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Abstract. We consider a planar Riemann surface R made of a non-compact simply connected plane domain
from which an infinite discrete set of points is removed. We give several conditions for the collars of the

cusps in R caused by these points to be uniformly distributed in R in terms of Euclidean geometry. Then
we associate a graph G with R by taking the Voronoi diagram for the uniformly distributed cusps and show
that G represents certain geometric and analytic properties of R.

1. Introduction

In this paper, we investigate the relationship between certain geometric and analytic properties of a
Riemann surface Ŝ and a Riemann surface S obtained from Ŝ by removing an infinite discrete set of points
{pn}n. We provide the Poincaré metric for S; each point of {pn}n is a cusp with respect to this metric. On
the other hand, we look at {pn}n by considering the original metric for Ŝ. As a typical case, we focus on
the following situation: for a non-compact simply connected planar Riemann surface R̂ and for an infinite
discrete set {pn}n in R̂, we have R := R̂ \ {pn}n. As far as we are concerned with conformal structure, we
can assume that R̂ = D or R̂ = C.

We formulate the following question as a type problem: determine the type R̂ = D or R̂ = C by geometric
properties of R. Note that the type of R̂ is invariant under quasiconformal equivalence of R. Indeed, suppose
that there is a quasiconformal homeomorphism f : R −→ R′. Since punctures are removable singularities
for quasiconformality, f extends to a quasiconformal homeomorphism of R̂ onto R̂′. Then they are D or
C simultaneously. As a basic answer to the type problem, we have that R̂ = D if and only if R possesses
Green’s function (Theorem 6.1). We will seek a geometric interpretation of this condition on R.

To understand the geometry of R closely, we have to put an assumption on the cusps {pn}n that they
are uniformly distributed. This means that from every point z ∈ R the distance to the 1-collars {Cn}n of
{pn}n is uniformly bounded with respect to the Poincaré metric on R. Under this condition, we consider
the Voronoi diagram for {Cn}n and construct a graph G from the tessellation induced by this diagram. We
can regard G as a discrete model for R by providing the path metric with edge length 1 for it. Then the
major results obtained in this paper can be summarized as follows.

Theorem 1.1. The Riemann surface R satisfies any of the following properties if and only if the graph
G satisfies the corresponding one: Gromov hyperbolicity; linear isoperimetric inequality; parabolicity for the
Laplacian.

These results will be given in Sections 4, 5 and 6 (Theorems 4.6, 5.2 and 6.6). In particular, concerning
the type problem as above, we can give a characterization by using the graph G, namely, R̂ = D if and only
if G is not parabolic.

As a secondary topic in this paper, we examine the uniform distribution of cusps {pn}n. In Section 3, we
consider necessary and sufficient conditions for cusps {pn}n to be uniformly distributed in S = Ŝ \ {pn}n
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in general. In Section 7, examples are given where the uniform separation of points {pn}n in R̂ are not
necessarily satisfied by the uniform distribution of the cusps {pn}n. In Section 8, we deal with a special
Denjoy domain called a train and consider its condition for the uniform distribution of its cusps in connection
with its Gromov hyperbolicity.

2. Background

2.1. Quasi-isometry and Gromov hyperbolicity. We say that the curve γ in a metric space (X, d) is
a geodesic if we have L(γ|[t,s]) = d(γ(t), γ(s)) = |t − s| for every s, t ∈ [a, b] (then γ is equipped with an
arc-length parametrization). Hereafter L stands for the length of a path with respect to the given metric.
The metric space X is said to be geodesic if for every couple of points in X there exists a geodesic joining
them; we denote by [xy] any geodesic joining x and y; this notation is ambiguous, since in general we do
not have uniqueness of geodesics, but it is very convenient. Consequently, any geodesic metric space is
connected. If the metric space X is a graph, then the edge joining the vertices u and v will be denoted by
[u, v]. Along this paper we assume that every edge of any graph has length 1.

For a geodesic metric space (X, d) and x1, x2, x3 ∈ X, a geodesic triangle ∆ = {x1, x2, x3} is the union
of three geodesics J1 = [x1x2], J2 = [x2x3], J3 = [x3x1]. We say that ∆ is δ-thin for a constant δ ≥ 0 if for
every x ∈ Ji we have that d(x,

∪
j 6=i Jj) ≤ δ. The space (X, d) is Gromov δ-hyperbolic (or satisfies the Rips

condition with constant δ) if every geodesic triangle in X is δ-thin. In order to simplify the notation, we say
that X is Gromov hyperbolic or just hyperbolic instead of saying that (X, d) is Gromov δ-hyperbolic.

A function between two metric spaces f : (X, dX) −→ (Y, dY ) is said to be an (a, b)-quasi-isometric
embedding with constants a ≥ 1, b ≥ 0, if

1
a

dX(x1, x2) − b ≤ dY (f(x1), f(x2)) ≤ a dX(x1, x2) + b

for every x1, x2 ∈ X. Such a quasi-isometric embedding f is a quasi-isometry if, furthermore, there exists
a constant c ≥ 0 such that f is c-full, i.e., if for every y ∈ Y there exists x ∈ X with dY (y, f(x)) ≤ c.
Two metric spaces X and Y are quasi-isometric if there exists a quasi-isometry between them. It is easy to
check that to be quasi-isometric is an equivalence relation on the set of metric spaces. The basic theorem
concerning hyperbolicity is as follows (see [12, p. 88]).

Theorem 2.1. Let us consider an (a, b)-quasi-isometric embedding between two geodesic metric spaces f :
X −→ Y . If Y is hyperbolic, then X is hyperbolic. Besides, if f is c-full for some c ≥ 0, then X is hyperbolic
if and only if Y is hyperbolic.

A geodesic in X is a (1, 0)-quasigeodesic. The word geodesic will always be used with this meaning except
for the case of simple closed geodesics (which are just local geodesics).

2.2. The Poincaré metric on a Riemann surface and a collar of a cusp. If a Riemann surface S
has a universal cover Π : D −→ S, we can define the Poincaré metric in R, i.e., the metric obtained by
projecting the metric ds = 2|dz|/(1 − |z|2) of the unit disk D by Π. Recall that the universal cover of any
planar domain Ω ⊂ C with at least two finite boundary points is the unit disk D. Alternatively, we may use
the upper half-plane H with the metric ds = |dz|/y as the universal cover. With this metric, S is a complete
Riemannian manifold with constant curvature −1 and, in particular, S is a geodesic metric space.

If S′ is a closed connected subset of S with smooth boundary, we consider in S′ the inner distance

dS′(z, w) := inf
{
LS(γ) | γ is a curve in S′ joining z and w

}
≥ dS(z, w).

One can check that S′ with this inner distance is also a geodesic metric space.
The Poincaré metric is natural and useful in complex analysis; for instance, any holomorphic function

between two domains is Lipschitz with constant 1 (that is, non-expanding), when we consider the respective
Poincaré metrics. A Riemann surface that admits the Poincaré metric is usually called a hyperbolic Riemann
surface, but to distinguished it with the Gromov hyperbolicity, we do not use the term “hyperbolic” in this
sense.

A collar in a Riemann surface S with the Poincaré metric about a simple closed geodesic σ is a doubly
connected domain in S “bounded” by two Jordan curves (called the boundary curves of the collar) orthogonal
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to the pencil of geodesics emanating from σ; such collar is equal to {p ∈ S : dS(p, σ) < d}, for some positive
constant d. The constant d is called the width of the collar. Collar Lemma (see [23]) says that always there
exists the collar of σ of width w = Arccosh coth(LS(σ)/2).

Let S be a Riemann surface with the Poincaré metric having a cusp q. Note that if S ⊂ C then every
isolated point in the boundary ∂S of S taken in C is a cusp. A collar in S about q is a doubly connected
domain in S “bounded” both by q and a Jordan curve (called the boundary curve of the collar) orthogonal
to the pencil of geodesics emanating from q. It is well known that the length of the boundary curve is equal
to the area of the collar (see, e.g., [6]). A collar of area β is called a β-collar. For each cusp there exists a
2-collar and 2-collars of different cusps are disjoint. Besides, the collar of the simple closed geodesic σ does
not intersect the 2-collar of a cusp (see [23], [25] and [7, Chapter 4]).

2.3. Linear isoperimetric inequality for Riemann surfaces. A Riemann surface S satisfies the linear
isoperimetric inequality (LII) if there exists a constant c such that AS(Ω) ≤ cLS(∂Ω) for every relatively
compact domain Ω ⊂ S. Throughout, AS , LS and dS refer to Poincaré area, length and distance of S; if
S = C, then these symbols refer to Euclidean metric. We denote by c(S) the sharp linear isoperimetric
constant of S, i.e.,

c(S) := sup
Ω

AS(Ω)
LS(∂Ω)

.

This is also called the Cheeger constant if we take the inverse of this value.
A reduction is that it suffices to prove LII for geodesic domains. A domain Ω ⊂ S is said to be a geodesic

domain if ∂Ω is a finite number of simple closed geodesics and if AS(Ω) is finite. Note that Ω does not need
to be relatively compact for it could contain a finite number of cusps. From this point of view, the boundary
of a cusp will be considered as an improper geodesic of zero length. Let us denote by cg(S) the sharp linear
isoperimetric constant of S for geodesic domains.

Lemma 2.2. Let S be a Riemann surface with the Poincaré metric. Then cg(S) ≤ c(S) ≤ cg(S) + 1.

This result was proved in [11, Lemma 1.2] with additive constant 2 and improved in [19, Theorem 7].

2.4. Stability of LII under quasi-isometry. Let G be a graph. Recall that the degree of a vertex v in
G is the number of its neighbors, and it is denoted by deg v. We say that a graph G has bounded degree if
there exists a constant D such that deg v ≤ D for every vertex v. For a finite subset S of V (G) we define its
boundary ∂S by ∂S = {p ∈ V (G) | dG(p, S) = 1}. Then the linear isoperimetric constant of G is defined by
c(G) := supS #S/#∂S, and we say that G satisfies LII if c(G) < ∞. There are several equivalent conditions
for LII. See [9] and [18] for example. Among them, non-amenability of G is equivalent to satisfying LII.

Let M be a complete Riemannian manifold. The injectivity radius of p ∈ M is defined as the supremum
of those r > 0 such that the metric open ball BM (p, r) of center p and radius r is simply connected; we
denote it by ι(p, M) or ι(p). The injectivity radius ι(M) of M is the infimum over p ∈ M of ι(p). We say
that M has bounded geometry if it has a lower bound for its Ricci curvature and positive injectivity radius.

Kanai proved in [15, 17] the stability of isoperimetric inequalities under quasi-isometries between complete
Riemannian manifolds with bounded geometry and graphs with bounded degree.

Theorem 2.3. Let f : X → Y be a quasi-isometry. If X and Y are complete Riemannian manifolds with
bounded geometry or graphs with bounded degree, then X and Y satisfy LII or not simultaneously.

Actually, [15, Theorem 4.1] gives the stability of LII between complete Riemannian manifolds; [15, Lemma
4.2] gives the stability of LII between graphs; [15, Lemmas 4.2 and 4.5] give the stability of LII between a
complete Riemannian manifold and a graph.

3. Uniformly distributed cusps

Let Ŝ be a Riemann surface and {pn}n an infinite discrete set in Ŝ. Consider S = Ŝ \ {pn}n equipped
with the Poincaré metric dS . Denote by Cn the 1-collar C1(pn) of a cusp pn in S. We say that the cusps
{pn}n are uniformly distributed if there exists a constant M such that dS

(
z, {Cn}n

)
≤ M for every z ∈ S.

It is easy to obtain the following necessary condition for the cusps to be uniformly distributed. Denote
by G(S) the set of simple closed geodesics in S.
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Proposition 3.1. If {pn}n are uniformly distributed, then infγ∈G(S) LS(γ) > 0.

Proof. Assume that this infimum is 0. Then there exist simple closed geodesics in S with collars of width as
large as we wish. Since collars of cusps and of simple closed geodesic are disjoint, {pn}n are not uniformly
distributed. ¤

Suppose that Ŝ ⊂ C is a planar Riemann surface. In this case, we can also describe a necessary condition
in terms of the Euclidean metric dC. Denote by A(S) the set of annuli

A := {z ∈ C : r1(A) < |z − z0| < r2(A)}

contained in S such that both {|z − z0| ≤ r1(A)} and {|z − z0| ≥ r2(A)} contain at least two points in the
boundary of S taken in the Riemann sphere Ĉ. We see that if {pn}n are uniformly distributed then

sup
A∈A(R)

r2(A)
r1(A)

< ∞.

Indeed, if the supremum is infinite, then we can find an annulus A ∈ A(S) such that r2(A)/r1(A) is arbitrarily
large. Also, there exists a simple closed geodesic γ in S freely homotopic to the core curve of A. Since the
modulus of A can be arbitrarily large, the length LA(γA) of the simple closed geodesic with respect to the
Poincaré metric on A tends to zero. By LS(γ) ≤ LA(γA), we have infγ∈G(S) LS(γ) = 0 and Proposition 3.1
gives that {pn}n are not uniformly distributed.

Next, we will find a sufficient condition for {pn}n to be uniformly distributed. We use the following
natural result concerning collars of a cusp. Perhaps this is already known but, since we cannot found it in
the literature, we include here a short proof. Let Nr(Y ) := {x ∈ X : d(x, Y ) ≤ r} denote the r-neighborhood
of a subset Y in a metric space X for r > 0.

Lemma 3.2 (Another Collar Lemma). Let S be a Riemann surface with the Poincaré metric and S′ ⊆ S a
connected subsurface. Assume that there is a cusp p both in S and in S′. Then the β-collar C ′

β of p in S′ is
contained in the β-collar Cβ of p in S for 0 < β ≤ 2.

Proof. Since S′ ⊆ S, the Poincaré metric satisfies dS(z, w) ≤ dS′(z, w) for every z, w ∈ S′. Fix now
0 < ε < β ≤ 2. Recall that ∂Cε and ∂C ′

ε are simple closed curves in S and S′, respectively. Furthermore,
ε = LS′(∂C ′

ε) ≥ LS(∂C ′
ε). We will show that

(3.3) C ′
ε ⊆ N

log
sinh(ε/2)

ε/2

(
Cε

)
,

where the neighborhood is defined with respect the metric in S.
If C ′

ε ⊆ Cε, then (3.3) holds. Otherwise, let u ∈ ∂C ′
ε \Cε be the farthest point from ∂Cε in ∂C ′

ε \Cε with
respect to dS . We consider a universal covering map Π from the upper half-plane H onto S such that a lift
of Cβ is given by

{z ∈ H | 0 ≤ <z ≤ 1, =z > 1/β}
and such that Π(ia) = u for some a > 0. Then LS(∂C ′

ε) ≥ dH(ia, 1 + ia) and hence

sinh2 ε

2
≥ sinh2 LS(∂C ′

ε)
2

≥ sinh2 dH(ia, 1 + ia)
2

=
|1 + ia − ia|2

4=(1 + ia)=(ia)
=

1
4a2

.

This implies that 1/a ≤ 2 sinh(ε/2), and thus

dS(u, ∂Cε) =
∫ 1/ε

a

dt

t
= log

1
a ε

≤ log
sinh(ε/2)

ε/2
,

which shows the required inclusion (3.3).
Since this inclusion holds for every 0 < ε < β and since dS(z, w) ≤ dS′(z, w) for every z, w ∈ S′, we have

C ′
β ⊆ N

log
sinh(ε/2)

ε/2

(
Cβ

)
for every 0 < ε < β ≤ 2. Letting ε → 0, we conclude that C ′

β ⊆ Cβ . ¤
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We apply this lemma to the previous setting: for a planar Riemann surface Ŝ ⊆ C and for an infinite
discrete set {pn}n in Ŝ, consider a Riemann surface S = Ŝ \ {pn}n with the Poincaré metric. Here the
boundary ∂S of S is taken in C.

Lemma 3.4. Assume that p is a cusp in S and set r = dC(p, ∂S \ {p}). Then for each 0 < β ≤ 2 there
exists a constant cβ depending only on β such that

B(p, e−2π/βr) \ {p} ⊆ Cβ ⊆ B(p, cβr) \ {p},

where Cβ is the β-collar of p in S and B(p, ρ) = {z ∈ C : |z − p| < ρ} denotes the Euclidean open ball.

Proof. Denote by C ′
β the β-collar of p in the punctured disk B

(
p, r

)
\ {p} and by C ′′

β the β-collar of p in
C \ {p, q}, where q ∈ ∂S is a point satisfying |p − q| = r. Since

B(p, r) \ {p} ⊆ S ⊆ C \ {p, q},

Lemma 3.2 gives C ′
β ⊆ Cβ ⊆ C ′′

β . Since C ′
β = B(p, e−2π/βr) \ {p}, we have the first inclusion. Denote by

C∗
β the β-collar of 0 in C \ {0, 1}. Define now cβ := sup{|z| : z ∈ C∗

β}. Then C∗
β ⊆ B(0, cβ) \ {0, 1}, and

applying a translation, a dilation and a rotation, we have C ′′
β ⊆ B(p, cβr) \ {p, q}. ¤

By using this lemma, we consider a sufficient condition for {pn}n to be uniformly distributed. Recall that
we denote C1(pn) = Cn.

Proposition 3.5. For S = Ŝ \{pn}n, assume that there exists a constant c verifying the following: for each
z ∈ S \ {Cn}n, there exists some cusp p ∈ {pn}n such that

|z − p| = dC(z, ∂S) ≤ c dC(p, ∂S \ {p}).

Then {pn}n are uniformly distributed.

Proof. Set r = dC(p, ∂S \ {p}). By Lemma 3.4, the 1-collar C1(p) of p in S contains B(p, e−2πr) \ {p}. We
consider the disk S′ := B(z, |z − p|) ⊆ S. If z ∈ C1(p), then dS(z, {Cn}n) = 0. Otherwise, there is a point
w ∈ ∂C1(p) belonging to the Euclidean segment joining z and p. By assumption |z − p| ≤ cr and by the
fact above we have |w − p| ≥ e−2πr. Then the Poincaré metric in S′ holds dS′(z, w) ≤ log(2ce2π − 1). Since
dS(z, w) ≤ dS′(z, w), this shows that the distance from z to C1(p), and hence to {Cn}n is bounded by a
uniform constant. ¤

This proposition can be generalized as follows.

Theorem 3.6. For S = Ŝ \ {pn}n, assume that there exists a positive constant ε < e−2π verifying the
following: for each z ∈ S \ {Cn}n there exist a cusp p ∈ {pn}n and a curve g joining z and p such that

LC
(
g \ B(p, e−2πr)

)
≤ ε−1r ; Nεr(g) \ B(p, e−2πr) ⊂ S,

where r = dC(p, ∂S \ {p}). Then {pn}n are uniformly distributed.

Proof. By Lemma 3.4, the punctured disk B(p, e−2πr) \ {p} is contained in the 1-collar C1(p) of p. Hence,
the curve g′ defined as g′ := g \ B(p, e−2πr) joins z and C1(p), and

dS

(
z, {Cn}n

)
≤ dS

(
z, C1(p)

)
≤ LS(g′) =

∫
g′

λS(z) |dz| ≤
∫

g′

2 |dz|
dC(z, ∂S)

≤
∫

g′

2 |dz|
εr

≤ 2
ε2

.

Therefore, {pn}n are uniformly distributed. ¤

Note that Proposition 3.5 also follows from Theorem 3.6. Indeed, for each z ∈ S \ {Cn}n, take the cusp
p ∈ {pn}n as in Proposition 3.5. Set ε := min{e−2π/2, 1/(c − e−2π)} and choose the Euclidean segment
joining z and p as g. Then the assumption of Theorem 3.6 is verified for these ε and g. We expect that this
theorem might provide a necessary and sufficient condition for {pn}n to be uniformly distributed.
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4. Graphs for the Voronoi diagram and quasi-isometry

We consider uniformly distributed cusps for the following special Riemann surfaces and associate them
with certain graphs. Let R̂ be a non-compact simply connected planar Riemann surface. Then we can
assume that R̂ = D or R̂ = C. Define R := R̂\{pn}n where {pn}n is an infinite discrete set in R̂ and provide
R with the Poincaré metric. Denote by Cn the 1-collar C1(pn) of the cusp pn in R.

Consider the tessellation of R given by the Voronoi diagram of {Cn}n, i.e., the tessellation with tiles
{Tn}n defined as Tn = {z ∈ R | dR

(
z, Cn

)
= dR

(
z, {Cm}m

)
}. Denote by G∗ the graph obtained as the

1-skeleton of this tessellation, with edges of length 1. Let G be the dual graph of this tessellation, i.e., the
graph with vertices V (G) = {vn}n such that [vn, vm] ∈ E(G) if and only if Tn ∩ Tm has positive length, and
with every edge of length 1.

Since 2-collars of different cusps are disjoint, the 2-collar of pn is contained in Tn and we obtain the
following inequalities.

Lemma 4.1. If R := R̂ \ {pn}n, then AR(Tn \ Cn) ≥ 1 for every n and dR(∂Cm, ∂Cn) ≥ 2 log 2 for every
m 6= n.

Since LR(∂Cn) = 1 and the distance from every point in Tn to Cn is at most M if {pn}n is uniformly
distributed, we have the following result.

Lemma 4.2. Let R = R̂\{pn}n and {pn}n uniformly distributed with constant M . Then diamR(Tn \Cn) ≤
2M + 1/2 for every n.

Based on these lemmas about the tessellation of R, we obtain the following two claims concerning the
graphs G and G∗.

Lemma 4.3. Let R = R̂ \ {pn}n and {pn}n uniformly distributed with constant M . Then there exists a
constant D = D(M) such that deg v ≤ D for every v ∈ V (G) and deg v∗ ≤ D for every v∗ ∈ V (G∗)

Proof. Fix any vertex v∗ ∈ V (G∗) and consider any neighbor w∗ of v∗ in G∗. The edge [v∗, w∗] is contained in
the boundary of some Tm, and by Lemma 4.2 the set Tm\Cm is contained in the closed ball BR(v∗, 2M + 1/2).
Denote by I(v∗) the set of indices m such that Tm contains an edge starting from v∗. It is clear that the
cardinality of the set I(v∗) is deg v∗. By Lemma 4.1,

deg v∗ =
∑

m∈I(v∗)

1 ≤
∑

m∈I(v∗)

AR

(
Tm \ Cm

)
≤ AR

(
BR(v∗, 2M + 1/2)

)
≤ AD

(
BD(0, 2M + 1/2)

)
= 4π sinh2 2M + 1/2

2
.

Consider now any fixed vm ∈ V (G) and choose a point zm ∈ ∂Cm. Then Tm \ Cm is contained in the
closed ball BR(zm,M + 1/2). If [vm, vn] ∈ E(G), then every point Tn \ Cn is at distance at most 2M + 1/2
from Tm \ Cm by Lemma 4.2. Hence, Tn \ Cn is contained in the closed ball BR(zm, 3M + 1). By Lemma
4.1,

deg vm ≤
∑

{n | [vm,vn]∈E(G)}

AR

(
Tn \ Cn

)
≤ AR

(
BR(zm, 3M + 1)

)
≤ AD

(
BD(0, 3M + 1)

)
= 4π sinh2 3M + 1

2
.

Hence, it suffices to choose

D(M) := 4π sinh2 3M + 1
2

for the statement. ¤

Lemma 4.4. Let R = R̂ \ {pn}n with {pn}n uniformly distributed. For every r > 0 there exists a constant
K(r) such that if z ∈ Tm \ Cm, w ∈ Tn \ Cn and dR(z, w) ≤ r then dG(vm, vn) ≤ K(r).
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Proof. Choose a geodesic γ in R joining z and w. Denote by M the constant of uniformly distributive-
ness of {pn}n. Lemma 4.2 gives that if γ intersects a tile Tj then Tj \ Cj is contained in the closed ball
BR(z, r + 2M + 1/2). If some vertex of the tessellation belongs to γ, we can modify slightly γ in a neigh-
borhood of that vertex in order to obtain a curve g in R joining z and w with the following properties:

(a) there is no vertex of the tessellation in g (except perhaps z or w);
(b) if g intersects a tile Tj , then Tj \ Cj is contained in the closed ball BR(z, r + 2M + 1/2).

Denote by N the set of indices j such that Tj \Cj is contained in the closed ball BR(z, r + 2M + 1/2). If
N denotes the cardinality of the set N , then g induces a path σ in G joining vm and vn with dG(vm, vn) ≤
L(σ) ≤ N − 1. By Lemma 4.1,

dG(vm, vn) ≤ N − 1 ≤
∑
j∈N

AR

(
Tj \ Cj

)
− 1 ≤ AR

(
BR(z, r + 2M + 1/2)

)
− 1

≤ AD
(
BD(0, r + 2M + 1/2)

)
− 1 = 4π sinh2 r + 2M + 1/2

2
− 1 =: K(r),

which gives the required constant. ¤

Now we are ready to show a claim which guarantees that the graphs defined by tessellation of R and R itself
except for the collars of the cusps have similar properties. We provide the inner distance for R1 := R\{Cn}n.

Theorem 4.5. Let R = R̂ \ {pn}n with {pn}n uniformly distributed. Then R1 = R \ {Cn}n, G and G∗ are
quasi-isometric.

Proof. Define a map f : R1 → G in the following way: if z belongs to the interior of Tn for some n, then
define f(z) := vn; if z ∈ {∂Tn}n then choose any m such that z ∈ ∂Tm and define f(z) := vm. We have
f(R1) = V (G) and f is (1/2)-full.

Consider z, w ∈ R1 with f(z) = vm and f(w) = vn. Denote by M the constant of uniform distribution
of {pn}n. Choose a geodesic σ = {vn0 = vm, vn1 , vn2 , . . . , vnr = vn} in G joining vm and vn; then r =
dG

(
f(z), f(w)

)
. Let h0 be a geodesic joining z with ∂Cm in R1, hr+1 a geodesic joining w with ∂Cn in

R1 and hj a geodesic joining ∂Cnj−1 with ∂Cnj in R1 for 1 ≤ j ≤ r. Since {pn}n is uniformly distributed,
LR1(hj) ≤ 2M for 1 ≤ j ≤ r. Let gj be a curve contained in ∂Cnj with length at most 1/2 joining hj with
hj+1 for 0 ≤ j ≤ r. Then h := h0 ∪ h1 ∪ · · · ∪ hr+1 ∪ g0 ∪ g1 ∪ · · · ∪ gr is a curve joining z with w in R1. By
Lemma 4.2,

dR1(z, w) ≤ LR1(h) ≤ M + 2Mr + M +
1
2

(r + 1) =
(
2M +

1
2

)
dG

(
f(z), f(w)

)
+ 2M +

1
2

.

Choose now a geodesic γ joining z and w in R1 and denote by k the positive integer satisfying k − 1 ≤
LR1(γ) < k. Let {z0 = z, z1, z2, . . . , zk = w} be the points in γ with

1 − 1
k
≤ dR1(zj−1, zj) = LR1(γ)/k < 1

for 1 ≤ j ≤ k. By Lemma 4.4, there exists a constant K such that dG(f(zj−1), f(zj)) ≤ K for 1 ≤ j ≤ k.
Then

dG

(
f(z), f(w)

)
≤

k∑
j=1

dG

(
f(zj−1), f(zj)

)
≤

k∑
j=1

K
LR1(γ) + 1

k
= KdR1(z, w) + K.

For a := max{2M + 1/2,K} and b := max{1,K}, we see that f is an (1/2)-full (a, b)-quasi-isometry.
Since the edges of G and G∗ have length 1, and since there exists a constant D such that the degree of any

vertex in G or G∗ is at most D by Lemma 4.3, [21, Theorem 4.1] gives that G and G∗ are quasi-isometric. ¤

As a natural consequence from the quasi-isometric equivalence, we can consider the Gromov hyperbolicity
for these spaces.

Theorem 4.6. Let R = R̂ \ {pn}n with {pn}n uniformly distributed. Then R1 = R \ {Cn}n, R, G and G∗

are hyperbolic or not simultaneously.
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Proof. By Theorem 4.5 and Theorem 2.1, we have that R1, G and G∗ are hyperbolic or not simultaneously.
Hence, it suffices to prove that R is hyperbolic if and only if R1 is hyperbolic.

We have the following facts:
(a) ∂Cn is a compact set with R \ ∂Cn non-connected for every n;
(b) diamR ∂Cn ≤ LR(∂Cn) = 1 for every n;
(c) dR(∂Cm, ∂Cn) ≥ 2 log 2 for every m 6= n by Lemma 4.1;
(d) Cn is δ-hyperbolic for some constant δ and for every n, since any two 1-collars are isometric.

These properties allow us to use [24, Theorem 2.4.], which gives that R is hyperbolic if and only if R1 is
hyperbolic. ¤

5. Isoperimetric inequalities

We consider the linear isoperimetric inequality (LII) for the Riemann surface R = R̂ \ {pn}n defined by
uniformly distributed cusps. To this end, we modify R to another Riemannian surface R0 by replacing the
collar of each cusp pn with a disk with a suitable conformal metric. Then we compare R with R0 as well as
the graphs G and G∗ from a viewpoint of LII.

Denote by D∗ the punctured unit disk D∗ := D\{0}. It is well known that the density λD∗ of the Poincaré
metric in D∗ is

λD∗(z) =
1

|z| log 1
|z|

,

and that {0 < |z| < e−2π/β} is the β-collar of the cusp at 0. Let us consider a fixed smooth function
f : [0, 1) → (0,∞) with the following properties: f ≡ 1 + e2π/(2π) in a neighborhood of 0, f is a concave
function on [0, e−2π], and f(x) = 1/(x log(1/x)) if x ∈ [e−2π, 1). Then ρ = f(|z|)|dz| is a complete conformal
metric on D which coincides with the Poincaré metric of D∗ in the complement of the 1-collar of the cusp
at 0, which “fills” this cusp. Note that ρ ≤ dD∗ in D∗. Denote by a0 the area of {|z| < e−2π} with respect
to the metric ρ; then a0 < AD∗

(
{0 < |z| < e−2π}

)
= 1. Since {|z| ≤ e−2π} is a compact set, there exists a

constant c0 such that the curvature of ρ satisfies Kρ ≥ c0 for some constant c0 ≤ −1.
Given any R = R̂ \ {pn}n, we define a new surface R0 := R ∪ {pn}n with the same metric as R in the

complement of the 1-collars of the cusps {pn}n, and such that the 1-collar of each cusp pn is replaced by a
disk Bn with a metric isometric to the restriction of ρ to {|z| < e−2π}. It is clear that R0 and R̂, considered
just as topological spaces, are the same.

Since ρ ≤ dD∗ in D∗, the area with respect to the conformal metric in R0 satisfies AR0(Ω) ≤ AR(Ω) for
every Ω ⊂ R. We also have that the curvature of R0 satisfies KR0 ≥ c0.

Lemma 5.1. There is a constant c1 such that Aρ(Ω) ≤ c1Lρ(∂Ω) for every domain Ω ⊂ {|z| ≤ e−2π} with
respect to the conformal metric ρ.

Proof. Since f is a continuous function, there exist universal constants k1 and k2 such that Aρ(Ω) ≤
k1Aeuc(Ω) and Leuc(∂Ω) ≤ k2Lρ(∂Ω) for every domain Ω ⊂ {|z| ≤ e−2π}. Here Aeuc and Leuc stand
for the Euclidean area and length respectively. Using the Euclidean isoperimetric inequality, we deduce

Aρ(Ω) ≤ k1Aeuc(Ω) ≤ k1

4π
Leuc(∂Ω)2 ≤ k1k

2
2

4π
Lρ(∂Ω)2 = k3Lρ(∂Ω)2

for every domain Ω ⊂ {|z| ≤ e−2π}, where we set k3 = k1k
2
2/(4π).

Assume that Ω satisfies Aρ(Ω) ≤ k3. If Lρ(∂Ω) ≤ 1, then Aρ(Ω) ≤ k3Lρ(∂Ω)2 ≤ k3Lρ(∂Ω). If Lρ(∂Ω) ≥
1, then Aρ(Ω) ≤ k3 ≤ k3Lρ(∂Ω). On the contrary, assume that Ω satisfies Aρ(Ω) > k3. Then k3 <
Aρ(Ω) ≤ k3Lρ(∂Ω)2 and we have Lρ(∂Ω) > 1. Hence, Aρ(Ω) ≤ a0 < a0Lρ(∂Ω). Therefore, if we define
c1 := max{k3, a0}, then Aρ(Ω) ≤ c1Lρ(∂Ω) for every domain Ω ⊂ {|z| ≤ e−2π}. ¤

The main result in this section is as follows.

Theorem 5.2. Let R = R̂ \ {pn}n with {pn}n uniformly distributed. Then R0 and R satisfy LII or not
simultaneously.
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Proof. (a) Assume that R0 satisfies LII. Consider a geodesic domain Ω in R. Let Cn1 , . . . , Cnm be the
1-collars of cusps contained in Ω. Denote by Ω0 the domain in R0 obtained from Ω by filling the cusps
pn1 , . . . , pnm . Recall that we denote by Bn the ball in R0 obtained from Cn by filling the cusp pn. Since
1-collars of different cusps are disjoint and the collar of the simple closed geodesic σ does not intersect the
1-collar of a cusp, we have LR(∂Ω) = LR0(∂Ω0) and

AR(Ω) = AR

(
Ω \ {Cn1 , . . . , Cnm}

)
+

m∑
j=1

AR(Cnj )

= AR0

(
Ω \ {Bn1 , . . . , Bnm}

)
+

1
a0

m∑
j=1

AR0(Bnj )

≤ 1
a0

AR0(Ω0) ≤
c(R0)

a0
LR0(∂Ω0) =

c(R0)
a0

LR(∂Ω).

Hence, cg(R) ≤ c(R0)/a0 and Lemma 2.2 gives c(R) ≤ c(R0)/a0 + 1.
(b) Assume that R satisfies LII. Consider a domain Ω0 in R0. Without loss of generality we may assume

that Ω0 is a simply connected domain, for otherwise we can “fill the holes” of Ω0 to obtain a simply connected
domain with more area and shorter boundary. Let Bn1 , . . . , Bnr be the balls intersecting Ω0 but not contained
in Ω0. Let Ω1

0, . . . , Ωk
0 be the connected components of Ω0 \

(
Bn1 ∪ · · · ∪ Bnr

)
.

Consider any curve g contained in ∂Ω0 \ {Bni}i joining two points of {∂Bni}i. Assume that g joins two
points of the same circle ∂Bni . It is well known that if g′ is the arc in ∂Bni with the same endpoints as g
and homotopic to g, then LR0(g

′) = LR(g′) ≤ LR(g) = LR0(g). Next assume that g joins two points of the
different circles ∂Bni and ∂Bni′ . Lemma 4.1 gives that LR0(g) = LR(g) ≥ 2 log 2 > 1 = LR0(∂Bn) for every
n. Since the numbers of the connected components of ∂Ωj

0∩(∂Bn1 ∪· · ·∪∂Bnr) and ∂Ωj
0\(∂Bn1 ∪· · ·∪∂Bnr)

are the same for every 1 ≤ j ≤ k, we have

LR0

(
∂Ωj

0 ∩ (∂Bn1 ∪ · · · ∪ ∂Bnr)
)
≤ LR0

(
∂Ωj

0 \ (∂Bn1 ∪ · · · ∪ ∂Bnr)
)
.

Summing up for all j yields that

k∑
j=1

LR0

(
∂Ωj

0 ∩ (∂Bn1 ∪ · · · ∪ ∂Bnr)
)
≤

k∑
j=1

LR0

(
∂Ωj

0 \ (∂Bn1 ∪ · · · ∪ ∂Bnr)
)

= LR0

(
∂Ω0 \

(
Bn1 ∪ · · · ∪ Bnr

))
≤ LR0

(
∂Ω0

)
.

We also have

LR0

(
∂(Ω0 ∩ (Bn1 ∪ · · · ∪ Bnr)) \ ∂Ω0

)
≤ LR0

(
∂Ω0

)
.

These inequalities imply that

k∑
j=1

LR0

(
∂Ωj

0

)
=

k∑
j=1

LR0

(
∂Ωj

0 ∩ (∂Bn1 ∪ · · · ∪ ∂Bnr)
)

+
k∑

j=1

LR0

(
∂Ωj

0 \ (∂Bn1 ∪ · · · ∪ ∂Bnr)
)
≤ 2LR0

(
∂Ω0

)
;

LR0

(
∂(Ω0 ∩ (Bn1 ∪ · · · ∪ Bnr))

)
= LR0

(
∂(Ω0 ∩ (Bn1 ∪ · · · ∪ Bnr)) ∩ ∂Ω0

)
+ LR0

(
∂(Ω0 ∩ (Bn1 ∪ · · · ∪ Bnr)) \ ∂Ω0

)
≤ 2LR0

(
∂Ω0

)
.
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Using these inequalities together with AR0

(
Ωj

0

)
≤ AR

(
Ωj

0

)
(possibly some ball Bn is contained in Ωj

0) and
Lemma 5.1, we obtain that

AR0(Ω0) =
k∑

j=1

AR0

(
Ωj

0

)
+ AR0

(
Ω0 ∩ (Bn1 ∪ · · · ∪ Bnr)

)
≤

k∑
j=1

AR

(
Ωj

0

)
+ AR0

(
Ω0 ∩ (Bn1 ∪ · · · ∪ Bnr)

)
≤ c(R)

k∑
j=1

LR

(
∂Ωj

0

)
+ c1LR0

(
∂(Ω0 ∩ (Bn1 ∪ · · · ∪ Bnr ))

)
≤

(
2 c(R) + 2 c1

)
LR0

(
∂Ω0

)
.

This shows that c(R0) ≤ 2(c(R) + c1). ¤

By using Theorem 2.3, we can extend Theorem 5.2 to a claim which is also true for the Riemannian
surface R0 and the graphs G and G∗. To do this, we have only to prepare the following lemma.

Lemma 5.3. Let R = R̂ \ {pn}n with {pn}n uniformly distributed. Then R0 and R1 = R \ {Cn}n are
quasi-isometric and R0 has bounded geometry.

Proof. Since diamR0(Bn) = diamR0(∂Bn) ≤ 1/2 for every n and dR0(Bm, Bn) ≥ 2 log 2 for any m 6= n,
applying [24, Theorem 2.1] twice, we have that R0 and R1 = R0 \ {Bn}n are quasi-isometric.

Recall that the curvature of R0 satisfies KR0 ≥ c0. Proposition 3.1 gives that there exists a positive
constant k0 with ι(z,R) ≥ k0 for every z ∈ R1; since the balls {Bn}n are isometric, one can check that the
injectivity radius of R0 is positive. Hence, R0 has bounded geometry. ¤

Corollary 5.4. Let R = R̂ \ {pn}n with {pn}n uniformly distributed. Then R, R0, G and G∗ satisfy LII or
not simultaneously.

Proof. We have that R0, G and G∗ are quasi-isometric by Theorem 4.5 and Lemma 5.3. We also obtain that
R0 has bounded geometry by Lemma 5.3 and that G and G∗ are of bounded degree by Lemma 4.3. Then
Theorem 2.3 and Theorem 5.2 give the assertion. ¤

6. The type problem

We continue to consider a Riemann surface R given by R = R̂ \ {pn}n for a discrete set {pn}n in a non-
compact simply connected Riemann surface R̂, which is either D or C. Note that the uniform distribution
of the cusps {pn}n are not assumed in the first part of this section. We formulate the following question on
R as the type problem: determine R̂ is D or C in terms of the geometry of R.

We see that the existence of Green’s function on R gives a complete answer to the type problem. We
recall that a Green’s function in a complete Riemannian manifold M is a positive fundamental solution of
the Laplace-Beltrami operator on M . If M satisfies LII then M has Green’s function. It is well known
that a Riemann surface has Green’s function if and only if it possesses non-constant positive superharmonic
functions (see [1, p. 204] or [26, p. 434]). It is stated in [1, p. 249] that a domain in C has Green’s function
if and only if its Euclidean boundary has positive logarithmic capacity.

Since any discrete set has zero logarithmic capacity, we have the following characterization for R̂ = D.

Theorem 6.1. For R = R̂ \ {pn}n as above, R̂ = D if and only if R has Green’s function.

We also have a geometric characterization for R̂ = D. We say that a sequence of points {pn}n in R̂ is
uniformly separated if dR̂(pn, pm) ≥ c for every n 6= m and some positive constant c. Uniformly separated
sequences play a main role in the study of LII and hyperbolicity (see, e.g., [2], [11] and [22]).

Theorem 6.2. For R = R̂\{pn}n as above, R̂ = D if and only if there exists a subsequence {pnk
}k ⊆ {pn}n

such that R̂ \ {pnk
}k satisfies LII.



PLANAR RIEMANN SURFACES WITH UNIFORMLY DISTRIBUTED CUSPS 11

Proof. Assume that R̂ \ {pnk
}k satisfies LII for some subsequence {pnk

}k ⊆ {pn}n. Seeking for a contradic-
tion, assume that R̂ = C. By [11, Theorem 4], we see that ∂

(
R̂ \ {pnk

}k

)
= {pnk

}k has positive logarithmic
capacity, which is a contradiction. Hence R̂ = D.

Assume now that R̂ = D. Define nk inductively as follows. Choose n1 := 1. If we have chosen n1 < n2 <
· · · < nk−1, we can define

nk := min
{
n > nk−1| dD(pn, pn1), dD(pn, pn2), . . . , dD(pn, pnk−1) ≥ 1

}
,

since {pn}n is a discrete set in D. Then {pnk
}k is uniformly separated in D, since dD(pnj

, pnk
) ≥ 1 for every

j 6= k, and we have that R̂ \ {pnk
}k satisfies LII by [11, Theorem 3]. ¤

Corollary 6.3. If R = R̂ \ {pn}n satisfies LII, then R̂ = D.

Hereafter, we assume that the cusps {pn}n are uniformly distributed in order to associate the graph G
(or G∗ but we omit this hereafter) with the type problem. Theorem 5.2 and Corollary 6.3 yield the following
consequence.

Corollary 6.4. Let R = R̂ \ {pn}n with {pn}n uniformly distributed. If the graph G satisfies LII, then
R̂ = D.

On a graph G with the path metric, we can define a discrete Laplacian and thus think of Green’s function
and parabolicity. It is well known that the parabolicity is equivalent to the condition that the simple random
walk on G is recurrent. Also, this condition implies that G does not satisfy LII. Moreover, by results in Kanai
[16, Theorems 1 and 2], R0 and G have Green’s functions or not simultaneously since they are quasi-isometric.
To convert this claim to that for R, we need the following.

Lemma 6.5. The Riemann surface R̂ and the Riemannian surface R0 have non-constant positive superhar-
monic functions or not simultaneously.

Proof. The Riemannian surface R0 coincides with R̂ ⊆ C as a Riemann surface. Then the Laplace-Beltrami
operator ∆0 on R0 and the ordinary Laplacian ∆ are the same up to a multiple of a positive function. Hence
the statement follows. ¤

Hence the generalization of Corollary 6.4 to an equivalent condition is obtained as a consequence from
Theorem 6.1 and Kanai’s.

Theorem 6.6. Let R = R̂ \ {pn}n with {pn}n uniformly distributed. The graph G has Green’s function if
and only if R̂ = D.

Proof. By Lemma 6.5, Corollary 5.4 and the above argument, we see that R̂ and G have Green’s functions
or not simultaneously. The existence of Green’s function on R̂ is equivalent to the condition R̂ = D. ¤

Now we will show that a quasi-isometry of R preserves the (non-)parabolicity as in the above theorem.
We need some preliminary results in order to prove our next theorem.

We recall here the thick-thin decomposition of Riemann surfaces given by Margulis Lemma (see, e.g.,
[4, p.107]): for any 0 < ε < Arcsinh 1, any Riemann surface S equipped with the Poincaré metric can be
partitioned into a thick part

S(ε) := {z ∈ S : ι(z) ≥ ε},
and a thin part S \S(ε) whose components are either collars of cusps or collars of closed geodesics of length
less than or equal to 2ε.

The following result is an straightforward computation.

Lemma 6.7. Let S be a Riemann surface with the Poincaré metric having a puncture p. If C denotes the
1-collar of p and z ∈ C, then

dS(z, ∂C) = log
1

2 sinh ι(z)
.

Furthermore, the set {z ∈ C| ι(z) < ε} is equal to the (2 sinh ε)-collar of p for any 0 < ε ≤ Arcsinh(1/2).

In [8, Lemma 6.1] appears the following result.
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Lemma 6.8. Let S and S′ be planar Riemann surfaces with the Poincaré metric, and let f : S −→ S′ be a
c-full (a, b)-quasi-isometry. Then, given 0 < ε, ε1 < Arcsinh 1, there exist 0 < ε′, ε̃ < ε1, which just depend
on ε, ε1, a, b, c, so that

f(S(ε)) ⊂ S′(ε′) ⊂ Nc(f(S(ε̃))).

It was proved by Kanai [16, Theorem 1] that the absence of Green’s function (parabolicity) is invariant
under quasi-isometries between Riemannian manifolds with bounded geometry. We have the following version
of Kanai’s result without bounded geometry.

Theorem 6.9. Let R = R̂ \ {pn}n and R′ = R̂′ \ {p′n}n with {pn}n and {p′n}n uniformly distributed. If R

and R′ are quasi-isometric, then R̂ and R̂′ are D or C simultaneously.

Proof. Since {pn}n and {p′n}n are uniformly distributed, injectivity radius can be close to zero only in collars
of cusps by Proposition 3.1. Then there exists 0 < ε1 < Arcsinh(1/2) such that for every 0 < ε < ε1 we have
that R \R(ε) and R′ \R′(ε) are the union of the (2 sinh ε)-collars of the punctures in R and R′, respectively,
by Lemma 6.7.

Let f : R → R′ be a c-full (a, b)-quasi-isometry. Fix 0 < ε < ε1. By Lemma 6.8, there exist 0 < ε′, ε̃ < ε1

so that
f(R(ε)) ⊂ R′(ε′) ⊂ Nc(f(R(ε̃))).

Lemma 6.7 gives

R(ε̃) = N− log(2 sinh ε̃)(R1), f(R1) ⊂ R′(ε′) ⊂ Nc−a log(2 sinh ε̃)+b(f(R1)),

and the restriction f |R1 : R1 → R′(ε′) is also a quasi-isometry. We remark here that it is easy to see that
the restriction of the distance in R to R1 and the inner distance of R1 are quasi-isometric. Applying [24,
Theorem 2.1] twice, we have that R′

1 and R′(ε′) are quasi-isometric, and then R1 and R′
1 are quasi-isometric.

Lemma 5.3 gives that R0 and R1 are quasi-isometric and R0 has bounded geometry, and that R′
0 and R′

1

are quasi-isometric and R′
0 has bounded geometry.

Therefore, R0 and R′
0 are quasi-isometric and Kanai’s Theorem in [16] gives that R0 has Green’s function

if and only if R′
0 has Green’s function. Hence, R̂ and R̂′ are D or C simultaneously by Lemma 6.5. ¤

One can also consider the Gromov hyperbolicity both for a Riemann surface R = R̂\{pn}n with uniformly
distributed {pn}n and for the associated graph G. By Theorem 4.6, they are hyperbolic or not simultaneously.
We might ask a question about the relationship between the condition R̂ = D and the condition that R (or
G) is hyperbolic. However, Corollary 8.6 below gives hyperbolic Denjoy domains with R̂ = C.

7. Examples regarding uniformly separated points

It is clear that uniformly separated points {pn}n in R̂ are not necessarily uniformly distributed cusps
in R = R̂ \ {pn}n. Conversely, one might think that uniformly distributed cusps are uniformly separated.
However, the following examples show that this is not the case for R̂ = C and in R̂ = D, respectively.

Example 7.1. For each integer m ≥ 1, we consider the 16m points pm,k =
√

me2πik/(16m) with k =
0, 1, . . . , 16m − 1. It is clear that {pm,k}m,k is not uniformly separated in C. However, one can check that
{pm,k}m,k is uniformly distributed in R = C \ {pm,k}m,k by using Proposition 3.5.

Indeed, take any z ∈ C with
√

n − 1 ≤ |z| <
√

n for some n ≥ 1. Then the nearest point p = pm0,k0

(m0 = n − 1, n) from z to the discrete set {pm,k}m,k is within at most Euclidean distance

√
n −

√
n − 1 +

2π
√

n

16n
<

2√
n

.

On the other hand, any two distinct points in {pn−1,k}k ∪ {pn,k′}k′ are at least Euclidean distance 1/(4
√

n)
away from each other. Since the ratio of the first distance to the second is bounded independently of n, we
can take the constant c as in Proposition 3.5. Hence {pm,k}m,k are uniformly distributed cusps in R.
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Example 7.2. Take a finite Riemann surface S of genus 2 with two punctures equipped with the Poincaré
metric. Take the simple closed geodesic γ surrounding the two punctures. This gives a geodesic subdomain
Ω2 with two cusps and with the geodesic boundary γ. We consider a regular covering surface S̃ of S
with respect to Ω2. This means that π1(S̃) < π1(S) is defined by the normal closure of π1(Ω2) in π1(S).
Geometrically, S̃ is constructed as follows. We fill the punctures of S to make a closed surface Σ of genus
2. Then take the universal covering map Π : D −→ Σ and remove the preimage of the two punctures under
Π from D to make S̃. The restriction of Π to S̃ ⊂ D gives the regular covering map Π : S̃ −→ S with the
covering transformation group isomorphic to π1(Σ).

Consider the preimage of Ω2 under Π : S̃ −→ S, which consists of infinitely many copies of Ω2. We replace
them with geodesic domains {Ωk}k≥3, where Ωk has one geodesic boundary isometric to γ, no genus and k
cusps that are uniformly distributed in Ωk with a constant M independent of k. We denote the resulting
Riemann surface by R, which can be represented as D \ {pn}n. Moreover, the cusps {pn}n are uniformly
distributed in R by its construction. However, R does not satisfies LII because AR(Ωk)/LR(γ) → ∞ as
k → ∞.

If {pn}n are uniformly separated in D, then R = D \ {pn}n satisfies LII by [11, Theorem 3]. Hence, we
see that {pn}n are not uniformly separated.

8. Denjoy domains

A Denjoy domain Ω is a domain in the complex plane C whose boundary is contained in the real axis.
Since Ω∩R is an open set in R, it is the union of pairwise disjoint open intervals; as each interval contains a
rational number, this union is countable. Hence, we can write Ω∩R =

∪
n∈Λ(an, bn), where Λ is a countable

index set, {(an, bn)}n∈Λ are pairwise disjoint.
Along this section we just consider Denjoy domains which can be written as R = C \ {pn}n with p0 = 0

and {pn}n a non-bounded increasing sequence. These domains are called tight trains (see [20] and [3]) and
are important since they are the simplest examples of infinite ends; furthermore, in a tight train it is possible
to give a fairly precise description of the ending geometry. See, e.g. [5], [13], [14], where they call a similar
but more general surface (allowing twists) a flute space.

We say that a curve in R is a fundamental geodesic if it is a simple closed geodesic which just intersects
R in (−∞, 0) and (pn, pn+1) for some n > 0; we denote by γn the fundamental geodesic corresponding to n
and its length by 2ln := LR(γn). We will need the following result given in [3, Theorem 5.1].

Theorem 8.1. Let R be a Denjoy domain R = C \ {pn}n. Then, R is hyperbolic if and only if there exists
a constant c such that dR(z, R) ≤ c for every z ∈ {γn}n.

Denote by R+ the positive real half-axis. We have the following consequence of Theorem 8.1.

Corollary 8.2. Let R be a Denjoy domain R = C \ {pn}n. Then, R is hyperbolic if and only if there exists
a constant c such that dR(z, R+) ≤ c for every z ∈ {γn}n.

Proof. Assume that R is hyperbolic. Theorem 8.1 gives that there exists a constant c such that dR(z, R) ≤ c
for every z ∈ {γn}n. Fix n > 0 and z ∈ γn. By symmetry we can assume that =z ≥ 0. Let us define γ+

n

as γ+
n := γn ∩ {z ∈ C | =z ≥ 0}; then γ+

n is a geodesic minimizing the distance from (−∞, 0) to (pn, pn+1).
Denote by z1 and z2 the endpoints of γ+

n in (−∞, 0) and (pn, pn+1), respectively. Let zc be the point in γ+
n

at distance c from z1; we also have dR

(
zc, (−∞, 0)

)
= c. If z ∈ [zcz2], then dR(z, R+) ≤ c. If z ∈ [z1zc], then

dR(z, R+) ≤ dR(z, zc) + dR(zc, R+) ≤ 2c.
The other implication is a direct consequence of Theorem 8.1, since dR(z, R) ≤ dR(z, R+). ¤

A Y -piece is a compact bordered Riemann surface with the Poincaré metric which is topologically a
sphere without three open disks and whose boundary curves are simple closed geodesics. They are standard
tools for constructing Riemann surfaces. A clear description of these Y -pieces and their use is given in [10,
Chapter X.3] and [7, Chapter 1].

A generalized Y -piece is a bordered or non-bordered Riemann surface with the Poincaré metric which
is topologically a sphere without n open disks and m points, with integers n,m ≥ 0 and n + m = 3, so
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that the n boundary curves are simple closed geodesics and the m deleted points are cusps. Observe that a
generalized Y -piece is topologically the union of a Y -piece and m cylinders, with 0 ≤ m ≤ 3.

Let Yn be the generalized Y -piece in R bounded by γn and γn+1 for n > 0. Let Y0 be the generalized
Y -piece in R bounded by γ1. The hexagon Hn is the intersection Hn := Yn ∩ {z ∈ C| =z ≥ 0} for some
n ≥ 0.

Theorem 8.3. Let R be a Denjoy domain R = C \ {pn}n. Then the following hold:
(1) If {pn}n is uniformly distributed, then R is hyperbolic and infn ln > 0;
(2) If R is hyperbolic, infn ln > 0 and supn |ln − ln+1| < ∞, then {pn}n is uniformly distributed.

Proof. (1) Assume that {pn}n is uniformly distributed with constant M . Proposition 3.1 gives infn 2ln ≥
infγ∈G(R) LR(γ) > 0. Fix n > 0 and z ∈ γn. There exists m with dR(z, Cm) ≤ M . Since LR(∂Cm) = 1,
dR(w, R) ≤ 1/4 for every w ∈ ∂Cm and dR(z, R) ≤ M + 1/4. Then Theorem 8.1 gives that R is hyperbolic.

(2) Assume now that R is hyperbolic and that there exist positive constants c1, c2, with ln ≥ c1 and
|ln − ln+1| ≤ c2 for every n > 0. Corollary 8.2 gives that there exists a constant c such that dR(z, R+) ≤ c
for every z ∈ {γn}n. Define γ+

n as γ+
n := γn ∩ {z ∈ C| =z ≥ 0} and denote by ηn the geodesic in R from γn

to γn+1 (note that ηn ⊂ (−∞, 0)).
Since ln ≥ c1 for every n > 0, there exists a constant c3 with LR(ηn) ≤ c3 for every n > 0. Since

ln ≥ c1 and |ln − ln+1| ≤ c2 for every n > 0, there exists a constant c4 with dR(x,Cn ∪Cn+1) ≤ c4 for every
x ∈ (pn, pn+1) and n > 0. Let

c5 := max{dR(x,C0 ∪ C1)|x ∈ (0, p1)} ; c6 := max{c4, c5}.
Then dR(x,Cn ∪ Cn+1) ≤ c6 for every x ∈ (pn, pn+1) and n ≥ 0. Fix n > 0, z ∈ γn and x ∈ R+ with
dR(z, x) = dR(z, R+) ≤ c. By symmetry we can assume that =z ≥ 0. Let m with x ∈ (pm, pm+1). Then

dR(z, Cm ∪ Cm+1) ≤ dR(z, x) + dR(x,Cm ∪ Cm+1) ≤ c + c6.

Fix n > 0 and z ∈ ηn. Since LR(ηn) ≤ c3,

dR(z, {Cm}m) ≤ dR(z, ηn ∪ (γn ∪ γn+1)) + c + c6 ≤ c3/2 + c + c6 =: c7.

Hence, dR(z, {Cm}m) ≤ c7 for every z ∈ ∂Hn and n > 0.
Consider z ∈ Yn for some n ≥ 0. By symmetry we can assume that =z ≥ 0, and then z ∈ Hn. If n = 0,

then
dR(z, C0 ∪ C1) ≤ c8 := max{dR(w,C0 ∪ C1)|w ∈ H0}.

Assume now that n > 0. Since AR(Hm) = π for every m > 0, there exists a constant c9 such that
dR(w, ∂Hm) ≤ c9 for every w ∈ Hm and m > 0.

Let z0 ∈ ∂Hn with dR(z, z0) = dR(z, ∂Hn) ≤ c9. Then

dR(z, {Cm}m) ≤ dR(z, z0) + dR(z0, {Cm}m) ≤ c9 + c7.

Hence,
dR(z, {Cn}n) ≤ max{c8, c7 + c9}

for every z ∈ R. ¤
We have an example showing that the second statement in Theorem 8.3 does not hold without the

hypothesis supn |ln − ln+1| < ∞. We will need the following technical result proved in [3, Corollary 5.28].

Lemma 8.4. Let R be a Denjoy domain R = C \ {pn}n. If there exist a subsequence {nk}k and a constant
c such that lnk

≤ c and nk+1 − nk ≤ c for every k, then R is hyperbolic.

Example 8.5. Let R be the Denjoy domain R = C \ {pn}n with l2k−1 = k and l2k = 1 for every k > 0.
Then infn ln = 1 > 0 and supn |ln − ln+1| = ∞. Lemma 8.4, with nk = 2k and c = 2, gives that R is
hyperbolic. Since l2k = 1 for every k > 0 and limk→∞ l2k−1 = ∞, {pn}n is not uniformly distributed.

The following consequence of Theorem 8.3 shows that it is possible to have R hyperbolic when R̂ = C.

Corollary 8.6. Let R be a Denjoy domain R = C \ {pn}n. Assume that there exist positive constants c1

and c2 such that c1 ≤ ln ≤ c2 for every n > 0. Then {pn}n is uniformly distributed and R is hyperbolic.
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Proof. The following facts hold:
(a) γn is a compact set with R \ γn non-connected for every n;
(b) diamR γn ≤ LR(γn)/2 = ln ≤ c2 for every n > 0;
(c) Since ln ≤ c2 for every n > 0, there exists a constant c3, which just depends on c2, such that γn has

a collar of width c3 for every n > 0. Therefore, dR(γm, γn) ≥ 2c3 for every m 6= n;
(d) Since ln ≤ c2 for every n > 0, there exists a constant c4, which just depends on c2, such that Yn is

c4-hyperbolic for every n > 0 (see, e.g., [22, Proposition 3.2]).
These properties allows to use [24, Theorem 2.4.], which gives that R is hyperbolic.

Since infn ln ≥ c1 > 0 and supn |ln − ln+1| ≤ c2 − c1 < ∞, Theorem 8.3 gives that {pn}n is uniformly
distributed. ¤
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