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Continuity of the barycentric extension of circle diffeomorphisms
with Hölder continuous derivative

Katsuhiko Matsuzaki

Abstract

The barycentric extension due to Douady and Earle yields a conformally natural extension of a
quasisymmetric self-homeomorphism of the unit circle to a quasiconformal self-homeomorphism
of the unit disk. We consider such extensions for circle diffeomorphisms with Hölder continuous
derivative and show that this operation is continuous with respect to an appropriate topology
for the space of the corresponding Beltrami coefficients.

1. Introduction

The barycentric extension due to Douady and Earle [5] yields a natural extension of a self-
homeomorphism of the unit circle S to a self-homeomorphism of the unit disk D. It plays an
important role in the study of complex analytic aspects of Teichmüller spaces. In this paper,
we consider barycentric extensions of diffeomorphisms of S with Hölder continuous derivative.
We strengthen results of [12], obtaining the quasiconformal extension of such a diffeomorphism
and investigating the structure of its Teichmüller space. Our work mainly consists in proving
that the extension operator is continuous with respect to a certain smooth topology on the
space of these diffeomorphisms and a corresponding topology on the space of the Beltrami
coefficients of their quasiconformal extensions.

Our arguments of Teichmüller spaces are modelled on the universal Teichmüller space T ,
which can be identified with the space QS∗(S) of all normalised quasisymmetric homeomor-
phisms of S. In this setting, the Teichmüller projection q is regarded as the boundary extension
map on the space QC∗(D) of all normalised quasiconformal homeomorphisms of D. By the
measurable Riemann mapping theorem, the latter space is identified with the space of Beltrami
coefficients Bel(D) = L∞(D)1, which is the open unit ball of measurable functions on D with the
supremum norm. Then, q : Bel(D) → T is continuous with respect to the topology on QS∗(S)
induced by the quasisymmetry constant. The barycentric extension yields a continuous section
e : T → Bel(D) for q.

The Teichmüller space Tα
0 of circle diffeomorphisms with α-Hölder continuous derivative

for α ∈ (0, 1) is similarly defined as a subspace of T ; the subgroup Diff1+α
∗ (S) ⊂ QS∗(S) of all

such diffeomorphisms with normalisation can be defined to be Tα
0 . The topology on this group

is induced by the right translations from the C1+α-distance to the identity map. Moreover,
the corresponding subspace of Beltrami coefficients is Belα0 (D) ⊂ Bel(D), which consists of all
μ ∈ Bel(D) with finite weighted supremum norm

‖μ‖∞,α = ess.sup
ζ∈D

(
2

1 − |ζ|2
)α

|μ(ζ)|.
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It is proved in [12] that the restriction of the Teichmüller projection to Belα0 (D) yields a
continuous map q : Belα0 (D) → Tα

0 . In fact, the topology of Tα
0 coincides with the quotient

topology induced from Belα0 (D) by q. Moreover, a complex Banach manifold structure has been
provided for Tα

0 through the Bers embedding. The reader is referred to the survey articles [10]
for an introduction to the Teichmüller space Tα

0 , and [11] for applications of Tα
0 to problems

on circle diffeomorphism groups.
The main theorem of this paper asserts the continuity of the section e restricted to Tα

0 .

Theorem 1.1. The barycentric extension of circle diffeomorphisms with α-Hölder continu-
ous derivative yields a continuous section

e : Tα
0 = Diff1+α

∗ (S) → Belα0 (D)

for the Teichmüller projection q.

As is well-known, information about the topological structure of this space can be derived
from the existence of a continuous section. We note that Tα

0 = Diff1+α
∗ (S) is also a topological

group [12].

Corollary 1.2. The Teichmüller space Tα
0 is contractible.

In the next section, we will elaborate on these concepts and results.

2. Preliminaries

In this section, we summarise several results that will be used as background material for
our arguments. These include the definition and properties of the barycentric extension
of quasisymmetric self-homeomorphisms of the circle, fundamental results on the universal
Teichmüller space, and preliminaries on the space of circle diffeomorphisms with Hölder
continuous derivative. For the results mentioned in this section on quasiconformal and
quasisymmetric homeomorphisms as well as Teichmüller spaces, the reader is referred to the
monograph by Lehto [9].

2.1. Quasiconformal and quasisymmetric homeomorphisms

We denote the group of all quasiconformal self-homeomorphisms of the unit disk D by QC(D),
and the group of all quasisymmetric self-homeomorphism of the unit circle S by QS(S). Every
f ∈ QC(D) extends continuously to a quasisymmetric homeomorphism of S. This boundary
extension defines a homomorphism q : QC(D) → QS(S). Conversely, every ϕ ∈ QS(S) extends
continuously to a quasiconformal homeomorphism of D, that is, q is surjective. In fact, there
are explicit methods for constructing such quasiconformal extensions that define sections
e : QS(S) → QC(D) with q ◦ e = id|QS, such as the Beurling–Ahlfors [3] and Douady–Earle
[5] extensions.

2.2. The barycentric extension

The barycentric or the Douady–Earle extension e(ϕ) of an orientation-preserving self-
homeomorphism ϕ ∈ Homeo(S) is given as follows. The average of ϕ taken at w ∈ D is defined
by

ξϕ(w) =
1
2π

∫
S

γw(ϕ(ζ))|dζ| =
1
2π

∫
S

ϕ(ζ) − w

1 − w̄ϕ(ζ)
|dζ|,
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where the Möbius transformation

γw(z) =
z − w

1 − w̄z
∈ Möb(D)

maps w to the origin 0. The barycenter of ϕ is the unique point w0 ∈ D such that ξϕ(w0) = 0.
The value of the barycentric extension e(ϕ) at the origin 0 is defined to be the barycenter w0;
we set e(ϕ)(0) = w0.

For an arbitrary point z ∈ D, the barycentric extension e(ϕ) is defined by

e(ϕ)(z) = e(ϕ ◦ γ)(0),

where γ ∈ Möb(D) is any Möbius transformation that maps 0 to z, say, γ = γ−1
z . This is

well-defined, since ξϕ◦r(0) = ξϕ(0) for any rotation r, which is a Möbius transformation
fixing 0.

An alternative definition was introduced by Lecko and Partyka [8]. For each w ∈ D, we
consider the harmonic extension (the Poisson integral) of γw ◦ ϕ ∈ Homeo(S)

Pw(z) :=
1
2π

∫
S

γw ◦ ϕ(ζ)|γ′
z(ζ)||dζ|.

Since Pw is a self-homeomorphism of D by the Radó–Kneser–Choquet theorem, there exists
a unique point z ∈ D such that Pw(z) = 0. We define a map e∗(ϕ) : D → D by e∗(ϕ)(w) = z.
Then, e(ϕ) = e∗(ϕ)−1. Indeed, e(ϕ)(z) = w and e∗(ϕ)(w) = z are equivalent to the conditions

1
2π

∫
S

γw ◦ ϕ(γ−1
z (ζ̃))|dζ̃| = 0 and

1
2π

∫
S

γw ◦ ϕ(ζ)|γ′
z(ζ)||dζ| = 0,

respectively. Using the substitution ζ̃ = γz(ζ), we see that these integrals are equal.
The application of the barycentric extension to a quasisymmetric homeomorphism yields the

following fundamental result.

Theorem [5]. For every ϕ ∈ QS(S), the barycentric extension yields e(ϕ) ∈ QC(D).

In addition to Douady and Earle [5], an exposition on barycentric extensions may be found
in Pommerenke [13, Section 5.5], to which we will occasionally refer in the sequel.

2.3. Conformal naturality

The barycentric extension e(ϕ) of ϕ ∈ Homeo(S) has conformal naturality in the following
sense:

e(g ◦ ϕ ◦ γ) = g ◦ e(ϕ) ◦ γ

for any g, γ ∈ Möb(S) = Möb(D). Indeed, e(ϕ ◦ γ) = e(ϕ) ◦ γ follows from the definition of
e(ϕ). Moreover, e(g ◦ ϕ) = g ◦ e(ϕ) follows from the formula

g(z) − g(w)
1 − g(w)g(z)

= eiθ(w) z − w

1 − w̄z

for some function θ : D → R of w independent of z. In fact, if ξϕ(w0) = 0, then

ξg◦ϕ(g(w0)) =
1
2π

∫
S

g(ϕ(ζ)) − g(w0)
1 − g(w0)g(ϕ(ζ))

|dζ| =
eiθ(w0)

2π

∫
S

ϕ(ζ) − w0

1 − w0ϕ(ζ)
|dζ| = 0.
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For f ∈ QC(D), we denote the complex dilatation of f by μf (z) = ∂̄f(z)/∂f(z). The
conformal naturality of the barycentric extension for quasisymmetric homeomorphisms in terms
of complex dilatations can be described as follows:

μe(g◦ϕ◦γ)(z) = μg◦e(ϕ)◦γ(z) = μe(ϕ)(γ(z))
γ′(z)
γ′(z)

for any g, γ ∈ Möb(S) = Möb(D) and ϕ ∈ QS(S). In particular, this implies

|μe(g◦ϕ◦γ)(z)| = |μe(ϕ)(γ(z))|.

2.4. Continuity of the barycentric extension

The subgroups consisting of the normalised elements of QC(D) and QS(S) fixing three points
on S, for instance, 1, i,−1, are denoted by QC∗(D) and QS∗(S), respectively.

By the solution of the Beltrami equation (the measurable Riemann mapping theorem),
QC∗(D) is identified with the space of Beltrami coefficients on D:

Bel(D) = {μ ∈ L∞(D) | ‖μ‖∞ < 1}.
Moreover, QS∗(S) can be regarded as the universal Teichmüller space T , which is equipped with
the right uniform topology induced by the quasisymmetry constant M(ϕ) � 1 for ϕ ∈ QS(S);
a sequence ϕn converges to ϕ in QS(S) if M(ϕn ◦ ϕ−1) → 1 as n → ∞. We note that there are
several different ways of defining the quasisymmetry constant M , for instance, using the cross
ratio (see the survey [10]). Nevertheless, they induce the same topology.

Under the above identification, the restriction of q to QC∗(D) = Bel(D) plays the role of the
Teichmüller projection. A basic property of this projection is the following.

Proposition. The Teichmüller projection

q : Bel(D) = QC∗(D) → T = QS∗(S)

is continuous and open.

The section for q given by the barycentric extension is also compatible with the topology.

Theorem [5]. The barycentric extension

e : T = QS∗(S) → Bel(D) = QC∗(D)

is continuous. In fact, the composition e ◦ q : Bel(D) → Bel(D) is real analytic.

2.5. Diffeomorphisms with Hölder continuous derivative

An orientation-preserving diffeomorphism ϕ ∈ Diff(S) belongs to the class Diff1+α(S) for
α ∈ (0, 1) if its derivative is α-Hölder continuous. That is, the lift ϕ̃ : R → R of ϕ given by
exp(iϕ̃(x)) = ϕ(eix) satisfies

|ϕ̃′(x) − ϕ̃′(y)| � c|x− y|α (∀x, y ∈ R)

for some constant c � 0.
We provide Diff1+α(S) with the right uniform topology defined by the C1+α-distance p1+α(ϕ)

from id to ϕ ∈ Diff1+α(S), where

p1+α(ϕ) := sup
ζ∈S

|ϕ(ζ) − ζ| + sup
x∈R

|ϕ̃′(x) − 1| + sup
x �=y∈R

|ϕ̃′(x) − ϕ̃′(y)|
|x− y|α .

A sequence ϕn is defined to converge to ϕ in Diff1+α(S) if p1+α(ϕn ◦ ϕ−1) → 0 (n → ∞). We
note that Diff1+α(S) with this topology is a topological group [12].
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2.6. Beltrami coefficients corresponding to Diff1+α(S)

For a Beltrami coefficient μ ∈ Bel(D), we define an α-hyperbolic supremum norm (α ∈ (0, 1))
by

‖μ‖∞,α = ess.sup
z∈D

ραD(z) |μ(z)|, ρD(z) =
2

1 − |z|2 .

The space of Beltrami coefficients with ‖μ‖∞,α < ∞ is denoted by Belα0 (D).
We can characterise Diff1+α(S) by its quasiconformal extension to D.

Theorem. A quasisymmetric homeomorphism ϕ : S → S belongs to Diff1+α(S) if and only
if it has a quasiconformal extension f : D → D whose complex dilatation μf belongs to Belα0 (D).

The ‘Only if’ part was essentially proved by Carleson [4], using the Beurling–Ahlfors
extension of quasisymmetric functions on the real line. The ‘If’ part was investigated by
Anderson and Hinkkanen [2], among others, and settled by Dyn’kin [6] and Anderson, Cantón
and Fernández [1]. A different proof for an improved statement that is necessary in the
arguments of Teichmüller spaces was given in [12].

2.7. The Teichmüller space of Diff1+α(S)

The previous theorem implies that the Teichmüller projection (boundary extension) yields a
surjective map

q : Belα0 (D) → Diff1+α
∗ (S),

where the group Diff1+α
∗ (S) of the normalised elements can be defined to be the Teichmüller

space Tα
0 of circle diffeomorphisms with α-Hölder continuous derivative. Moreover, taking the

topology into account, we have proved the following.

Theorem [12]. The Teichmüller projection

q : Belα0 (D) → Tα
0 = Diff1+α

∗ (S)

is continuous and open.

Concerning the section given by the barycentric extension, we also obtain that it has the
appropriate image.

Proposition [12]. The image of the barycentric extension

e : Tα
0 = Diff1+α

∗ (S) → Bel(D)

is contained in Belα0 (D).

3. An outline of the proof

This section is devoted to a sketch of the proof of the main theorem (Theorem 1.1). The
arguments for the rigorous proof are postponed to the next section. Since the proof is rather
technical and complicated, it will be helpful to provide an outline first.

Assuming the results in Section 2.7, we need only prove the continuity of the barycentric
extension e, namely,
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Theorem 3.1. We assume that ψ converges to id in Diff1+α(S). Then, for every ϕ0 ∈
Diff1+α(S), the complex dilatation μe(ψ◦ϕ0) converges to μe(ϕ0) in Belα0 (D); that is,

sup
z∈D

(
2

1 − |z|2
)α

|μe(ψ◦ϕ0)(z) − μe(ϕ0)(z)| → 0 (ψ → id).

If e(ψ ◦ ϕ0) = e(ψ) ◦ e(ϕ0), the proof would be easy. However, the barycentric extension e is
not a homomorphism; it only has conformal naturality. We reduce the theorem to a simpler
form using the following facts.

(1) Composition with a rotation does not change the derivatives of circle diffeomorphisms.
(2) Post-composition with a Möbius transformation does not change the complex dilatations

of quasiconformal homeomorphisms.

Then, we can normalise so that ϕ0 and ψ fix 1 and the derivative of ψ at 1 is 1. We will estimate
the complex dilatations on the real interval [0, 1) ⊂ D. Moreover, we need only consider the
convergence when |z| is sufficiently close to 1, otherwise 2/(1 − |z|2) is bounded and the uniform
convergence of complex dilatations follows from the convergence ψ → id by the arguments for
the theorem in Section 2.4. Thus, the above theorem is reduced to the claim below. The
precise statement regarding the uniformity under conjugations by rotations will be given in
Theorem 6.1 of Section 6.

Hereafter, we will use the following notation. Taking the lift ϕ̃ : R → R of ϕ ∈ Diff(S), we
define its derivative along S at ζ = eix (−π < x � π) by ϕ′

S
(ζ) := ϕ̃′(x). The distance dS(ζ, 1)

between ζ and 1 along S is then |x|. The α-Hölder constant of the derivative of ψ at 1 is
given by

cα(ψ)(1) := sup
1 �=ζ∈S

|ψ′
S
(ζ) − ψ′

S
(1)|

dS(ζ, 1)α
.

Claim. We assume that ψ(1) = ϕ0(1) = 1 and ψ′
S
(1) = 1. If cα(ψ)(1) converges to 0, then

sup
t0�t<1

(
2

1 − t2

)α

|μe(ψ◦ϕ0)(t) − μe(ϕ0)(t)| → 0

for some t0 < 1 sufficiently close to 1.

The strategy to prove the claim is to use the conjugate by

ht(z) =
z + t

1 + tz
∈ Möb(D) (−1 < t < 1),

which maps the real interval [−1, 1] onto itself with the end points fixed and sends 0 to t. Then,
the conformal naturality of the barycentric extension implies that

|μe(ψ◦ϕ0)(t) − μe(ϕ0)(t)| = |μe(h−1
t ◦ψ◦ϕ0◦ht)

(0) − μe(h−1
t ◦ϕ0◦ht)

(0)|.
The advantage of this reduction is that we can explicitly represent μe(ϕ)(0) for ϕ ∈ QS(S)

using the Fourier coefficients for ϕ (including the average of −ϕ2) if e(ϕ)(0) = 0, that is, if

a0 := ξϕ(0) =
1
2π

∫
S

ϕ(ζ)|dζ| = 0.

Under this condition, we have

μe(ϕ)(0) =
a−1 − a1b

a1 − a−1b
,

a1 :=
1
2π

∫
S

ζ̄ϕ(ζ) |dζ|, a−1 :=
1
2π

∫
S

ζϕ(ζ) |dζ|, b :=
−1
2π

∫
S

ϕ(ζ)2 |dζ|.

This follows from [5, p.28]. See also [13, p.115].
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However, there remain the following problems in these arguments.

(1) Handling the weight (2/(1 − t2))α when t → 1.
(2) Estimating μe(ϕ)(0) if e(ϕ)(0) 	= 0; the barycenters of h−1

t ◦ ϕ0 ◦ ht and h−1
t ◦ ψ ◦ ϕ0 ◦ ht

are not necessarily zero.

The solution to problem (1) is provided by a refinement of the following result due to Earle
[7]: If ψ(1) = 1 and ψ′

S
(1) = 1 then h−1

t ◦ ψ ◦ ht converges to id uniformly on S as t → 1. This
is due to the fact that the conjugation by ht magnifies the mapping of ψ near 1, and, since the
linear approximation of ψ has slope ψ′

S
(1) = 1, it converges to the identity. Earle provided a

more precise statement for it ‘with future applications in mind’. We now follow his arguments by
utilising the α-Hölder constant cα(ψ)(1). Integration of the definition of the α-Hölder constant
(Proposition 4.1) yields

|ψ(ζ) − ζ| � C|ζ − 1|α+1 (ζ ∈ S), C =
(π/2)α+1

α + 1
· cα(ψ)(1).

We can use this to obtain a quantitative version of Earle’s result as follows. The proof will be
given in Section 4.

Lemma 3.2. We assume that ψ ∈ Homeo(S) satisfies

|ψ(ζ) − ζ| � C|ζ − 1|α+1 (ζ ∈ S)

for some constant C � 1/4. We set ψt = h−1
t ◦ ψ ◦ ht for t ∈ (0, 1) and choose any ε > 0. If

1 − t � 1
4 (ε/(4C))1/α, then |ψt(ζ) − ζ| � ε for every ζ ∈ S.

This asserts that ψt is uniformly close to id in the order of 4α+1C(1 − t)α as t → 1. Hence, this
order offsets the problematic weight (2/(1 − t2))α. Moreover, the convergence C → 0, which
stems from the assumption cα(ψ)(1) → 0, supports Theorem 3.1.

Towards the solution to problem (2), we consider the barycenter e(ϕt)(0) of the conjugate
ϕt = h−1

t ◦ ϕ0 ◦ ht. Even if e(ϕt)(0) 	= 0, we can estimate the Fourier coefficients for ϕt

uniformly if e(ϕt)(0) is in a compact subset of D.
For the base point ϕ0 ∈ Diff1+α(S), the derivative (ϕ0)′S(1) is not necessarily 1. In this case,

the close-up of the behaviour of ϕ0 in a neighbourhood of 1 by the conjugation of ht converges to
the Möbius transformation hs satisfying (hs)′S(1) = (ϕ0)′S(1). More specifically, this is given in
the following claim. The corresponding statement regarding the uniformity under normalisation
by rotation will be given in Lemma 4.2.

Claim. For  = (ϕ0)′S(1) > 0, we take hs ∈ Möb(S) with (1 − s)/(1 + s) = . Then, ϕt

converges uniformly to hs on S as t → 1.

We fix t sufficiently close to 1. Then the claim asserts that ϕt is uniformly close to hs. Under
this condition, we can expect that the barycenter e(ϕt)(0) should be close to e(hs)(0) = s. This
is to be verified in Section 6. Hence, for some g1 ∈ Möb(D) close to h−1

s (written as g1 � h−1
s ),

we have

e(g1 ◦ ϕt)(0) = 0.

Similarly, since ψt = h−1
t ◦ ψ ◦ ht tends to id by assumption,

ψt ◦ ϕt = h−1
t ◦ ψ ◦ ϕ0 ◦ ht

is close to hs. Hence, for some g2 (� h−1
s ) ∈ Möb(D),

e(g2 ◦ ψt ◦ ϕt)(0) = 0.
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We now represent the complex dilatations as

μe(ϕt)(0) = μe(g1◦ϕt)(0) =
a−1 − a1b

a1 − a−1b
,

μe(ψt◦ϕt)(0) = μe(g2◦ψt◦ϕt)(0) =
a′−1 − a′1b

a′1 − a′−1b
′ ,

where a1, a−1, b are the Fourier coefficients for g1 ◦ ϕt, and a′1, a
′
−1, b

′ are the Fourier coefficients
for g2 ◦ ψt ◦ ϕt. Using the fact that g1 � g2, we can estimate

|μe(ψt◦ϕt)(0) − μe(ϕt)(0)|
in terms of the approximation of h−1

s by g1 and g2. This will be carried out precisely in Section 6.

4. Convergence of conjugation of circle diffeomorphisms

In this section, we prove the results on the convergence of conjugation of circle diffeomorphisms
by the canonical Möbius transformations. These are inspired by the paper of Earle [7] and are
necessary for the proof of the main theorem concerning the solution of the problems mentioned
in the previous section.

In what follows, it is convenient to regard S as being parametrised by arc length. For ζ1, ζ2 ∈
S, the length of the shortest circular arc connecting them is denoted by dS(ζ1, ζ2). By the
universal cover ζ = eix : R → S, this is given by

dS(ζ1, ζ2) = min{|x1 − x2| | ζ1 = eix1 , ζ2 = eix2} � π.

For ϕ1, ϕ2 ∈ Homeo(S), we set

‖ϕ1 − ϕ2‖S = sup
ζ∈S

dS(ϕ1(ζ), ϕ2(ζ)).

We define ϕ̃ : R → R to be a lift of ϕ ∈ Homeo(S) with exp(iϕ̃(x)) = ϕ(eix). For ϕ ∈ Diff(S),
its derivative along S at ζ = eix is defined by ϕ′

S
(ζ) = ϕ̃′(x). The α-Hölder constant of the

derivative of ϕ at η = eiy ∈ S is given by

cα(ϕ)(η) = sup
η �=ζ∈S

|ϕ′
S
(ζ) − ϕ′

S
(η)|

dS(ζ, η)α
= sup

y �=x∈R

|ϕ̃′(x) − ϕ̃′(y)|
|x− y|α .

We first prove an elementary fact on the integration of the α-Hölder continuous derivative
at 1 ∈ S.

Proposition 4.1. We assume that ψ ∈ Diff(S) with ψ(1) = 1 and ψ′
S
(1) = 1 satisfies

|ψ′
S(ζ) − 1| � cdS(ζ, 1)α

for some constant c > 0. Then,

|ψ(ζ) − ζ| � c(π/2)α+1

α + 1
|ζ − 1|α+1.

Proof. The lift ψ̃ with ψ̃(0) = 0 satisfies |ψ̃′(x) − 1| � c|x|α for ζ = eix (−π < x � π). This
can be written as

1 − c|x|α � ψ̃′(x) � 1 + c|x|α.
Then, integration from 0 to x yields

x− c

α + 1
|x|α+1 � ψ̃(x) � x +

c

α + 1
|x|α+1.
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Hence,

|ψ(ζ) − ζ| � |ψ̃(x) − x| � c

α + 1
|x|α+1 � c

α + 1
{(π/2)|ζ − 1|}α+1,

for ζ = eix, which is the required inequality. �

For t ∈ (−1, 1), we utilise a particular Möbius transformation of D given by

ht(z) =
z + t

1 + tz
,

which maps the real interval [−1, 1] onto itself with the end points fixed and sends 0 to t.
Lemma 3.2, mentioned earlier, is an application of the arguments in Earle [7, Theorem 2] to an
orientation-preserving self-homeomorphism ψ ∈ Homeo(S) approximating the identity with a
prescribed order at the fixed point 1 ∈ S. The conjugate of ψ by ht expands the local behaviour
of ψ near 1 globally to S.

Proof of Lemma 3.2. We set ω = ht(ζ). Then,

|ψt(ζ) − ζ| = |h−1
t (ψ(ω)) − h−1

t (ω)|

=
(1 − t2) |ψ(ω) − ω|
|1 − tψ(ω)| · |tω − 1| �

2C(1 − t) |ω − 1|α+1

|1 − tψ(ω)| · |tω − 1| .

Using 1 − t � |1 − tψ(ω)| and |ω − 1| � 2|tω − 1| for t ∈ (0, 1), we have

|ψt(ζ) − ζ| � 4C|ω − 1|α.
We set δ = (ε/(4C))1/α. Then, 4C|ω − 1|α � ε if |ω − 1| � δ. Hence, we need only consider the
case |ω − 1| � δ.

As before, we have

|ψt(ζ) − ζ| � 2C(1 − t) |ω − 1|α+1

|1 − tψ(ω)| · |tω − 1| �
4C(1 − t) |ω − 1|α

|1 − tψ(ω)| .

This time, we use |1 − ψ(ω)| � 2|1 − tψ(ω)| for t ∈ (0, 1). Moreover, since C � 1/4,

|1 − ψ(ω)| � |ω − 1| − |ψ(ω) − ω|
� |ω − 1|(1 − C|ω − 1|α) � |ω − 1|/2.

Substituting these estimates into the above inequality, we conclude that

|ψt(ζ) − ζ| � 16C(1 − t)|ω − 1|α−1 � 16C(1 − t)δα−1.

If 1 − t � 1
4 (ε/(4C))1/α, then using δ = (ε/(4C))1/α we have

16C(1 − t)δα−1 � ε.

This completes the proof of the assertion. �

We will later consider the situation where the constant c in Proposition 4.1, which will be
taken as the α-Hölder constant cα(ψ)(1) of ψ′

S
at 1 ∈ S, can be arbitrarily small. Then, we can

choose the constant C in Lemma 3.2 as

C =
c(π/2)α+1

α + 1
� 1

4
,

and apply this lemma to the proof of the main theorem.
We denote the rotation mapping 1 to η ∈ S by rη ∈ Möb(S). The composition with rotations

does not change the derivative at any point η ∈ S of a diffeomorphism ϕ0 ∈ Diff1(S). Hence,
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we may assume that ϕ0 fixes 1. The previous lemma handled the case that the derivative at 1
is 1. The following lemma treats the general case and asserts the convergence of the conjugate
by ht to an appropriate Möbius transformation.

Lemma 4.2. Let ϕ0 ∈ Diff1(S) and η ∈ S. We consider rotations rη, rϕ0(η) ∈ Möb(S) and
set

ϕη
0 = r−1

ϕ0(η) ◦ ϕ0 ◦ rη,
which fixes 1 ∈ S. For η = (ϕη

0)′
S
(1) > 0, we take hsη ∈ Möb(S) with sη ∈ (−1, 1) satisfying

that (hsη )′
S
(1) = (1 − sη)/(1 + sη) = η. We also set

ϕη
t = h−1

t ◦ ϕη
0 ◦ ht (0 < t < 1).

Then, for any ε0 ∈ (0, 2], there exists δ0 > 0 depending only on ε0 and ϕ0 but not on η ∈ S

such that if 1 − t � δ0, then

|ϕη
t (ζ) − hsη (ζ)| � ε0

for every ζ ∈ S and for every η ∈ S.

Proof. We set ω = ht(ζ). Then,

|ϕη
t (ζ) − hsη (ζ)| = |h−1

t (ϕη
0(ω)) − h−1

t (hsη (ω))| =
(1 − t2) |ϕη

0(ω) − hsη (ω)|
|1 − tϕη

0(ω)| · |thsη (ω) − 1| .

We will estimate the difference between ϕη
0 and hsη near 1.

Claim. For any ε̃ > 0, there exists δ̃ > 0 independent of η such that if |hsη (ω) − 1| � δ̃,
then

|ϕη
0(ω) − hsη (ω)| � ε̃|hsη (ω) − 1|.

Proof. We consider the lift ϕ̃η
0 : R → R of ϕη

0 with ϕ̃η
0(0) = 0. Then,

ϕ̃η
0(x) = η x + {(ϕ̃η

0)′(ξ) − (ϕ̃η
0)′(0)}x

for some ξ ∈ R between 0 and x. Since (ϕ̃η
0)′ is uniformly eqi-continuous independent of η,

|(ϕ̃η
0)′(ξ) − (ϕ̃η

0)′(0)| is bounded by some constant c(x) > 0 with c(x) → 0 (x → 0). Hence,

|ϕ̃η
0(x) − ηx| � c(x)|x| (∀η ∈ S).

We consider the same estimate for the lift h̃sη : R → R of hsη with h̃sη (0) = 0. Since sη is
uniformly bounded away from −1 and 1 (as η is uniformly bounded away from 0 and ∞)
independent of η, we also have some constant c∗(x) > 0 with c∗(x) → 0 (x → 0) such that

|h̃sη (x) − ηx| � c∗(x)|x| (∀η ∈ S).

Moreover, since h̃sη (x) = h̃′
sη (ξ∗)x for some ξ∗ ∈ R and since h̃′

sη (ξ∗) � min{η, −1
η }, we

have

|x| � 1
minη∈S 

±1
η

|h̃sη (x)|.

Therefore, we obtain that

|ϕ̃η
0(x) − h̃sη (x)| � (c(x) + c∗(x))|x| � c(x) + c∗(x)

minη∈S 
±1
η

|h̃sη (x)|.
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Here, h̃sη (x) → 0 implies x → 0 uniformly. Hence, the coefficient of |h̃sη (x)| in the last term
tends to 0. Transforming this inequality into that for ϕη

0(ω) and hsη (ω), we can verify the
required claim. �

Proof of Lemma 4.2 continued. For a given ε0 ∈ (0, 2], we set ε̃ = ε0/4 and choose δ̃ as
in the claim. We first consider the case |hsη (ω) − 1| � δ̃. Then, by 1 − t � |1 − tϕη

0(ω)| and
|hsη (ω) − 1| � 2|thsη (ω) − 1| for t ∈ (0, 1), the claim shows that

(1 − t2) |ϕη
0(ω) − hsη (ω)|

|1 − tϕη
0(ω)| · |thsη (ω) − 1| �

2(1 − t2) |ϕη
0(ω) − hsη (ω)|

(1 − t) · |hsη (ω) − 1| � 4ε̃ = ε0.

Thus, we obtain |ϕη
t (ζ) − hsη (ζ)| � ε0 without imposing any restriction on t ∈ (0, 1) in this

case.
We now consider the case |hsη (ω) − 1| � δ̃. Then, using |1 − ϕη

0(ω)| � 2|1 − tϕη
0(ω)| for

t ∈ (0, 1) in addition, we have

(1 − t2) |ϕη
0(ω) − hsη (ω)|

|1 − tϕη
0(ω)| · |thsη (ω) − 1| �

4(1 − t2) |ϕη
0(ω) − hsη (ω)|

|1 − ϕη
0(ω)| · |hsη (ω) − 1| � 16(1 − t)

δ̃|1 − ϕη
0(ω)| .

Here, if |hsη (ω) − 1| = δ̃ then

|1 − ϕη
0(ω)| � |hsη (ω) − 1| − |hsη (ω) − ϕη

0(ω)|

� (1 − ε̃)|hsη (ω) − 1| � δ̃/2

by the above claim and ε̃ � 1/2. However, since ϕη
0 is a self-homeomorphism of S, this is also

true even for |hsη (ω) − 1| > δ̃. Hence,

|ϕη
t (ζ) − hsη (ζ)| � 16(1 − t)

δ̃|1 − ϕη
0(ω)| �

32(1 − t)
δ̃2

.

By choosing δ0 = ε0δ̃
2/32, we obtain the assertion. �

5. Average of circle homeomorphisms

The barycentric extension is defined by considering the average of a circle homeomorphism.
In this section, we will establish properties of the average and the vector field given by the
average function.

We recall that the Möbius transformation γw ∈ Möb(D) is defined by

γw(z) =
z − w

1 − w̄z

for each w ∈ D. We first list properties of γw that will be used later. They are verified easily.

Proposition 5.1. The Möbius transformation γw ∈ Möb(D) for each w ∈ D satisfies the
following:

(1) |γw(z) − z| � 2|w|
1 − |w| for every z ∈ D;

(2) |γ′
w(ζ)| =

1 − |w|2
|ζ − w|2 is the Poisson kernel, which satisfies

1 − |w|
1 + |w| � |γ′

w(ζ)| � 1 + |w|
1 − |w| for

every ζ ∈ S;

(3)
1
2π

∫
S

γw(ζ) |dζ| = −w.
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For ϕ ∈ Homeo(S), we define its average taken at w ∈ D as

ξϕ(w) =
1
2π

∫
S

ϕ(ζ) − w

1 − w̄ϕ(ζ)
|dζ|.

Then, ξϕ is a complex-valued differentiable function on D that can be regarded as a vector field
on D. If ϕ ∈ Homeo(S) is close to id, then the vector field ξϕ is close to ξid, as the following
claim shows.

Proposition 5.2. If ϕ ∈ Homeo(S) satisfies ‖ϕ− id ‖S � ε, then |ξϕ(w) − ξid(w)| � 2ε for
every w ∈ D.

Proof. The definition of ξ implies that

|ξϕ(w) − ξid(w)| =
∣∣∣∣ 1
2π

∫
S

γw(ϕ(ζ)) |dζ| − 1
2π

∫
S

γw(ζ) |dζ|
∣∣∣∣ .

Then, this is estimated from above by

1
2π

∫
S

|γw(ϕ(ζ)) − γw(ζ)| |dζ| � 1
2π

∫
S

(∫ ϕ(ζ)

ζ

|γ′
w(η)| |dη|

)
|dζ|,

where the inner path integral is along the circular arc from ζ to ϕ(ζ). Since dS(ϕ(ζ), ζ) � ε,
this integral is strictly bounded by

∫ ζ+ε

ζ−ε
|γ′

w(η)| |dη|. Hence, we have

|ξϕ(w) − ξid(w)| � 1
2π

∫
S

(∫ ζ+ε

ζ−ε

|γ′
w(η)| |dη|

)
|dζ| � 2ε

2π

∫
S

|γ′
w(η)| |dη| = 2ε,

where the last equality is due to the fact that |γ′
w(η)| is the Poisson kernel by Proposition 5.1

(2). �

Remark. Since ξid(w) = −w, by Proposition 5.1 (3), we have |ξϕ(w) + w| � 2ε in
Proposition 5.2.

The barycenter of ϕ ∈ Homeo(S) is defined to be a point w ∈ D such that ξϕ(w) = 0. It can
be shown that it is unique for every ϕ ∈ Homeo(S) (see [5, Proposition 1; 13, Lemma 5.20]).

Corollary 5.3. If ϕ ∈ Homeo(S) satisfies ‖ϕ− id‖S � ε, then the barycenter w ∈ D of ϕ
satisfies |w| � 2ε.

Proof. The barycenter w of ϕ satisfies ξϕ(w) = 0 by definition. Then, the result follows from
Proposition 5.2 and the remark after it. �

We generalise the above proposition to an assertion on the difference between any two average
functions and the difference between their derivatives.

Proposition 5.4. For any ϕ,ψ ∈ Homeo(S), the following inequalities are satisfied for every
w ∈ D:

(1) |ξϕ(w) − ξψ(w)| � 1 + |w|
1 − |w| ‖ϕ− ψ‖S;

(2) |∂ξϕ(w) − ∂ξψ(w)| � |w|
(1 − |w|)2 ‖ϕ− ψ‖S;

(3) |∂̄ξϕ(w) − ∂̄ξψ(w)| � (2 − |w|)(1 + |w|)2
(1 − |w|)4 ‖ϕ− ψ‖S.
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Proof. (1) Simple computation yields

ϕ(ζ) − w

1 − w̄ϕ(ζ)
− ψ(ζ) − w

1 − w̄ψ(ζ)
=

(1 − |w|2)(ϕ(ζ) − ψ(ζ))
(1 − w̄ϕ(ζ))(1 − w̄ψ(ζ))

.

Estimating the absolute value of the denominator from below by (1 − |w|)2, we have the
assertion.

(2) The ∂-derivative of ξϕ is

∂ξϕ(w) =
1
2π

∫
S

−1
1 − w̄ϕ(ζ)

|dζ|,

and the same is true for ξψ. Then,

−1
1 − w̄ϕ(ζ)

− −1
1 − w̄ψ(ζ)

=
−w̄(ϕ(ζ) − ψ(ζ))

(1 − w̄ϕ(ζ))(1 − w̄ψ(ζ))
.

By the same estimate for the denominator as before, we have the assertion.
(3) The ∂̄-derivative of ξϕ is

∂̄ξϕ(w) =
1
2π

∫
S

(ϕ(ζ) − w)ϕ(ζ)
(1 − w̄ϕ(ζ))2

|dζ|,

and the same is true for ξψ. Then,

(ϕ(ζ) − w)ϕ(ζ)
(1 − w̄ϕ(ζ))2

− (ψ(ζ) − w)ψ(ζ)
(1 − w̄ψ(ζ))2

=
(ϕ(ζ) − ψ(ζ)){ϕ(ζ) + ψ(ζ) + w̄(|w|2 − 2)ϕ(ζ)ψ(ζ) − w}

(1 − w̄ϕ(ζ))2(1 − w̄ψ(ζ))2
.

We estimate the absolute value of the second factor of the numerator as

|ϕ(ζ) + ψ(ζ) + w̄(|w|2 − 2)ϕ(ζ)ψ(ζ) − w|
� 2 + |w|(2 − |w|2) + |w| = (2 − |w|)(1 + |w|)2.

By the same estimate for the denominator as before, we have the assertion. �

We will now see that if ϕ ∈ Homeo(S) is close to id and normalised so that its barycenter is
at the origin 0 ∈ D, then |ξϕ(w)| can be estimated from below by |ξid(w)| = |w| near the origin.

Lemma 5.5. We assume that ϕ ∈ Homeo(S) satisfies ‖ϕ− id‖S � ε and ξϕ(0) = 0. Then

(1 − 56ε)|w| � |ξϕ(w)|
for every w ∈ D with |w| � 1/2.

Proof. For any such w ∈ D, we consider the segment connecting to 0 ∈ D. We represent this
segment by γ(s) with the arc length parameter s ∈ [0, |w|], γ(0) = 0, and γ(|w|) = w. Then,

ξϕ(w) =
∫ |w|

0

dξϕ(γ(s))
ds

ds =
∫ |w|

0

(∂ξϕ(γ(s))eiθ + ∂̄ξϕ(γ(s))e−iθ)ds,

where θ = argw. From this, we have

ξϕ(w) + w = eiθ
∫ |w|

0

(∂ξϕ(γ(s)) + 1 + ∂̄ξϕ(γ(s))e−2iθ)ds.
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For |w| � 1/2, we apply Proposition 5.4 (2) and (3) with ψ = id to obtain

|ξϕ(w) + w| �
∫ |w|

0

|∂ξϕ(γ(s)) + 1| ds +
∫ |w|

0

|∂̄ξϕ(γ(s))| ds

� 2ε|w| + 54ε|w| = 56ε|w|.
It follows that (1 − 56ε)|w| � |ξϕ(w)|, which is the required inequality. �

We choose ε > 0 so that ε � 1/112. Under this condition, if ‖ϕ− id‖S � ε and ξϕ(0) = 0,
then |ξϕ(w)| � |w|/2 for |w| � 1/2 by Lemma 5.5.

Lemma 5.6. We assume that ϕ0 ∈ Homeo(S) satisfies ξϕ0(0) = 0 and |ξϕ0(w)| � |w|/2 for
|w| � 1/2. If ϕ1 ∈ Homeo(S) satisfies ‖ϕ1 − ϕ0‖S < ε with 0 < ε � 1/12, then ξϕ1(w) has a
zero, which is the barycenter of ϕ1, in |w| < 6ε.

Proof. Since ‖ϕ1 − ϕ0‖S < ε, Proposition 5.4 (1) implies |ξϕ1(w) − ξϕ0(w)| < 3ε for
|w| � 1/2. Moreover, on the circle |w| = 6ε � 1/2, we have |ξϕ0(w)| � |w|/2 = 3ε. Then, by
the argument principle, the rotation numbers for ξϕ0 and ξϕ1 , regarded as vector fields, are the
same along the circle |w| = 6ε. Since ξϕ0(w) has a unique zero in |w| < 6ε, the Poincaré–Hopf
theorem implies that ξϕ1(w) also has a zero in |w| < 6ε. �

6. Proof of the main theorem

This section is entirely devoted to the proof of the main theorem in the form of Theorem 3.1. In
fact, we first show that it can be reduced to Theorem 6.1 below. Then, we prove this theorem
by dividing the arguments into several claims.

We fix an arbitrary η ∈ S. Let rη ∈ Möb(S) be the rotation that maps 1 to η. By composing
with suitable rotations, we have the decomposition

r−1
ψ◦ϕ0(η) ◦ ψ ◦ ϕ0 ◦ rη =

(
r−1
ψ◦ϕ0(η) ◦ ψ ◦ rϕ0(η)

)
◦
(
r−1
ϕ0(η) ◦ ϕ0 ◦ rη

)
so that both ϕη

0 := r−1
ϕ0(η) ◦ ϕ0 ◦ rη and ψη := r−1

ψ◦ϕ0(η) ◦ ψ ◦ rϕ0(η) fix 1. Moreover, we can choose
u = uψ,η ∈ (−1, 1) such that ψη

0 := hu ◦ ψη satisfies (ψη
0 )′

S
(1) = 1. We note that ψη

0 (1) = 1 still
holds after this operation. Under these assumptions, we will prove the following.

Theorem 6.1. We assume that ψη
0 (1) = ϕη

0(1) = 1 and (ψη
0 )′

S
(1) = 1. Then, there exist

constants t0 ∈ [0, 1) and Ã > 0 depending only on ϕ0 such that if t0 � t < 1 then(
2

1 − t2

)α

|μe(ψη
0 ◦ϕη

0 )(t) − μe(ϕη
0 )(t)| � Ã cα(ψη

0 )(1)

for every η ∈ S with cα(ψη
0 )(1) � 1/8.

Theorem 6.1 ⇒ Theorem 3.1. If ψ converges to id in Diff1+α(S), as assumed in Theorem 3.1,
then the α-Hölder constant cα(ψ)(η), in particular, converges to 0 uniformly with respect
to η ∈ S. Since cα(ψ)(ϕ0(η)) = cα(ψη)(1), this also converges to 0 uniformly. Moreover, it
follows from the convergence of the derivative of ψ that ψ′

S
(ϕ0(η)) = (ψη)′

S
(1) converges to 1

uniformly. This implies that uψ,η converges to 0 uniformly. Therefore, cα(ψη
0 )(1) also converges

to 0 uniformly with respect to η ∈ S.
The conformal naturality implies that

μe(ψη
0 ◦ϕη

0 )(t) = μe(ψ◦ϕ0)(z)
η̄

η
, μe(ϕη

0 )(t) = μe(ϕ0)(z)
η̄

η
,
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for z = tη ∈ D. Then, Theorem 6.1 shows that

sup
t0�|z|<1

(
2

1 − |z|2
)α

|μe(ψ◦ϕ0)(z) − μe(ϕ0)(z)| → 0 (ψ → id).

Moreover, for z ∈ D with |z| < t0, μe(ψ◦ϕ0)(z) converges to μe(ϕ0)(z) uniformly as ψ converge
to id uniformly, which was proved in Douady and Earle [5, Proposition 2]. This proves
Theorem 3.1. �

We consider the conjugate ϕη
t = h−1

t ◦ ϕη
0 ◦ ht for t ∈ (0, 1). We set (ϕη

0)′
S
(1) = η and take hsη

with (1 − sη)/(1 + sη) = η. Since η = (ϕ0)′S(η), there exists some constant L � 1 depending
only on ϕ0 such that L−1 � η � L for every η ∈ S. For a certain constant ε0 ∈ (0, 2], which
will be fixed later, we choose δ0 > 0 as in Lemma 4.2. We now consider any t > 0 with
0 < 1 − t � δ0.

Claim 1. Under the above assumption, we have

‖h−1
sη ◦ ϕη

t − id‖S � πLε0/2.

Moreover, the barycenter wt,η of h−1
sη ◦ ϕη

t satisfies |wt,η| � πLε0.

Proof. Lemma 4.2 asserts that if 1 − t � δ0, then |ϕη
t (ζ) − hsη (ζ)| � ε0 for every ζ ∈ S. This

condition implies that dS(ϕ
η
t (ζ), hsη (ζ)) � πε0/2. Since |(h−1

sη )′(ζ)| � L, by Proposition 5.1 (2)
applied to w = sη, we have dS(h−1

sη ◦ ϕη
t (ζ), ζ) � πLε0/2 for every ζ ∈ S. This proves the first

statement. Then, Corollary 5.3 implies that |wt,η| � πLε0. �

Using this barycenter wt,η, we set

jt,η(z) =
z − wt,η

1 − wt,ηz
.

Furthermore, we define gt,η = jt,η ◦ h−1
sη ∈ Möb(D). Then, the constant ε0 ∈ (0, 2] is given as

follows. We first prove the following inequality:

‖gt,η ◦ ϕη
t − id‖S = ‖jt,η ◦ h−1

sη ◦ ϕη
t − id‖S

� ‖jt,η ◦ h−1
sη ◦ ϕη

t − h−1
sη ◦ ϕη

t ‖S + ‖h−1
sη ◦ ϕη

t − id‖S
= ‖jt,η − id ‖S + ‖h−1

sη ◦ ϕη
t − id‖S

� π

2
· 2 · πLε0

1 − πLε0
+

πLε0

2
,

where the last inequality is due to Proposition 5.1 (1) and Claim 1. We set the last term in the
above inequalities as ε̃0. We now choose ε0 ∈ (0, 2] so that 0 < ε̃0 � 1/112 and ε0 � (2πL)−1.
This, in particular, implies |wt,η| � 1/2 by Claim 1.

Claim 2. The average function of gt,η ◦ ϕη
t given by

ξ(w) =
1
2π

∫
S

gt,η ◦ ϕη
t (ζ) − w

1 − w̄gt,η ◦ ϕη
t (ζ)

|dζ|

satisfies ξ(0) = 0 and |ξ(w)| � |w|/2 for |w| � 1/2.

Proof. The barycenter of gt,η ◦ ϕη
t is

e(gt,η ◦ ϕη
t )(0) = jt,η(e(h−1

sη ◦ ϕη
t )(0)) = jt,η(wt,η) = 0.
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This implies that ξ(0) = 0. Then, Lemma 5.5 with ‖gt,η ◦ ϕη
t − id‖S � ε̃0 � 1/112 implies that

|ξ(w)| � (1 − 56ε̃0)|w| � |w|/2
for |w| � 1/2. �

For the same t with 0 < 1 − t � δ0 as above, we consider the conjugate ψη
t = h−1

t ◦ ψη
0 ◦ ht

and the decomposition

gt,η ◦ ψη
t ◦ ϕη

t = (gt,η ◦ ψη
t ◦ g−1

t,η ) ◦ (gt,η ◦ ϕη
t ).

Since |g−1
t,η (0)| = |hsη (wt,η)| and |wt,η| � 1/2, there is r ∈ [0, 1) depending only on L such that

|g−1
t,η (0)| � r. We set R = (1 + r)/(1 − r). We take ε > 0 arbitrary with ε � 1/(100R), and

assume hereafter that ‖ψη
t − id ‖S � ε.

Claim 3. The barycenter wε of gt,η ◦ ψη
t ◦ ϕη

t satisfies |wε| � 6Rε.

Proof. Since ‖ψη
t − id ‖S � ε and |g−1

t,η (0)| � r, we see from Proposition 5.1 (2) that

‖gt,η ◦ ψη
t ◦ ϕη

t − gt,η ◦ ϕη
t ‖S = ‖gt,η ◦ ψη

t − gt,η‖S � Rε (� 1/100 < 1/12).

Since gt,η ◦ ϕη
t is as in Claim 2, Lemma 5.6 asserts that gt,η ◦ ψη

t ◦ ϕη
t has the barycenter in

|w| � 6Rε. �

Using this barycenter wε, we set

jε(z) =
z − wε

1 − wεz
.

Furthermore, we define gε,t,η = jε ◦ gt,η ∈ Möb(D). Then, the barycenter of gε,t,η ◦ ψη
t ◦ ϕη

t is
0. This is due to the fact that

e(gε,t,η ◦ ψη
t ◦ ϕη

t )(0) = jε(e(gt,η ◦ ψη
t ◦ ϕη

t )(0)) = jε(wε) = 0.

Claim 4. ‖gε,t,η ◦ ψη
t ◦ ϕη

t − gt,η ◦ ϕη
t ‖S < 25Rε � 1/4.

Proof. We have obtained that ‖gt,η ◦ ψη
t ◦ g−1

t,η − id ‖S = ‖gt,η ◦ ψη
t − gt,η‖S � Rε in the

previous proof. Then, Proposition 5.1 (1) and Claim 3 yield

‖gε,t,η ◦ ψη
t ◦ ϕη

t − gt,η ◦ ϕη
t ‖S

= ‖gε,t,η ◦ ψη
t ◦ g−1

t,η − id ‖S
� ‖jε ◦ gt,η ◦ ψη

t ◦ g−1
t,η − gt,η ◦ ψη

t ◦ g−1
t,η ‖S + ‖gt,η ◦ ψη

t ◦ g−1
t,η − id ‖S

� π

2
· 2 · 6Rε

1 − 6Rε
+ Rε < 25Rε.

Since we have chosen ε > 0 so that ε � 1/(100R), the last term in the above inequality is
bounded by 25Rε � 1/4. �

We will compute the complex dilatation of the barycentric extensions of ϕη
t and ψη

t ◦ ϕη
t

at 0 ∈ D and estimate their difference. For this purpose, we replace them with gt,η ◦ ϕη
t and

gε,t,η ◦ ψη
t ◦ ϕη

t , respectively. This is possible as post-composition with a Möbius transformation
does not affect the complex dilatation. In addition, since the barycenters of both gt,η ◦ ϕη

t and
gε,t,η ◦ ψη

t ◦ ϕη
t are 0, as we have seen above, we can represent the complex dilatations explicitly
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in terms of the Fourier coefficients for gt,η ◦ ϕη
t and gε,t,η ◦ ψη

t ◦ ϕη
t , as mentioned in Section 3.

Namely,

μe(ϕη
t )(0) = μe(gt,η◦ϕη

t )(0) =
a−1 − a1b

a1 − a−1b
,

where

a1 =
1
2π

∫
S

ζ̄(gt,η ◦ ϕη
t )(ζ) |dζ|, a−1 =

1
2π

∫
S

ζ(gt,η ◦ ϕη
t )(ζ) |dζ|,

b =
−1
2π

∫
S

(gt,η ◦ ϕη
t )(ζ)

2 |dζ|.

Similarly,

μe(ψη
t ◦ϕη

t )(0) = μe(gε,t,η◦ψη
t ◦ϕη

t )(0) =
a′−1 − a′1b

′

a′1 − a′−1b
′ ,

where

a′1 =
1
2π

∫
S

ζ̄(gε,t,η ◦ ψη
t ◦ ϕη

t )(ζ) |dζ|, a′−1 =
1
2π

∫
S

ζ(gε,t,η ◦ ψη
t ◦ ϕη

t )(ζ) |dζ|,

b′ =
−1
2π

∫
S

(gε,t,η ◦ ψη
t ◦ ϕη

t )(ζ)
2 |dζ|.

In Claim 4, we obtained the difference between gt,η ◦ ϕη
t and gε,t,η ◦ ψη

t ◦ ϕη
t . Hence,

|a1 − a′1| �
1
2π

∫
S

|ζ̄|25Rε |dζ| = 25Rε,

|a−1 − a′−1| �
1
2π

∫
S

|ζ|25Rε |dζ| = 25Rε,

|b− b′| � 1
2π

∫
S

2 · 25Rε |dζ| = 50Rε.

Moreover,

|μe(ϕη
t )(0) − μe(ψη

t ◦ϕη
t )(0)| =

∣∣∣∣∣a−1 − a1b

a1 − a−1b
− a′−1 − a′1b

′

a′1 − a′−1b
′

∣∣∣∣∣ =:
N

|a1 − a−1b| · |a′1 − a′−1b
′| .

Simple computation and the above inequalities show that the numerator N is estimated from
above by a positive constant multiple of ε, for instance, 300Rε.

For the estimate of the denominator from below, we first consider the following:

|a1 − a−1b| � |a1| − |a−1||b| � |a1| − |a−1|,

|a′1 − a′−1b
′| � |a′1| − |a′−1||b′| � |a′1| − |a′−1|.

We set δ = |a1|2 − |a−1|2 and δ′ = |a′1|2 − |a′−1|2. Then,

|a1| − |a−1| =
δ

|a1| + |a−1| �
δ

2
, |a′1| − |a′−1| =

δ

|a′1| + |a′−1|
� δ′

2
.

Here, we see that gt,η ◦ ϕη
t and gε,t,η ◦ ψη

t ◦ ϕη
t are uniformly close to id within π/6. Indeed, the

definitions of ε̃0 and Claim 4 yield that

‖gt,η ◦ ϕη
t − id ‖S � ε̃0 � 1/112;

‖gε,t,η ◦ ψη
t ◦ ϕη

t − gt,η ◦ ϕη
t ‖S � 1/4.
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Then, by Pommerenke [13, Lemma 5.18] interpreting [5, Lemma 3], we have that δ and δ′ are
uniformly bounded away from 0. Thus, we can find some constant A > 0 depending only on R
such that

|μe(ϕη
t )(0) − μe(ψη

t ◦ϕη
t )(0)| � Aε

for every t ∈ [1 − δ0, 1).
The conformal naturality again yields

μe(ϕη
t )(0) = μe(h−1

t ◦ϕη
0◦ht)

(0) = μh−1
t ◦e(ϕη

0 )(ht(0))
h′
t(0)

h′
t(0)

= μe(ϕη
0 )(t),

μe(ψη
t ◦ϕη

t )(0) = μe(h−1
t ◦ψη

0 ◦ϕη
0◦ht)

(0) = μh−1
t ◦e(ψη

0 ◦ϕη
0 )(ht(0))

h′
t(0)

h′
t(0)

= μe(ψη
0 ◦ϕη

0 )(t).

Therefore,

|μe(ϕη
0 )(t) − μe(ψη

0 ◦ϕη
0 )(t)| = |μe(ϕη

t )(0) − μe(ψη
t ◦ϕη

t )(0)| � Aε

for every η ∈ S and every t ∈ [1 − δ0, 1).
The assumption for this conclusion was that ‖ψη

t − id ‖S � ε for ε � 1/(100R). Proposi-
tion 4.1 and Lemma 3.2 imply that if we choose t and ε := 2ε/π in the relation 1 − t =
1
4 (ε/(4C))1/α, then we can obtain that condition. Here, C = Cη is given by the α-Hölder
constant cα(ψη

0 )(1) as

Cη =
cα(ψη

0 )(1)(π/2)α+1

α + 1
< 2cα(ψη

0 )(1),

and can be assumed to be bounded by 1/4. The above relation is alternatively written as

ε = 4α+1Cη(1 − t)α � 1
50πR

.

Then, we can find a constant t0 with 1 − δ0 � t0 < 1 depending only on R, and hence only
on ϕ0, such that

|μe(ψη
0 ◦ϕη

0 )(t) − μe(ϕη
0 )(t)| � A · 4α+1

α + 1

(π
2

)α+2

cα(ψη
0 )(1)(1 − t)α

for every η ∈ S with cα(ψη
0 )(1) � 1/8 and every t ∈ [t0, 1). Therefore, we have(
2

1 − t2

)α

|μe(ψη
0 ◦ϕη

0 )(t) − μe(ϕη
0 )(t)| � Ã cα(ψη

0 )(1)

for some constant Ã > 0 depending only on ϕ0. This completes the proof of Theorem 6.1.

Acknowledgement. The author would like to thank the referee for his/her careful reading
of the manuscript and suggestions for improvement.

References

1. J. M. Anderson, A. Cantón and J. L. Fernández, ‘On smoothness of symmetric mappings’, Complex
Var. Theory Appl. 37 (1998) 161–169.

2. J. M. Anderson and A. Hinkkanen, ‘Quasiconformal self-mappings with smooth boundary values’, Bull.
Lond. Math. Soc. 26 (1994) 549–556.

3. A. Beurling and L. Ahlfors, ‘The boundary correspondence under quasiconformal mappings’, Acta
Math. 96 (1956) 125–142.

4. L. Carleson, ‘On mappings, conformal at the boundary’, J. Anal. Math. 19 (1967) 1–13.
5. A. Douady and C. J. Earle, ‘Conformally natural extension of homeomorphisms of the circle’, Acta

Math. 157 (1986) 23–48.
6. E. Dyn’kin, ‘Estimates for asymptotically conformal mappings’, Ann. Acad. Sci. Fenn. Math. 22 (1997)

275–304.



BARYCENTRIC EXTENSION OF CIRCLE DIFFEOMORPHISMS 147

7. C. J. Earle, ‘Angular derivatives of the barycentric extension’, Complex Var. Theory Appl. 11 (1989)
189–195.

8. A. Lecko and D. Partyka, ‘An alternative proof of a result due to Douady and Earle’, Ann. Univ. Mariae
Curie-Sk�lodowska Sect. A 42 (1988) 59–68.

9. O. Lehto, Univalent functions and Teichmüller spaces, Graduate Texts in Mathematics 109 (Springer,
New York, 1986).

10. K. Matsuzaki, ‘The universal Teichmüller space and diffeomorphisms of the circle with Hölder continuous
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