence and boundedness is more restrictive than that by
discontinuity and instability.

Proposition 2.11. If a subgroup � � Mod.R/ is of divergent type, then � acts
discontinuously on T .R/. On the contrary, if an infinite subgroup � is of bounded
type, then � does not act stably on T .R/.

Proof. The first statement is obvious from the definition. The second statement will
be seen later on by the arguments on elliptic subgroups (Theorem 2.34).

2.3 Subgroups of Teichmüller modular groups

In this subsection, we list up several subgroups of the Teichmüller modular group,
which have special properties with respect to their action on Teichmüller space. We
intend to summarize a glossary of basic facts on their dynamics.

Countable index subgroups

The following subgroup of countable index in Mod.R/ plays an important role in our
arguments for the application of Lemmata 2.6 and 2.7.

Definition 2.12. For a homotopically non-trivial simple closed curve c, we define
MCGc.R/ to be a subgroup of MCG.R/ consisting of all mapping classes that pre-
serve c:

MCGc.R/ D fŒg� 2 MCG.R/ j g.c/ � cg;
where � means free homotopy equivalence. We denote the image of MCGc.R/ under
the representation � W MCG.R/ ! Mod.R/ by Modc.R/.

Proposition 2.13. For any non-trivial simple closed curve c in R, the subgroup
MCGc.R/ is of countable index in MCG.R/. For an arbitrary subgroup G �
MCG.R/, there is a subgroup G0 � MCGc.R/ of countable index in G.

Proof. The countability of the indices comes from the fact that the number of free
homotopy classes of non-trivial simple closed curves on R is countable. The latter
statement is obtained by taking the intersection of G with MCGc.R/.
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As this proposition shows, we can say that � -compactness of Riemann surfaces is
at the basis of the countability involved in the dynamics of Teichmüller modular groups.

Countable subgroups

It is well known that the mapping class group of an analytically finite Riemann surface
is finitely generated and in particular countable. However, for almost all analytically
infinite Riemann surfaces, the quasiconformal mapping class groups are uncountable.

We consider countable subgroups of Mod.R/. The fundamental lemma 2.6 in-
cludes the following claims in particular if � � Mod.R/ itself is countable.

Theorem 2.14. Let � be a countable subgroup of Mod.R/. Then � acts (weakly)
discontinuously at p 2 T .R/ if and only if � acts (weakly, resp.) stably at p. In
particular �.�/ D ˆ.�/.

The following subgroup of MCG.R/ can be regarded as the exhaustion of mapping
class groups of topologically finite subsurfaces of R.

Definition 2.15. A mapping class Œg� 2 MCG.R/ is called trivial near infinity (or
essentially trivial) if some representative g W R ! R is the identity outside some
topologically finite bordered subsurface V � R possibly having punctures such that
V is closed in R [ @1R. Let MCG1.R/ be the subgroup of MCG.R/ consisting
of all mapping classes trivial near infinity. Then we call it the stable mapping class
group. The image of MCG1.R/ under the representation � W MCG.R/ ! Mod.R/

is denoted by Mod1.R/.

Since MCG1.R/ admits an exhaustion by countable groups, it is countable. More-
over, MCG1.R/ is a normal subgroup of MCG.R/. This group plays an important
role when we consider the action of MCG.R/ on the asymptotic Teichmüller space
later on.

Under the assumption that R satisfies the bounded geometry condition, we see that
MCG1.R/ acts nicely on T .R/ as the following theorem asserts.

Theorem 2.16 ([16]). If R satisfies the bounded geometry condition, then Mod1.R/

acts discontinuously on T .R/. Moreover, whenever R is of infinite topological type,
this action is fixed-point free.

If MCG.R/ itself is countable for a hyperbolic Riemann surface R of infinite
topological type, then the geometry of R is much more restricted (in the opposite
direction to the boundedness) by this assumption and we have the following stronger
result. Note that the existence of such a Riemann surface R is also known. To all
appearances, this theorem is a generalization of the case where R is analytically finite.

Theorem 2.17 ([35]). If Mod.R/ is countable, then it acts discontinuously on T .R/.



12 Katsuhiko Matsuzaki

In [37], an example of a Riemann surface R of infinite topological type satisfying
MCG1.R/ D MCG.R/ is given.

Closed subgroups

The compact-open topology on the space of all homeomorphic automorphisms of
R induces a topology on the quasiconformal mapping class group MCG.R/. More
precisely, we say that a sequence of mapping classes Œgn� 2 MCG.R/ converges
to a mapping class Œg� 2 MCG.R/ in the compact-open topology if we can choose
representatives gn 2 Œgn� and g 2 Œg� such that gn converge to g locally uniformly
on R. When R has boundary at infinity @1R, assuming that the quasiconformal
automorphisms gn and g extend to @1R, we further require that these extensions
converge locally uniformly on R [ @1R. If Œgn� converge to Œg� in the compact-open
topology, then there are quasisymmetric automorphisms Qgn and Qg of the unit circle
@D corresponding to Œgn� and Œg� respectively such that Qgn converge uniformly to Qg.

Definition 2.18. We say that a subgroup G of MCG.R/ is discrete if it is discrete in
the compact-open topology on MCG.R/, and closed if it is closed. For a subgroup G,
we denote by xG the closure of G in MCG.R/. We also use the same terminology for
the corresponding subgroup � D �.G/ of Mod.R/ and define the closure x� by �. xG/.

It is clear that the intersection
T

i2I Gi of closed subgroups Gi of MCG.R/ is also
closed.

For a point p 2 T .R/ such that the stabilizer Stab.p/ in Mod.R/ is trivial (see
Theorem 2.37 in Section 2.4), the orbit of p defines a topology on Mod.R/ by using
the Teichmüller distance on T .R/. However, this topology does not coincide with the
compact-open topology introduced above. In fact, the orbit x�.p/ for p 2 T .R/ does
not necessarily coincide with the closure of the orbit �.p/ in the topology on T .R/.

Closed subgroups have preferable properties. The following theorem provides an
algebraic condition on G for being closed.

Theorem 2.19 ([41]). Assume that @1R D ;. If G � MCG.R/ is a finitely generated
abelian group, then G is discrete, and in particular closed.

This result is no more valid for a countable group in general. The stable mapping
class group MCG1.R/, which is countable, is not closed in almost all cases. In what
follows, we will give a closed subgroup that contains MCG1.R/.

We consider the end compactification R� of a Riemann surface R by adding all
the ends of R and by providing this union with the canonical topology. Here an
end means a topological end if the boundary at infinity @1R is empty. However, if
@1R ¤ ;, we first consider the double yR of R with respect to @1R and then take
the closure of R in the end compactification yR� of yR, which we define to be R�.
This has been introduced in [22]. Every quasiconformal automorphism of R extends
to a homeomorphic automorphism of R�. Furthermore this extension preserves the
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cuspidal ends. The extension restricted to the ideal boundary R� � R is determined
by the mapping class of the quasiconformal automorphism. Clearly, every mapping
class trivial near infinity fixes all the ends except cuspidal ends.

Definition 2.20. The subgroup of MCG.R/ consisting of all mapping classes that
fix all the ends except the cuspidal ends is called the pure mapping class group and
denoted by MCG@.R/.

Proposition 2.21. The pure mapping class group MCG@.R/ is a closed normal sub-
group of MCG.G/ which contains MCG1.R/.

Proof. The property of fixing the ends is preserved under convergence in the compact-
open topology.

Stationary subgroups I: with closedness

To generalize certain properties shared by the mapping class group of an analytically
finite Riemann surface, we will consider a subgroup of MCG.R/ that keeps the images
of some compact bordered subsurface bounded.

Definition 2.22. We call a subgroup G of MCG.R/ stationary if there exists a compact
bordered subsurface V of R such that every representative g of every mapping class
Œg� 2 G satisfies g.V / \ V ¤ ;. The corresponding subgroup � D �.G/ of Mod.R/

is also called stationary.

It is clear from the definition that if G is stationary, then so is the closure xG in the
compact-open topology.

A basic feature of stationary subgroups in connection with their closedness and
discreteness can be summarized as the following theorem.

Theorem 2.23. Let � be a stationary subgroup of Mod.R/. If � is closed then it
acts stably on T .R/. If � is infinite and discrete then it is of divergent type, and in
particular it acts discontinuously on T .R/.

Proof. Compactness of a family of stationary quasiconformal automorphisms with
uniformly bounded dilatations yields that if there is a sequence Œgn� in MCG.R/ such
that �n.p/ is bounded in T .R/ for �n D Œgn�� and for p 2 T .R/, then a subsequence
of Œgn� converges to some Œg� 2 MCG.R/ in the compact-open topology.

Suppose that a stationary subgroup � is closed. If �n.p/ converges to q 2 T .R/

for some sequence �n 2 � and for p 2 T .R/, then we see that � D Œg�� belongs to �

and �.p/ D q. This implies that the orbit �.p/ is closed for every p 2 T .R/. Since
the stabilizer is finite for any stationary subgroup, � acts stably on T .R/. Suppose
that � is infinite and discrete. In this case, we see that there is no subsequence �n 2 �

such that �n.p/ is bounded in T .R/. This implies that � is of divergent type.
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Corollary 2.24. If a subgroup � of Mod.R/ is stationary, then x� acts stably on T .R/

and x�.p/ D �.p/ for every p 2 T .R/.

Proof. Since x� is stationary and closed, it acts stably on T .R/ by Theorem 2.23. Then
x�.p/ is closed for every p 2 T .R/, which gives x�.p/ � �.p/. To prove the converse
inclusion, we take an arbitrary point q 2 �.p/ and consider a sequence �n 2 � such
that �n.p/ ! q as n ! 1. As in the proof of Theorem 2.23, since � is stationary,
we have � 2 x� such that �.p/ D q. This implies q 2 x�.p/.

By imposing an algebraic condition on � as before, we have another corollary
obtained from Theorems 2.19 and 2.23.

Corollary 2.25. Assume that @1R D ;. If a finitely generated infinite abelian group
� � Mod.R/ is stationary, then � is of divergent type.

Note that for an infinite cyclic group � this has been proved in [36] without impos-
ing the condition @1R D ;. We expect that the statement of the corollary is always
valid without this assumption.

As an example of a stationary subgroup, we have the pure mapping class group
MCG@.R/ in many cases as the following proposition states. See [16] for details.
Recall that MCG@.R/ is also closed by Proposition 2.21.

Proposition 2.26. Assume that R has at least three non-cuspidal topological ends.
Then the pure mapping class group MCG@.R/ is stationary. In this case, Mod@.R/ D
�.MCG@.R// acts stably on T .R/.

Proof. This is because a pair of pants that divides three non-cuspidal topological ends
has nonempty intersection with its image under every element of MCG@.R/. The
latter statement is a consequence of Theorem 2.23.

The subgroup Modc.R/ defined before is closed and it is stationary if R is non-
elementary. Hence Modc.R/ acts stably on T .R/ by Theorem 2.23. More generally,
we have the following.

Lemma 2.27. Assume that R is non-elementary. Each subgroup � of Mod.R/ con-
tains a stationary subgroup � 0 of countable index in � . In addition, if � is closed,
then � 0 can be taken to be closed and hence acting stably on T .R/.

Proof. Set � 0 D � \ Modc.R/. Then this is stationary since so is Modc.R/, and it
is of countable index in � by Proposition 2.13. Furthermore if � is closed, then � 0 is
closed since Modc.R/ is closed.

We mentioned that the region of stability ˆ.�/ for a subgroup � � Mod.R/ is not
necessarily open. However, by applying Lemmata 2.7 and 2.27, we can now recognize
a sufficient condition for the region of stability to be open.
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Theorem 2.28. For a closed subgroup � of Mod.R/, the region of stability ˆ.�/ is
an open subset of T .R/. In particular, ˆ.Mod.R// is open.

Stationary subgroups II: with bounded geometry

Another feature of a stationary subgroup is that under the bounded geometry condition
it acts discontinuously on T .R/. Note that we cannot drop any of the three assump-
tions in the bounded geometry condition (lower boundedness, upper boundedness and
@1R D ;) for the validity of this claim.

Theorem 2.29 ([23], [14]). Let � be a stationary subgroup of Mod.R/. If R satisfies
the bounded geometry condition, then � acts discontinuously on T .R/.

We apply this theorem to Modc.R/. Then Lemma 2.6 implies the following result.

Theorem 2.30. Assume that R satisfies the bounded geometry condition. Then a
subgroup � of Mod.R/ acts (weakly) discontinuously at p 2 T .R/ if and only if �

acts (weakly, resp.) stably at p. In particular �.�/ D ˆ.�/.

We also see in the following theorem that ˆ.�/ D �.�/ is non-empty in this case,
which has been proved in [13]. Later we will see a stronger assertion that ˆ.Mod.R//

is always dense in T .R/ without any assumption on the geometry of R.

Theorem 2.31. If R satisfies the bounded geometry condition, then, for any subgroup
� of Mod.R/, �.�/ is non-empty.

Proof. We only have to show the statement for � D Mod.R/. Since R satisfies
the lower boundedness condition, we choose an arbitrary simple closed geodesic c

on R and give a deformation of the hyperbolic structure by pinching c such that it
becomes the unique shortest simple closed geodesic with respect to the new hyperbolic
structure. Let p be the corresponding point on T .R/.

For a neighborhood U of p, we consider the smallest subgroup �0 of Mod.R/ that
contains f� 2 Mod.R/ j �.p/ 2 U g. If U is sufficiently small, �0 is contained in
Modc.R/. Since Modc.R/ acts discontinuously on T .R/ by Theorem 2.29, so does
�0 and hence Mod.R/ acts discontinuously at p.

If we do not assume a geometric condition on R, this result is not satisfied any
more. For instance, if R does not satisfy the lower boundedness condition or if the
boundary at infinity @1R is not empty, then �.Mod.R// D ;. As a conjecture, we
expect that the converse of this claim is also true.

Conjecture 2.32. The region of discontinuity �.Mod.R// is not empty if and only if
R satisfies the lower boundedness condition together with @1R D ;.
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Elliptic subgroups

If a Teichmüller modular transformations Œg�� 2 Mod.R/ has a fixed point on T .R/,
then it is called elliptic according to Bers [1]. This is equivalent to a condition that
the mapping class Œg� 2 MCG.R/ is realized as a conformal automorphism of the
Riemann surface f .R/ corresponding to p D Œf �, that is, fgf �1 is homotopic to
a conformal automorphism of f .R/ (relative to the boundary at infinity if it is not
empty). Such a mapping class Œg� is called a conformal mapping class. When R is
an analytically finite Riemann surface, Œg�� 2 Mod.R/ is elliptic if and only if it is
periodic (of finite order). We extend the concept of ellipticity to the case where R is
not necessarily analytically finite. In this case, elliptic modular transformations can
be of infinite order.

Definition 2.33. A subgroup � of Mod.R/ is called elliptic if it has a common fixed
point on T .R/.

If � D �.G/ is an elliptic subgroup of Mod.R/ fixing p D Œf � 2 T .R/, then
the subgroup G of MCG.R/ is realized as a group of conformal automorphisms of
f .R/. Hence G is a countable group. Furthermore G is discrete in the compact-open
topology, and if G is an infinite group, then it is not stationary.

We characterize elliptic subgroups by their orbits. It is clear that any orbit �.q/ of
an elliptic subgroup � is bounded since dT .�.q/; p/ D dT .q; p/ for a common fixed
point p and for all � 2 � . The following theorem says that the converse is also true.

Theorem 2.34. A subgroup � of Mod.R/ is elliptic if and only if � is of bounded
type, that is, the orbit �.p/ for some p 2 T .R/ is bounded.

In the case where R is analytically finite, theNielsen realization theorem, which was
finally proved by Kerckhoff [29], is equivalent to saying that every finite subgroup of
Mod.R/ is elliptic. The realization theorem says that every finite subgroup of MCG.R/

is realized as a group of conformal automorphisms of a Riemann surface corresponding
to the fixed point. Since a finite subgroup has a bounded orbit, Theorem 2.34 can be
regarded as a generalization of the realization theorem. The proof is essentially based
on a theorem due to Markovic [32], which asserts that a uniformly quasisymmetric
group on the unit circle @D is conjugate to a Fuchsian group by a quasisymmetric
homeomorphism.

Next, we see that most infinite elliptic subgroups � have an indiscrete orbit in
T .R/. Since � is countable, Theorem 2.14 implies that this is equivalent to the
statement that the orbit is not closed.

Theorem 2.35. Assume that an elliptic subgroup � � Mod.R/ has an infinite de-
scending sequence f�ng1

nD1 of proper subgroups � ¥ �1 ¥ �2 ¥ � � � . Then the
union X D S

n�1 Fix.�n/ is not closed in T .R/ and, at each p 2 xX � X , � does
not act weakly discontinuously, in other words, the orbit �.p/ is not a discrete set. In
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particular, if an elliptic subgroup � contains an element of infinite order, the above
assumption is always satisfied and the conclusion is valid.

Proof. The strict inclusion relation �n ¥ �nC1 gives the strict inclusion relation
Fix.�n/ ¤ Fix.�nC1/ for every n by passing to a subsequence if necessary. This has
been proved in [34]. Then the Baire category theorem implies that X is not closed and
xX �X is dense in xX . Take any point p 2 xX �X and consider a sequence f�n.p/g1

nD1

for �n 2 �n � �nC1. Then we see that �n.p/ ¤ p and limn!1 �n.p/ D p. This
shows that the orbit �.p/ is not a discrete set.

Note that an arbitrary countable group can be realized as a group of conformal
automorphisms of some Riemann surface (cf. [27]). Hence there is an example of an
infinite elliptic subgroup � that does not contain an infinite descending sequence of
proper subgroups. For these groups, we do not know whether their orbits are discrete
or not.

Finally, we show that each element of the countable group Mod1.R/, which comes
from a mapping class trivial near infinity, can be represented by the composition of
elliptic modular transformations of infinite order if they exist.

Theorem 2.36. Assume that Mod.R/ contains an elliptic modular transformation of
infinite order. Then any element of the countable subgroup Mod1.R/ can be written
as a composition of some elliptic elements of infinite order of Mod.R/.

Proof. For an elliptic modular transformation � 2 Mod.R/ of infinite order, we may
assume that it fixes the base point o 2 T .R/ and hence the corresponding mapping
class is realized as a conformal automorphism g of R. Take an arbitrary simple closed
geodesic c in R. Since hgi acts on R properly discontinuously, there is an integer
k ¤ 0 such that gkn.c/ \ c D ; for every integer n ¤ 0. Then, for Og D gk , a family
of simple closed geodesics f Ogn.c/gn2Z are mutually disjoint. Moreover in this case,
there is a collar neighborhood Ac of c such that f Ogn.Ac/gn2Z are mutually disjoint.
We rename Og as g and reset � D Œg��.

For each n 2 Z, let tgn.c/ be a quasiconformal automorphism of R that is obtained
by a Dehn twist supported on gn.Ac/ D Agn.c/. We set gc D g B tc and define
�c D Œgc��. Since g�1 B tc B g D tg�1.c/, we have

gn
c D gn B tg�.n�1/.c/ B � � � B tg�1.c/ B tc

for every integer n � 1. From this expression, we see that the maximal dilatation of
gn

c is equal to that of tc because the support of the quasiconformal automorphisms
tg�i .c/ .0 � i � n � 1/ are mutually disjoint. This implies that the orbit f�n

c .o/gn2Z

is bounded. Hence, by Theorem 2.34, �c is also an elliptic modular transformation.
It is easy to see that the order of �c is infinite.

Since tc D g�1 B gc , the corresponding modular transformation 	c D Œtc�� is
written as a composition of elliptic elements. Every element of MCG1.R/ can be
written as a composition of mapping classes obtained by Dehn twists along simple
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closed geodesics because this is true for the pure mapping class group of any compact
bordered surface. Since every modular transformation 	c corresponding to a Dehn
twist is the composition of elliptic elements of infinite order, we see that every element
of Mod1.R/ is also written as a composition of such elements.

Note that no non-trivial elliptic modular transformations belong to Mod1.R/ if R

is analytically infinite.

2.4 Application to the infinite-dimensional Teichmüller theory

We gave some basic concepts in the dynamics of the Teichmüller modular group.
They have a general theoretical nature and will be developed by finding interesting
applications to Teichmüller theory. Here we review some of such applications.

Fixed point loci of Teichmüller modular groups

For a finite-dimensional Teichmüller space T .R/, it is well known that the union of
the fixed point loci of all non-trivial elements of the mapping class group MCG.R/ is
nowhere dense in T .R/ except in a few cases of low dimensions. For instance, if R

is a closed Riemann surface of genus 2, there exists an involution Œg� in MCG.R/ that
fixes all the points of T .R/. A Riemann surface having such a symmetry is called an
exceptional surface. The representation � W MCG.R/ ! Aut.T .R// is injective for a
non-exceptional Riemann surface R.

For an infinite-dimensional Teichmüller space, a claim analogous to the above
statement says that the union of the fixed point loci of MCG.R/ is contained in a
countable union of nowhere dense subsets. This has been proved by Epstein [11]. The
complement of this countable union is called a residual set which is dense in T .R/.
The existence of a point in the residual set where the isotropy subgroup of MCG.R/

is trivial in particular shows that the representation � W MCG.R/ ! Aut.T .R// is
injective.

On the other hand, from a viewpoint of dynamical systems, we can consider a
problem of whether the set of points p 2 T .R/ such that Stab.p/ has an element of
infinite order is dense in the limit set of Mod.R/, in analogy with the same question
in the dynamics of Kleinian groups. However, it is proved in [42] that this is not true
for the dynamics of Teichmüller modular groups. This means that the fixed point loci
of Mod.R/ is a thinner set even in the limit set and similar arguments for proving this
fact give the following extension of the aforementioned result.

Theorem 2.37 ([42]). The interior of the set of points p 2 T .R/ for which Stab.p/

is trivial is dense in T .R/.

Biholomorphic automorphisms of Teichmüller spaces

Now it is known that every biholomorphic automorphism of the Teichmüller space
of dimension greater than one is a Teichmüller modular transformation. For finite-
dimensional Teichmüller spaces, this result was first proved by Royden [44]. In the
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general case, the proof is carried out by the combination of two theorems. Earle and
Gardiner [3] proved the automorphism theorem, which asserts that the above claim
is true if a Riemann surface satisfies a so-called isometry property. Then Markovic
[31] finally proved that every non-exceptional Riemann surface satisfies the isometry
property. See the exposition in Volume II of this Handbook [12]. See also [9] for an
adaptation of this idea to the proof in the finite-dimensional case.

If we assume the isometry property against the chronological order, then we can
state an essential part of the automorphism theorem as follows.

Theorem 2.38. Assume that the Teichmüller space T .R/ has dimension greater than
one. Then, for every biholomorphic automorphism 
 of T .R/ and for every point
p 2 T .R/, there exists an element �p 2 Mod.R/ such that 
.p/ D �p.p/.

For an analytically finite Riemann surface, once this theorem is proved (actually
Royden’s arguments imply this statement), then it is easy to obtain the result that
any biholomorphic automorphism is a Teichmüller modular transformation. This is
due to the fact that the Teichmüller modular group acts properly discontinuously in
this case. However, in the general case, we still need an extra argument to reach the
desired result. This step was included in the proof of the automorphism theorem in
[3]. Fujikawa [15] found that there is a certain case where the original argument of
Royden can be applied without change. The assumption for this case is described by
using the region of discontinuity of the Teichmüller modular group.

Theorem 2.39. For a biholomorphic automorphism 
 of T .R/, assume that there
exists a subgroup � of Mod.R/ with �.�/ ¤ ; such that, for every point p 2 �.�/,
there is an element �p 2 � satisfying 
.p/ D �p.p/. Then 
 coincides with an
element of � .

Proof. Choose a point p 2 �.�/. The stabilizer of p is a finite group in general and
this does not make a trouble in the proof as is shown in [15], but here we assume that
the stabilizer is trivial for the sake of simplicity. Actually, the choice of such a p is
always possible because the set of all such p is dense in T .R/ as is seen before.

Take a disk Up.r/ with center at p and radius r > 0 such that �.Up.r//\Up.r/ D ;
for every non-trivial � 2 � . Then consider a smaller disk Up.r=2/ of radius r=2 and
choose an arbitrary point q 2 Up.r=2/. It is clear that dT .�.q/; q/ > r for every non-
trivial � 2 � . We consider ��1

p B �q 2 � and, from the fact that the biholomorphic
automorphism 
 preserves the Kobayashi distance on T .R/, we have

dT .��1
p B �q.q/; q/ D dT .�q.q/; �p.q//

� dT .�q.q/; �p.p// C dT .�p.p/; �p.q//

D dT .
.q/; 
.p// C dT .p; q/ < r:

This estimate implies that ��1
p B �q should be trivial and hence �q D �p for every

q 2 Up.r=2/. Therefore 
 D �p restricted to Up.r=2/. Then, by the rigidity of
holomorphic functions, we conclude that 
 coincides with �p on T .R/.
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In order to apply this theorem, it is necessary to find geometric or algebraic condi-
tions under which �.�/ is not empty. Theorem 2.31 says that this is true if R satisfies
the bounded geometry condition. Here we give the following condition on � to guar-
antee �.�/ ¤ ;. The assumption �.�/ D ˆ.�/ is satisfied, for example, when � is
countable by Theorem 2.14.

Lemma 2.40. Assume that R is non-elementary. If � � Mod.R/ is a closed subgroup
such that �.�/ D ˆ.�/, then �.�/ ¤ ;.

Proof. As in the proof of Theorem 2.31, we can choose a neighborhood U of some
p 2 T .R/ and a simple closed geodesic c on R so that the smallest subgroup �0 that
contains f� 2 � j �.p/ 2 U g is contained in Modc.R/. Note that this is possible
even if R does not satisfy the bounded geometry condition. See [42].

Take the closure x�0 of �0. Since Modc.R/ and � are closed, x�0 is contained in
both of them. Since Modc.R/ is stationary, so is x�0. Hence x�0 is stationary and
closed, and by Theorem 2.23, x�0 acts stably on T .R/. This implies that � acts stably
at p and thus ˆ.�/ ¤ ;.

3 The action on the asymptotic Teichmüller space

We regard Teichmüller space as a fiber space over a certain base space called the
asymptotic Teichmüller space. An asymptotically conformal homeomorphism of a
Riemann surface is a quasiconformal map that is close to a conformal map as we
go to the infinity of the surface. The asymptotic Teichmüller space is defined by
replacing the roles of conformal homeomorphisms with asymptotically conformal
ones in the definition of the Teichmüller space. Since the quasiconformal mapping
class group acts on the Teichmüller space preserving the fibers, its action can be
divided into that on each fiber and that on the asymptotic Teichmüller space. In this
section, we are mainly concerned with the former action, which is given by a group
of asymptotically conformal mapping classes. It acts on the Teichmüller space as
an asymptotically elliptic subgroup of the Teichmüller modular group, having certain
similarity to Teichmüller modular groups of analytically finite Riemann surfaces.

3.1 Asymptotic Teichmüller spaces and modular groups

We introduce the asymptotic Teichmüller space and define the action of the quasi-
conformal mapping class group on this space.

Asymptotic Teichmüller spaces

The asymptotic Teichmüller space has been introduced by Gardiner and Sullivan [26]
for the unit disk and by Earle, Gardiner and Lakic [4], [5], [6] for an arbitrary Riemann
surface.
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Definition 3.1. We say that a quasiconformal homeomorphism f of a Riemann surface
R is asymptotically conformal if, for every � > 0, there exists a compact bordered
subsurface V of R such that the maximal dilatation K.f jR�V / of the restriction of f

to R � V is less than 1 C �. We say that two quasiconformal homeomorphisms f1

and f2 of R are asymptotically equivalent if there exists an asymptotically conformal
homeomorphism h W f1.R/ ! f2.R/ such that f �1

2 BhBf1 is homotopic to the identity
(relative to @1R if @1R ¤ ;). The asymptotic Teichmüller space AT .R/ of R is the
set of all asymptotic equivalence classes ŒŒf �� of quasiconformal homeomorphisms f

of R.

Since a conformal homeomorphism is asymptotically conformal, there is a nat-
ural projection ˛ W T .R/ ! AT .R/ that maps each Teichmüller equivalence class
Œf � 2 T .R/ to the asymptotic equivalence class ŒŒf �� 2 AT .R/. The asymptotic
Teichmüller space AT .R/ has a complex manifold structure such that ˛ is holomor-
phic. Each fiber of the projection ˛ is a separable closed subspace of T .R/. Moreover
˛ induces a quotient distance dAT on AT .R/ from the Teichmüller distance, which is
called the asymptotic Teichmüller distance. We do not know yet whether this distance
coincides with the Kobayashi distance on AT .R/ or not. See [5], [6] and [8].

The asymptotic Teichmüller space AT .R/ is of interest only when R is analytically
infinite. Otherwise AT .R/ is trivial, that is, it consists of just one point. Conversely,
if R is analytically infinite, then AT .R/ is not trivial. In fact, it is infinite-dimensional
and non-separable.

Asymptotic Teichmüller modular groups

Like in the case of Teichmüller space, every mapping class Œg� 2 MCG.R/ induces a
biholomorphic automorphism Œg��� of AT .R/ by ŒŒf �� 7! ŒŒf B g�1��, which is also
isometric with respect to dAT . Note that since the projection ˛ W T .R/ ! AT .R/ is
not known to be a holomorphic split submersion, the fact that Œg��� is holomorphic is
not so trivial. See [6] and [7].

Definition 3.2. Let Aut.AT .R// be the group of all biholomorphic isometric auto-
morphisms of AT .R/. For a homomorphism

�AT W MCG.R/ ! Aut.AT .R//

given by Œg� 7! Œg���, we define theasymptoticTeichmüllermodular groupModAT .R/

of R to be the image �AT .MCG.R//.

Unlike the representation � W MCG.R/ ! Aut.T .R//, the homomorphism �AT

is not injective, namely, Ker �AT ¤ fŒid�g unless R is either the unit disc or the
once-punctured disc. See [4].

Definition 3.3. We call an element of Ker �AT asymptotically trivial and call Ker �AT

the asymptotically trivial mapping class group. We also call an element of the corre-
sponding subgroup �.Ker �AT / of Mod.R/ asymptotically trivial.
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The action of ModAT .R/ on AT .R/ has been studied by Fujikawa [17]. In par-
ticular, the limit set of ModAT .R/ in AT .R/ is investigated.

3.2 Asymptotically elliptic subgroups

In order to investigate the action of the quasiconformal mapping class group on a fiber
over the asymptotic Teichmüller space, we consider the stabilizer subgroup of the fiber
in the Teichmüller modular group. The projection of this subgroup to the asymptotic
Teichmüller modular group fixes the base point of the fiber on the asymptotic Teich-
müller space.

Asymptotically elliptic modular transformations

Now we define asymptotic conformality for quasiconformal mapping classes and
asymptotic ellipticity for Teichmüller modular transformations.

Definition 3.4. A mapping class Œg� 2 MCG.R/ is called asymptotically conformal
if there is a quasiconformal homeomorphism f of R such that fgf �1 is homotopic
to an asymptotically conformal automorphism of f .R/ (relative to the boundary at
infinity if it is not empty). A Teichmüller modular transformation Œg�� 2 Mod.R/ is
called asymptotically elliptic if Œg��� 2 ModAT .R/ has a fixed point ŒŒf �� on AT .R/.

It is clear that a mapping class Œg� 2 MCG.R/ is asymptotically conformal if
and only if the corresponding Teichmüller modular transformation Œg�� 2 Mod.R/ is
asymptotically elliptic. An elliptic modular transformation is of course asymptotically
elliptic. However the converse is not true. A trivial example is a mapping class caused
by a single Dehn twist. This is not a conformal mapping class, but it acts trivially
on AT .R/. In particular, it has a fixed point on AT .R/. Petrovic [45] first dealt
with an asymptotically conformal mapping class that acts on AT .R/ non-trivially (in
fact non-periodically) and that has no fixed point on T .R/. See also [40] for another
example.

When R is analytically finite, every Teichmüller modular transformation is asymp-
totically elliptic since AT .R/ consists of a single point. Asymptotically elliptic mod-
ular transformations are generalization of the Teichmüller modular transformations of
analytically finite Riemann surfaces in this sense.

Similarly, we define asymptotic ellipticity for subgroups of Mod.R/.

Definition 3.5. A subgroup � D �.G/ of Mod.R/ is called asymptotically elliptic if
�AT .G/ � ModAT .R/ has a common fixed point on AT .R/.

It is clear from the definition that a subgroup consisting of asymptotically trivial
modular transformations is asymptotically elliptic.

Elliptic subgroups are always countable. For asymptotically elliptic subgroups,
this is not valid in general, but if we impose the bounded geometry condition on R,
this is true as is shown in [38].
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Theorem 3.6. Assume that R satisfies the bounded geometry condition. Then every
asymptotically elliptic subgroup � of Mod.R/ is countable.

Proof. By Lemma 2.27, we can take a stationary subgroup � 0 of countable index in
� . If � is uncountable, then so is � 0. On the other hand, � 0 acts discontinuously on
T .R/ by Theorem 2.29. In particular, the uncountable group � 0 acts discontinuously
on the fiber over the fixed point on AT .R/, which is separable. However, this is
impossible.

Like in the case where Mod.R/ is countable, if the entire Mod.R/ is asymptotically
elliptic, this restrictive condition gives us a stronger consequence.

Theorem 3.7 ([38]). If Mod.R/ itself is asymptotically elliptic, then Mod.R/ is
countable and acts discontinuously on T .R/.

There is an example of R such that Mod.R/ is asymptotically elliptic. Furthermore,
the entire Mod.R/ can be asymptotically trivial. See [35] and [37] for these examples.

The action on the fiber

We consider the action of an asymptotically elliptic subgroup � � Mod.R/ restricted
to the fiber over the fixed point on AT .R/. For any point p 2 T .R/, we denote
the fiber of the projection ˛ W T .R/ ! AT .R/ containing p by Tp , that is, Tp D
˛�1.˛.p//.

If � � Mod.R/ is asymptotically elliptic having a common fixed point ˛.p/ 2
AT .R/, then � preserves the fiber Tp . We investigate an abelian action of such a
subgroup and obtain the following.

Theorem 3.8. Assume that @1R D ;. Let � be an asymptotically elliptic subgroup
of Mod.R/ that is finitely generated infinite abelian. Then, for every point p 2 T .R/

over the fixed point of � on AT .R/, one of the following alternative conditions is
satisfied:

(1) � fixes p;

(2) � acts discontinuously at p and the orbit �.p/ is bounded;

(3) �.p/ is divergent, that is, � is of divergent type.

In any case, �.p/ is a discrete set.

Before the proof of Theorem 3.8, we extend the definition of the stationary property
for a subgroup of MCG.R/ to any sequence of mapping classes. A sequence fŒgi �g1

iD1

in MCG.R/ is called stationary if there exists a compact bordered subsurface V of R

such that every representative gi of each mapping class Œgi � satisfies gi .V / \ V ¤ ;.
On the contrary, a sequence fŒgi �g1

iD1 is called escaping if, for every compact bordered
subsurface V of R, there exists some representative gi of each mapping class Œgi �
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such that fgi .V /g diverges to the infinity of R as i ! 1. Note that a sequence
fŒgi �g � MCG.R/ can be neither stationary nor escaping, but we can always choose a
subsequence that is either stationary or escaping. A sequence f�ig in Mod.R/ is also
called stationary or escaping if so is fŒgi �g � MCG.R/ for �i D Œgi ��.

Proof. If � is stationary, then Corollary 2.25 says that � is of divergent type. This is
also true for any stationary subsequence f�ig in � and we see that f�i .p/g diverges to
the infinity of T .R/ for such a sequence.

Suppose that there is a subsequence f�ig in � such that f�i .p/g has an accumulation
point in Tp . By replacing the subsequence if necessary, we may assume that f�i .p/g
converges to p. Moreover, by the previous paragraph, we see that this subsequence
f�ig is escaping. Then we use Lemma 3.9 below to show that the whole group � fixes
the point p. This is the situation of Condition (1).

Next, suppose that there is a subsequence f�ig in � such that f�i .p/g is bounded
in Tp . Then f�ig should be an escaping subsequence as before, and in this case, we
see by Lemma 3.9 that the whole orbit �.p/ is bounded. This is the situation of either
Conditions (1) or (2). By excluding the case discussed in the previous paragraph, we
have Condition (2).

Finally, if there is no subsequence f�ig in � such that f�i .p/g is bounded, then this
means that the orbit �.p/ is divergent. This is the situation of Condition (3).

Lemma 3.9 ([36], [40]). Assume that @1R D ;. Let � be an asymptotically elliptic
abelian subgroup of Mod.R/. Let f�ig be an escaping sequence of � . Then the
following are satisfied for any point p 2 T .R/ over the fixed point of � on AT .R/.

• If f�i .p/g converges to p, then � fixes p.

• If f�i .p/g is bounded, then � is of bounded type.

In both cases, � is elliptic.

By Theorem 2.34, we see that Conditions (1) or (2) of Theorem 3.8 occur if and
only if � is elliptic. Note that there is a case where � satisfies (2) but has no fixed point
in Tp , which is shown in [39]. Condition (3) occurs if and only if � is asymptotically
elliptic but not elliptic. In this case, � acts discontinuously on T .R/. This gives the
following corollary.

Corollary 3.10. Assume that @1R D ;. Let � be an asymptotically elliptic subgroup
of Mod.R/ that is finitely generated infinite abelian. Then either � is elliptic or �

acts discontinuously on T .R/.

Note that if R satisfies the bounded geometry condition in Theorem 3.8 and Corol-
lary 3.10, then we can weaken the assumption on � for the same claim. Namely, we
have only to assume that � is an infinite abelian group. This is based on Theorem 2.29.

As an application of the previous facts, we have the following result, which has
been obtained in [39] and [19]. We believe that this should be proved without any
assumption on R.
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Proposition 3.11. Assume that R satisfies the bounded geometry condition. Then no
non-trivial elliptic modular transformation of Mod.R/ is asymptotically trivial.

Proof. Let � be an elliptic modular transformation of Mod.R/. If � is of infinite order,
then by Theorem 2.35, there is an orbit of p 2 T .R/ under h�i that is not a discrete set.
On the other hand, if � is asymptotically trivial, then in particular h�i preserves the
fiber Tp , and the orbit should be a discrete set by Theorem 3.8. This is a contradiction.
In the case where � is of finite order, we see that � cannot be asymptotically trivial by
a certain geometric argument.

3.3 The asymptotically trivial mapping class group

The asymptotically trivial mapping class group contains the stable mapping class
group. They do not necessarily coincide, but when R satisfies the bounded geometry
condition, they coincide. We explain the relationship between these groups and then
discuss certain results obtained from their coincidence.

Relation to the stable mapping class group

It is evident from the definition that the stable mapping class group is contained in
the asymptotically trivial mapping class group and the pure mapping class group.
Moreover, there is an inclusion relation between the latter two groups.

Theorem 3.12 ([16], [20]). The following inclusion relations are satisfied in general:

MCG1.R/ � Ker �AT � MCG@.R/:

We expect that the closure MCG1.R/ of the stable mapping class group in the
compact-open topology should contain Ker �AT . Since MCG@.R/ is closed, the in-
clusion MCG1.R/ � MCG@.R/ is clear.

If R has a sequence of mutually disjoint simple closed geodesics whose lengths
tend to zero, then a mapping class given by the simultaneous Dehn twists along all
these curves belongs to Ker �AT but not to MCG1.R/. However, if R satisfies the
bounded geometry condition, then there is no such sequence of curves, and in fact
there is no such mapping class.

Theorem 3.13 ([19], [20]). Assume that R satisfies the bounded geometry condition.
Then MCG1.R/ D Ker �AT is satisfied.

An application of this theorem will be given in the next section.

Finite subgroups in the asymptotic Teichmüller modular group

We deal with periodic elements, and more generally, finite subgroups of the asymptotic
Teichmüller modular group. Recall that every finite subgroup of the Teichmüller
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modular group has a fixed point on the Teichmüller space, which is a special case of
Theorem 2.34. We consider a similar property on the asymptotic Teichmüller space.

We assume that R satisfies the bounded geometry condition. Let Œg� 2 MCG.R/

be a mapping class such that Œg��� 2 ModAT .R/ is periodic of order n. This means
that Œgn� 2 Ker �AT , and since Ker �AT D MCG1.R/ by Theorem 3.13, we have
Œgn� 2 MCG1.R/. Then we see that, outside some topologically finite bordered
subsurface, Œg� is a periodic mapping class. By standard arguments, we can find
a complex structure such that Œg� can be realized as a conformal automorphism off
the subsurface, that is, Œg� is asymptotically conformal. This is equivalent to saying
that this complex structure gives a fixed point of Œg��� on AT .R/. Therefore, every
periodic element of ModAT .R/ has a fixed point on AT .R/. This has been proved
in [19].

The Nielsen realization theorem for the mapping class group MCG.R/ is solved
by finding a fixed point on T .R/. Analogously, we formulate the following fixed point
theorem for ModAT .R/, the asymptotic version of the realization theorem. The proof
is also carried out by a similar argument as above relying on the fact that Ker �AT D
MCG1.R/.

Theorem 3.14 ([20]). Assume that R satisfies the bounded geometry condition. Then
every finite subgroup of ModAT .R/ has a common fixed point on AT .R/.

In the light of Theorem 2.34, we further propose the following.

Problem 3.15. Find a common fixed point on AT .R/ when the orbit of a subgroup
of ModAT .R/ is bounded.

Realization in asymptotic Teichmüller modular groups

Every countable group can be realized as a group of conformal automorphisms of
some Riemann surface. Actually, a stronger result has been periodically proved since
the first proof was given by Greenberg [27], which asserts that we can find a Riemann
surface R whose conformal automorphism group is precisely isomorphic to the given
countable group.

This fact says that every countable group can be obtained as the stabilizer of some
point in some Teichmüller modular group. Then we may ask the same question for the
asymptotic Teichmüller modular group. If we see that the kernel of the representation
�AT W MCG.R/ ! Aut.AT .R// contains no conformal mapping classes besides the
trivial one, then every countable group can also be realized as the stabilizer subgroup of
ModAT .R/. In fact, Proposition 3.11 gives the following theorem. Note that it is easy
to make a hyperbolic Riemann surface R to satisfy the bounded geometry condition
as well as to avoid extra asymptotically conformal automorphisms of R other than the
conformal ones.
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Theorem3.16. For any countable group H , there exists a hyperbolic Riemann surface
R satisfying the bounded geometry condition such that the stabilizer subgroup for some
point of AT .R/ in ModAT .R/ is isomorphic to H .

Here we will give a concrete construction of a Riemann surface R such that the
Thompson group is realized in some stabilizer subgroup of ModAT .R/, according to
de Faria, Gardiner and Harvey [2].

Let E be the middle-third Cantor set in the unit interval and set R D C �E, which
has one puncture at 1. Given a hyperbolic metric, R satisfies the bounded geometry
condition. Indeed, each step for the construction of the Cantor set by removing the
middle-third interval defines a pair of pants, and this procedure induces a canonical
pants decomposition of R such that all the lengths of boundary geodesics of the
pairs of pants are uniformly bounded from above and from below. Then there is a
quasiconformal homeomorphism f of R D C � E preserving the upper and lower
half-planes respectively such that for any non-cuspidal topological ends e and e0 of
f .R/, there are neighborhoods U and U 0 of e and e0 respectively that are conformally
equivalent. Set p D Œf � 2 T .R/.

Let G be the subgroup of MCG.R/ consisting of all mapping classes that have
representatives preserving the upper and lower half-planes. Then, by the choice of
p, we see that each mapping class of G is realized as an asymptotically conformal
automorphism of the Riemann surface f .R/ corresponding to p. This means that
� D �.G/ is an asymptotically elliptic subgroup of Mod.R/. Since R satisfies the
bounded geometry condition, Theorem 3.6 tells us that � is a countable group. Also
note that MCG.R/ itself is stationary because every representative of each mapping
class maps any neighborhood of the puncture in such a way that it has non-empty
intersection with its image. Hence by Theorem 2.29, � acts discontinuously on T .R/.

The Thompson group F is the group of all piecewise-linear automorphisms of
the unit interval Œ0; 1� fixing 0 and 1 having the following property. For some integer
n � 0, the domain and the range are divided into nC1 subintervals. These subintervals
are obtained by n time half-division of intervals such that at each step we choose one
of the intervals made by the previous steps and divide it into two half intervals. (The
subdivision in the domain and in the range is not the same.) Then such a division of
the domain and the range intervals gives a unique piecewise-linear homeomorphism
by the correspondence of the subintervals in order. The Thompson group F is an
infinitely generated group without torsion. It has been proved in [2] that �AT .G/ is
isomorphic to F . This means that F can be realized as a subgroup of the stabilizer
for ˛.p/ 2 AT .R/ in ModAT .R/.

4 Quotient spaces by Teichmüller modular groups

If a Riemann surface R is analytically finite, the moduli space M.R/ of all complex
structures on R is obtained as a quotient space of the Teichmüller space T .R/ by
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the Teichmüller modular group Mod.R/. In this case, Mod.R/ acts properly discon-
tinuously on T .R/ and hence M.R/ inherits complex and geometric structures from
T .R/. However, this is not always the case where R is a general Riemann surface. We
have to consider other quotients which inherit certain structures of T .R/. Especially,
we introduce the stable moduli space and the enlarged moduli space. The former
is obtained as the completion of the quotient of the region of stability by Mod.R/

whereas the latter is the quotient of T .R/ by the stable mapping class group.
In this section, we assume that a Riemann surface R is non-elementary.

4.1 Geometric moduli spaces

We introduce a new moduli space, which has a complete distance induced from the
Teichmüller distance. We give two different ways for its construction and show that
the resulting spaces coincide.

The moduli space of stable points

No matter how the action of Mod.R/ is far from discontinuity, we can define the
moduli space M.R/ D T .R/= Mod.R/ which is a topological space for the quotient
topology. We call this M.R/ the topological moduli space. Moreover a pseudo-
distance dM on M.R/ is induced from the Teichmüller distance dT on T .R/. Namely,
letting � W T .R/ ! M.R/ the projection, we define the pseudo-distance by

dM .�; 	/ D inffdT .p; q/ j �.p/ D �; �.q/ D 	g
for any � and 	 in M.R/. However, this is not always a distance because the infimum
is not necessarily attained. Hence we want to consider the following smaller subset
in M.R/.

Definition 4.1. The moduli space of stable points is defined by

Mˆ.R/ D ˆ.Mod.R//= Mod.R/;

where ˆ.Mod.R// is the region of stability for Mod.R/.

For the region of discontinuity �.Mod.R//, the quotient space

M�.R/ D �.Mod.R//= Mod.R/

inherits complex and geometric structures from T .R/. In particular, M�.R/ is a com-
plex Banach orbifold. On the other hand, Mˆ.R/ is an open subset of M.R/ including
M�.R/ where the restriction of the pseudo-distance dM becomes a distance. If R

satisfies the bounded geometry condition, then Mˆ.R/ D M�.R/ by Theorem 2.30.
The distance dM on Mˆ.R/ defines the length of a path in Mˆ.R/. For any two

points in Mˆ.R/, consider all paths in Mˆ.R/ connecting these points and take the
infimum over their lengths. This defines an intrinsic distance d i

M on Mˆ.R/, which
is called the inner distance with respect to dM . Clearly d i

M � dM .
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Definition 4.2. The metric completion of Mˆ.R/ with respect to the inner distance
d i

M is denoted by Mˆ.R/i and called the stable moduli space.

Closure equivalence

We use a stronger equivalence relation than the usual orbit equivalence under Mod.R/.
This makes the quotient space a metric space.

Definition 4.3. For a subgroup � of Mod.R/, we define two points p and q in T .R/

to be equivalent if q 2 �.p/. This gives an equivalence relation and the equivalence
class containing p is �.p/. This is called closure equivalence. The quotient space by
the closure equivalence is denoted by T .R/==� .

Let N� W T .R/=� ! T .R/==� be the canonical projection. The inverse image
N��1.s/ for s 2 T .R/==� coincides with the closure f�g of a single point set f�g
in T .R/=� , where � is an arbitrary point in N��1.s/. This corresponds to the fact
that the equivalence classes containing p 2 T .R/ are �.p/ and �.p/ for the orbit
equivalence and for the closure equivalence, respectively. Clearly, f�g D f�g if and
only if the corresponding orbit �.p/ is closed, namely, � acts at p weakly stably.
The Teichmüller distance dT induces a quotient distance d� on T .R/==�; it satisfies
a property that d�.s; s0/ D 0 implies s D s0. This is because the equivalence classes
are closed in T .R/. Hence T .R/==� is a complete metric space.

Now, by setting � D Mod.R/, we have our definition of the moduli space.

Definition 4.4. The complete metric space T .R/== Mod.R/ with the distance d� is
called the geometric moduli space and denoted by M�.R/.

If Mod.R/ acts on T .R/ weakly stably, then the geometric moduli space M�.R/

is nothing but the topological moduli space M.R/ and the pseudo-distance dM coin-
cides with the distance d�. However, if it does not act weakly stably, the projection
N� W M.R/ ! M�.R/ is not injective and dM is not a distance on M.R/. In fact,
M.R/ does not satisfy the first separability axiom (T1-axiom) in this case.

Proposition 4.5 ([42]). The following conditions are equivalent:

(1) the Teichmüller modular group Mod.R/ acts weakly stably on T .R/;

(2) the projection N� W M.R/ ! M�.R/ is injective;

(3) the topological moduli space M.R/ is a T1-space, in other words, every single
point constitutes a closed set;

(4) the pseudo-distance dM on M.R/ is a distance.

A sufficient condition for R and Mod.R/ not to satisfy the conditions in Proposi-
tion 4.5 is also given in [42] as follows.
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Theorem 4.6. Assume that R satisfies the bounded geometry condition and Mod.R/

contains an elliptic element of infinite order. Then the topological moduli space M.R/

is not a T1-space. In particular, for an infinite cyclic cover R of an analytically finite
Riemann surface, M.R/ is not a T1-space.

Proof. Since Mod.R/ contains an elliptic element of infinite order, it does not act
weakly discontinuously by Theorem 2.35. Since R satisfies the bounded geometry
condition, this implies that Mod.R/ does not act weakly stably by Theorem 2.30.
Then Proposition 4.5 asserts that M.R/ is not a T1-space.

Genericity of stable points

We give several properties of the stable points which show that they are generic in
T .R/ in the following sense. We apply these properties to the investigation of the
structure of moduli spaces.

Theorem 4.7 ([42]). Assume that R is non-elementary. The region of stability
ˆ.Mod.R// is open, connected and dense in T .R/.

Note that we have seen that ˆ.Mod.R// is open by Theorem 2.28. The following
corollary is an easy consequence of the density of ˆ.Mod.R//.

Corollary 4.8. The geometric moduli space M�.R/ is isometric to the completion
Mˆ.R/ of the moduli space of the stable points with respect to the distance dM .

Concerning the connectivity, ˆ.Mod.R// has a stronger property than just a topo-
logical one. Namely, the distance between two points in ˆ.Mod.R// measured by dM

is comparable in some sense, with the length of a path connecting them in ˆ.Mod.R//,
which approximates the distance measured by d i

M . This in particular gives the fol-
lowing.

Theorem 4.9 ([42]). The geometric moduli space M�.R/ is locally bi-Lipschitz equiv-
alent to the stable moduli space Mˆ.R/i .

If R satisfies the bounded geometry condition, ˆ.Mod.R// D �.Mod.R//.
This implies that our moduli space M�.R/ has an open dense connected subregion
�.Mod.R//= Mod.R/ which has the complex Banach orbifold structure induced
from T .R/.

One of the problems we are interested in is to give a characterization of each point
in M�.R/ explaining this equivalence class geometrically.

4.2 Several Teichmüller spaces

In general, we can define the quotient T .R/=� by a subgroup � of Mod.R/ as a
certain reduction of the Teichmüller space or a certain extension of the moduli space
in some appropriate sense.
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An example: the reduced Teichmüller space

As an example, we present a familiar Teichmüller space, which can be defined as the
quotient of the following subgroup of the Teichmüller modular group. Let MCG#.R/

be the subgroup of MCG.R/ consisting of all elements Œg� such that g is freely homo-
topic to the identity of R, where R is assumed to have the boundary at infinity @1R

but the homotopy is not assumed to be relative to @1R. It is clear that MCG#.R/ is
normal in MCG.R/. As usual, we set Mod#.R/ D �.MCG#.R//.

Proposition 4.10. Assume that R is non-elementary. The subgroup Mod#.R/ is the
intersection of the subgroups Modc.R/ taken over all non-trivial simple closed curves
c on R. Hence Mod#.R/ acts stably on T .R/.

Proof. The first statement is well-known. See for instance [11]. The second statement
is a consequence of Proposition 2.8.

The space T .R/= Mod#.R/ D T .R/== Mod#.R/ is called the reducedTeichmüller
space T #.R/ with the quotient distance d #, and Mod.R/= Mod#.R/ is the reduced
Teichmüller modular group Mod#.R/. It acts on .T #.R/; d #/ isometrically.

Relative Teichmüller spaces

We have already seen the important roles of the subgroup Modc.R/. Here we consider
the quotient space of T .R/ by this group. In Proposition 2.13, we have seen that
Modc.R/ is of countable index in Mod.R/. And, since Modc.R/ is stationary and
closed if R is non-elementary, it acts stably on T .R/ by Theorem 2.23. Moreover, if
R satisfies the bounded geometry condition, then it acts discontinuously on T .R/.

Definition 4.11. The quotient space T c.R/ D T .R/= Modc.R/ is called the relative
Teichmüller space with respect to c.

Since Modc.R/ acts stably on T .R/, the relative Teichmüller space T c.R/ is
a complete metric space with the quotient distance Od . This divides the action of
Mod.R/ on T .R/ into the stable part under Modc.R/ on T .R/ and the countable
part under Mod.R/= Modc.R/ on T c.R/. More precisely, let P � T .R/ be the
orbit of p under Mod.R/ and yP � T c.R/ the image of P under the projection
T .R/ ! T c.R/. Assume that Modc.R/ acts discontinuously on T .R/. In this case,
if yP is closed in T c.R/, then yP is discrete and, as a consequence, we see that Mod.R/

acts discontinuously on T .R/. This yields a result similar to Lemma 2.6.
Another feature of T c.R/ is the fact that T c.R/ is not separable if R is of infinite

topological type, which is obtained in [42]. If we impose the extra assumption that
R satisfies the bounded geometry condition, this fact can be easily seen as is shown
below. From the non-separability of T c.R/, we can prove that the topological moduli
space M.R/ is not separable either. In fact, every countable subset is nowhere dense
in M.R/, and this is also true for the geometric moduli space M�.R/.
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Theorem 4.12. Assume that R satisfies the bounded geometry condition. Then the
geometric moduli space M�.R/ is not separable if R is of infinite topological type.

Proof. If R satisfies the bounded geometry condition, then Modc.R/ acts discontin-
uously on T .R/ by Theorem 2.29. On the other hand, T .R/ is not separable when
R is of infinite topological type. Then T c.R/ D T .R/= Modc.R/ is not separable.
Since Modc.R/ is of countable index in Mod.R/, M.R/ D T .R/= Mod.R/ is not
separable either. By considering the moduli space of stable points Mˆ.R/, which is
open and dense in M.R/, we also see that M�.R/ is not separable by Corollary 4.8.

The intermediate Teichmüller space

We consider quotient spaces of T .R/ by the stable mapping class group and the
asymptotically trivial mapping class group. When R satisfies the bounded geometry
condition, by Theorem 3.13, they coincide.

Definition 4.13. For the subgroup Mod1.R/ of Mod.R/ corresponding to the stable
mapping class group, the quotient space zM .R/ D T .R/= Mod1.R/ is called the
enlarged moduli space.

If R is of infinite topological type and satisfies the bounded geometry condition,
then Mod1.R/ acts on T .R/ discontinuously and freely by Theorem 2.16. Then
the enlarged moduli space zM.R/ is a complex Banach manifold which has complex
and metric structures induced from T .R/. Since Mod1.R/ is a normal subgroup of
Mod.R/, the quotient group Mod1.R/ D Mod.R/= Mod1.R/ acts on zM .R/ as a
biholomorphic and isometric automorphism group that induces a quotient map onto
the topological moduli space M.R/. This will be a way of considering a geometric
structure on M.R/.

Definition 4.14. For the subgroup �.Ker �AT / of Mod.R/ corresponding to the asymp-
totically trivial mapping class group, the quotient space �T .R/ D T .R/=�.Ker �AT /

is called the intermediate Teichmüller space .

Since Ker �AT acts on AT .R/ trivially, the definition of �T .R/ immediately gives
the following.

Proposition 4.15 ([19]). The projection T .R/ ! �T .R/ factorizes the projection
˛ W T .R/ ! AT .R/. Hence there are natural projections from �T .R/ onto both
AT .R/ and M.R/. In fact, �T .R/ is the smallest quotient space of T .R/ by a
subgroup of Mod.R/ having this property.

Since Mod1.R/ � Ker �AT by Theorem 3.12, the enlarged moduli space zM .R/

lies always between T .R/ and �T .R/. If R is analytically finite, then zM .R/ D
�T .R/ D M.R/, and the asymptotic Teichmüller space AT .R/ is just one point.
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On the other hand, if R is the unit disk D, then T .D/ D zM .D/ D �T .D/. Indeed,
Ker �AT is trivial for the unit disk D, and thus �T .D/ D T .D/=�.Ker �AT / D T .D/.

Now we assume that R satisfies the bounded geometry condition. Then we have
MCG1.R/ D Ker �AT by Theorem 3.13 and hence zM .R/ D �T .R/. In this case,
we have the relationship between Mod1.R/ and ModAT .R/.

Theorem 4.16 ([19]). Assume that R is of infinite topological type and satisfies
the bounded geometry condition. Then the asymptotic Teichmüller modular group
ModAT .R/ is geometrically isomorphic to the automorphism group Mod1.R/ of
zM.R/ D �T .R/.

For the representation of the quasiconformal mapping class group MCG.R/ in the
automorphism group Aut.T .R// of Teichmüller space, it has been proved that the ker-
nel is trivial and the image is the entire group in almost all cases. In contrast to these
facts, for the representation of MCG.R/ in the automorphism group Aut.AT .R// of
the asymptotic Teichmüller space, we obtain that the kernel is characterized topologi-
cally as the stable mapping class group MCG1.R/ and the image can be represented
as the automorphism group of the intermediate Teichmüller space �T .R/ in the case
where R satisfies the bounded geometry condition.
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