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Symmetric groups that are not the
symmetric conjugates of Fuchsian groups

Katsuhiko Matsuzaki

ABSTRACT. A symmetric automorphism of the unit circle is the boundary
extension of an asymptotically conformal automorphism of the unit disk. A
symmetric group is a quasisymmetric group whose elements are symmetric
automorphisms. In this paper, we consider a problem whether a symmetric
group is conjugate to a Fuchsian group by a symmetric homeomorphism or
not. Our answer is negative.

1. Introduction

A quasiconformal group is a discrete group of quasiconformal automorphisms
of the unit disk A whose maximal dilatations are uniformly bounded. A qua-
sisymmetric automorphism of the unit circle A is the boundary extension of a
quasiconformal automorphism of A. A quasisymmetric group is a discrete group
of quasisymmetric automorphisms of JA whose quasisymmetric constants are uni-
formly bounded. The boundary extension of a quasiconformal group to 0A is a
quasisymmetric group. Due to Sullivan [13] and Tukia [14], every quasiconformal
group is conjugate to a conformal group (Fuchsian group) by a quasiconformal
homeomorphism A — A.

On the other hand, since there is no canonical extension of the automorphisms
of A to A preserving the group structure (cf. [2] and [5]), it was difficult to see that
every quasisymmetric group is conjugate to a Fuchsian group by a quasisymmetric
homeomorphism 0A — OA, or equivalently, every quasisymmetric group is the
boundary extension of a quasiconformal group. Recently, this is shown to be true
by Markovic [10], based on a famous result by Tukia [15], Gabai [6] and Casson-
Jungreis [1] that a quasisymmetric group, which is a convergence group in the
sense of Gehring-Martin [9], is conjugate to a Fuchsian group by a topological
homeomorphism dA — JA.

An asymptotically conformal group is a quasiconformal group whose elements
are asymptotically conformal automorphisms of A. A symmetric automorphism of
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OA is the boundary extension of an asymptotically conformal automorphism of A,
which was originally introduced by Gardiner-Sullivan [8]. A symmetric group is a
quasisymmetric group whose elements are symmetric automorphisms of dA. It is
clear that the boundary extension of an asymptotically conformal group to dA is
a symmetric group. However, we do not know whether the converse is true or not.

In this note, we consider an analogous problem to the above context; whether a
symmetric group is conjugate to a Fuchsian group by a symmetric homeomorphism
OA — OA or not. Our answer is negative, and in fact, we will prove that, to every
infinite non-rigid Fuchsian group, there exists a corresponding symmetric group that
is not conjugate to any Fuchsian group by a symmetric homeomorphism. Here, a
Fuchsian group G is said to be rigid if the Teichmiiller space of the orbifold A/G
consists of a single point. We state our main result precisely as follows.

THEOREM 1.1. Let G be an infinite non-rigid Fuchsian group possibly with tor-
sion and possibly infinitely generated. Then there exists a quasisymmetric home-
omorphism f : OA — OA such that G, = fGf~' is a symmetric group but there
exists no symmetric homeomorphism h : 0A — OA such that hG,h™! is a Fuchsian
group.

Actually, we obtain the symmetric group G, in this theorem as the boundary
extension of an asymptotically conformal group.

This theorem can be paraphrased as a statement on the existence of a fixed
point of the isometric action of G on a closed subspace of the universal Teichmiil-
ler space, which is a fiber over the asymptotic universal Teichmiiller space. The
development of this observation will be discussed elsewhere.

2. Fuchsian groups and quasi-homomorphisms

In this section, we prove that there exists a non-trivial homogenous quasi-
homomorphism for every infinite Fuchsian group GG. Here, a map ¢ : G — R is said
to be a quasi-homomorphism if there exists a constant D > 0 such that

lp(g192) — w(91) — ¢(g2)| < D

for any ¢g; and go in G. Moreover, it is homogenous if ©(g™) = np(g) for any
g € G and for any n € Z. It is clear that a homomorphism is a homogenous
quasi-homomorphism.

Note that, the orbifold R = A/G often has an infinite cyclic cover and hence
there exists a surjective homomorphism ¢ : G — Z. However, this is not always
the case. If the first homology group Hi(G,Z) = G/|G,G] contains no element
of infinite order, then there is no surjective homomorphism ¢ : G — Z, and vice
versa. We need to be concerned about such a case. First, we remark the following
elementary claims.

PROPOSITION 2.1. For every free group G possibly infinitely generated, there
exists a surjective homomorphism ¢ : G — Z.

PROPOSITION 2.2. For a surjective homomorphism 0 : G — G’ and a non-
trivial homogenous quasi-homomorphism ¢’ : G' — R, the composition ¢ = ¢’ 00 :
G — R is also a non-trivial homogenous quasi-homomorphism.

A hyperbolic group is a finitely generated group that is a Gromov hyperbolic
space with respect to the word metric. It is known that every cofinite area Fuchsian
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group is hyperbolic. The following fact is crucial in our arguments, which can be
found in [4] and [12].

LEMMA 2.3. For every infinite hyperbolic group G, there exists a non-trivial
homogenous quasi-homomorphism ¢ : G — R.

Now we are ready to prove the following.

THEOREM 2.4. For every infinite Fuchsian group G possibly with torsion and
possibly infinitely generated, there is a non-trivial homogenous quasi-homomorphism
v:G—R.

ProoF. We divide our arguments into the following cases. Case 0: G is el-
ementary. In this case, G is virtually abelian and hence there exists a surjective
homomorphism ¢ : G — Z.

Case 1: G is non-elementary and finitely generated. In this case, G is isomor-
phic to a cofinite area Fuchsian group G’ which is hyperbolic. Then, by Lemma
2.3, we see that there is a non-trivial homogenous quasi-homomorphism for G.

Case 2: G is infinitely generated and has at most finitely many conjugacy classes
of elliptic elements. Let R = A/G be the orbifold for G and R’ the underlying Rie-
mann surface without cone singularity obtained by forgetting the cone singularities
of R. Then there exists a surjective homomorphism 6 : G — 71 (R’) onto the fun-
damental group of R’. Since R’ is topologically infinite, 7 (R’) is a free group. By
Proposition 2.1, there exists a surjective homomorphism ¢’ : w1 (R') — Z. Hence
the composition ¢ = ¢’ o § yields a required map.

Case 3: G is infinitely generated and has infinitely many conjugacy classes of el-
liptic elements. In the orbifold R = A/G, we choose finitely many cone singularities
x; with branch order v; (1 <4 < n) such that

—2+§:(1—;) > 0.
=1

K3

Let S be a sphere with n cone singularities of order (v1,...,v,) and let G’ be its
orbifold fundamental group, which is isomorphic to a cocompact Fuchsian group
with torsion uniformizing the orbifold. Then there exists a surjective homomor-
phism 6 : G — G’. Since G’ is a hyperbolic group, Lemma 2.3 and Proposition 2.2
show that there is a non-trivial homogenous quasi-homomorphism for G. |

3. A discrete model

For a countable group G in general, we define a Banach space L(G) of all
real-valued functions £ : G — R endowed with the supremum norm |¢]e =
sup,eq [£(g)|. Also we consider a subspace Lo(G) that consists of all elements
¢ € L(G) vanishing at infinity. Namely, £ € L(G) belongs to Lo(G) if, for any
g > 0, there exists a finite subset V' C G such that sup,cq_y [£(9)] < e

A canonical action of G on L(G) is defined by (v*¢)(g) := &£(vg) (9 € G) for
any £ € L(G) and for any v € G. This action is isometric with respect to the norm
on L(G).

Let S be an invertible generating system of G (S~! = S). We number the
elements in S as {gfl,gfl,ggtl, ... }. For each generator g*' (n € N), we give the
integer weight n. The weighted word length ¢(g) for an element g € G with respect
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to S is defined by the minimum of the sum of their weights when we represent g
as a word of the generators. This is equal to the weighted path metric between
g € G and the identity on the Cayley graph of G with respect to S. Here each edge
assigned for ¢! has length n. The triangle inequality £(g1g2) < £(g1) + £(g2) is
satisfied for any ¢g; and go in G. This weighted word length ¢ induces a distance on
the Cayley graph of G having a property that each bounded subset contains only
finitely many vertices (elements of G). The definition of vanishing at infinity of
¢ € L(G) is equivalent to saying that £(g) converges to 0 as £(g) tends to oco.
We use the following specific function and its obvious property.

PROPOSITION 3.1. Letn: R — [0,1] be a piecewise-linear continuous function
defined by

0 (x < -1)
Bo) =4 @+1)/2 (-1<a<1)
1 (1<)

If © and 2’ satisfy either |x — 2’| < 2e, min{z,2'} > 1 or max{z,2'} < —1 for a

positive constant € > 0, then |n(z) —n(z')| < e.

We construct a function £ € L(G) from a quasi-homomorphism ¢ of G, the
weighted word length ¢ and the piecewise-linear function 7, and show that this
function serves as a discrete model for our desired quasiconformal deformation of

G.

LEMMA 3.2. Suppose that a countable group G has a non-trivial homogenous
quasi-homomorphism ¢ : G — R with a normalization condition ¢(a) = 1 for
some a € G. For an invertible generating system S = {glil,ggd,ggil, ..} of G
with g1 = a, let £(g) be the weighted word length for g € G with respect to S. Let
7 : R — [0,1] be the piecewise-linear function given in Proposition 3.1. Define a

function £ : G — [0,1] by

am:n(ﬁg) (9€G).

Then the following properties are satisfied:
(1) For every v € G, the function v*£ — & belongs to Lo(G);
(2) For every g € G, the values ((a™)*€)(g) converge to 1 as n — 400 and
converge to 0 as n — —o0.

PRrROOF. For property (1), we prove that, for each fixed v € G — {1} and for
any small € (0 < e < 1/2), there exists ¢y such that [(v*{ —&)(g)| < e forall g € G
with £(g) > £y. Since ¢ is a quasi-homomorphism, there exists a constant D > 0
such that

lo(v9) — #(9)| < ()] + D
for every g € G. Then we will show that

_ 26 + eI+ D
2e
is appropriate for proving the assertion above. Having

(vE€=8(9) =n (m) - (iég) ;

ly - >0
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we apply Proposition 3.1 to z, := ¢(vg)/£(vg) and zj, := (g)/¢(g). Then it suffices
to see that either |z, — x| < 2¢, min{wy, )} > 1 or max{ry, z}} < —1 is satisfied
for every g € G with ¢(g) > o.

Suppose that neither min{z,,z;} > 1 nor max{z,,zj} < —1 is satisfied for
some g € G with £(g) > fo. Then either |z 4| < 1 or |z| < 1 are satisfied for this g.
Indeed, if z, > 1 and —1 > z, then

lo(vg) — @(g)| = L(vg) + £(g) > Lo.

However, the left-hand side is bounded by |¢(v)| + D, which contradicts the defi-
nition of ¢y. Similarly, we can rule out the case where z’g >1and —12> xz,.
In the case where |z,4] = [¢(v9)|/¢(vg) < 1 for g € G with ¢(g) > £y, we have

o= lp(v9)€(g9) — v(9)(79)]
£(vg)l(g)
< lp(g)l - 160g) = Lvg)| + tvg) - le(v9) — ¢(9)]
B £(vg)t(g)
< [Ug) = tlyg)l + e(vg) — ¢(9)]
{(g)

() + le(MI + D
Lo

|zg —

g

< < 2e.
Similar calculation can be applied to the case where |z| < 1. Thus we complete
the proof of (1).

Property (2) is shown as follows. Consider ((a™)*€)(g) = n(e(a™g)/t(a™g))
for each fixed ¢ € G and for every n € Z. Since ¢ is a homogenous quasi-
homomorphism and ¢(a) = 1, we see that

n+¢(g) =D =p(a")+¢(g) — D
< p(a"g)
<p(a")+¢(g) + D =n+¢(g) + D.

Also, since £(a*!) =1 (recall g1 = a), we have 0 < ¢(a"g) < |n| + ¢(g). And since
7 is a continuous increasing function, we conclude that

n+¢(g) — D
n+£4(g)

) =n1) =1

Jim (@€)< 1y (“EADED oy o

n—-+o00 n—-+00

lim ((a")€)(g) > lim n(

This shows property (2). O

4. Asymptotically conformal automorphisms

Let Bel be the complex Banach space of all measurable functions p on the
unit disk A endowed with the supremum norm ||ps = ess.sup,ca |p(z)|, where
we regard p as a Beltrami differential pu(z)dz/dz. Let M be the unit ball of Bel
whose elements are called Beltrami coefficients. The Teichmiiller projection & :
M — T onto the universal Teichmiiller space T' is denoted by ®(u) = [f,.], where
[f.] € T is a Teichmiiller class of the quasiconformal homeomorphism f, of A whose
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complex dilatation 0 fu/0fu is pr. The Teichmiiller projection @ is a holomorphic
split submersion with respect to the complex structure on 7.

Let Bely be the subspace of Bel consisting of all Beltrami differentials vanishing
at infinity. Here we say that p € Bel vanishes at infinity if, for every ¢ > 0,
there exists a compact subset V' C A such that ess.sup,ca_y |p(2)] < e. We
say that a quasiconformal homeomorphism f,, of A is asymptotically conformal
if p vanishes at infinity. The asymptotic Teichmiiller space AT is the set of all
asymptotic equivalence classes of quasiconformal homeomorphisms of A and the
asymptotic equivalence is defined similarly to the Teichmiiller equivalence by using
asymptotically conformal homeomorphisms. This is a quotient space of the Teich-
miiller space T and the quotient map « : T'— AT is holomorphic with respect to
the complex structure endowed with AT. The asymptotic Teichmiiller projection
®: M — AT is defined by & = a0 ®. See [3] and [7].

We define the pull-back of p € Bel by a conformal automorphism ~ of A as

(1) (2) = plr(2) L)

For a Fuchsian group G, let Bel(G) denote the subspace of Bel consisting of all
Beltrami differentials invariant under G, that is, all such p that v*u = u for every
v € G. Let M(G) be the unit ball of Bel(G). The closed submanifold ®(M(G)) in
T can be identified with the Teichmiiller space of the orbifold R = A/G and it is
denoted by T'(G).

Take a disk W in R avoiding cone singularities and consider the inverse image
of W on A, which can be represented by the disjoint union L gec Wy, where W, =
g(W1) and W7 is a lift biholomorphically equivalent to W. For an arbitrary fig €
Bel(G), we obtain a Beltrami differential po € Bel(G) by the restriction of fig to
I_lgEG WQ'

Using the function £ € L(G) given in Lemma 3.2, we define a Beltrami differ-
ential 1 on A by

w(z) =Y &9 tw, (2)uo(2),
geG

where 1y (2) is the characteristic function of W on A. Then, the pull-back of y by
vy eGis

-2

(=
'(z

~—

(V)(2) = &9 lw, (7(2)Ho(v(2))

geqG

=Y ()9 1w, ()po(2)-

geG

~—

2

For all t € R with ||tu|lcc < 1, we consider a curve p(t) in the Teichmiiller space
T(R), where p(t) = ®(tu) is the Teichmiiller class determined by a quasiconformal
homeomorphism f, : A — A having the complex dilatation ¢x. Also define G =
finG ftzl, which is a group of quasiconformal automorphisms of A.

LEMMA 4.1. Every quasiconformal automorphism in the group Gy is asymp-
totically conformal.
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PrOOF. Fix t € R with [[tul < 1 and set f = f;,. For every v € G, we
consider the complex dilatation gy, -1 of foyf —1 ¢ Gy. Tt satisfies

: )] = () (L g (2) = iy (R)]
0 s U = G = 1 Tl

Here we have

py(z) = Z £(9) 1w, (2)tpo(2);

geG

piy(2) = (V) (E) = D (7 E9) Iw, (2)tpo(2).

geG

Hence the numerator of the right side fraction in inequality (i) is estimated as

1, (2) = s (2)] < D 1(3*€ = €)(9) 1w, (2)l[ts0]| o

geG

When f(z) tends to the boundary JA at infinity, so does z. If z € W, and
z tends to JA, then such g € G tends to the infinity, that is, £(g) — oo. Since
v*€ — & vanishes at infinity by property (1) in Lemma 3.2, this implies that 7. -1
also vanishes at infinity. Therefore fyf~' is asymptotically conformal. O

5. Asymptotically non-trivial Beltrami differentials

Let N denote a subspace of Bel consisting of all infinitesimally trivial Beltrami
differentials. To define this space precisely, let () be the Banach space of all inte-
grable holomorphic functions ¢ on A endowed with the L'-norm [p|1 = [, |¢],
where we regard ¢ as a quadratic differential p(2)dz2. Then the tangent space of
the universal Teichmiiller space T at the base point o = [id] is identified with the
dual space @Q*. Each element p € Bel induces a bounded linear functional v, € Q*
by vu(@) = [, p. We say that € Bel is infinitesimally trivial if v, = 0, that is,
/ A Hp = 0 for every ¢ € Q. For the Teichmiiller projection ® : M — T', the kernel
of the derivative d®, at the base point is coincident with N.

A degenerating sequence is a sequence {p,} C @ such that ||¢,|1 =1 and ¢,
converge locally uniformly to zero. We say that u € Bel is infinitesimally asymptot-
ically trivial if 1im,, o (v, (n)| = 0 for every degenerating sequence {¢,} C Q. Let
N denote the subspace of Bel consisting of all infinitesimally asymptotically trivial
Beltrami differentials. For the asymptotic Teichmiiller projection ® : M — AT,
the kernel of the derivative d®, at the base point is coincident with N. This is
shown in [3] and [7]. It is clear that N is contained in N. Actually, we know that
N = N + Bel,.

The pull-back of ¢ € @ by a conformal automorphism ~ of A is defined as

(v'0)(2) = o(v(2))7 (2)*.

The push-forward (y.)(z) is the pull-back by v~1. Let G be an infinite non-rigid
Fuchsian group. Non-rigidity of G is equivalent to a property that there exists a
non-trivial holomorphic quadratic differential ¢ on A invariant under G such that

/ W] < oo and  sup p~2(2)[i(2)] < oo,
A/G zZEA
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where p is the hyperbolic density on A.

The harmonic Beltrami differential for this v is defined by fig = p~2¢ € Bel(G).
As in Section 4, we restrict jig to || .o Wy to obtain the Beltrami differential
to € Bel(G). We first see that ug does not belong to N. Indeed, by the surjectivity
of the Poincaré series operator, there exists an integrable holomorphic quadratic
differential 1 € @ such that ZweG ~*1)p = ). Hence

/ [0 = / Hoy) = p 2y > 0,
A A/G Wi

which shows that pg ¢ N.
By using the function ¢ € L(G), we define the Beltrami differential

p(z) =Y &(9)lw, (2)po(2)

geG
as in Section 4. This satisfies the following.
LEMMA 5.1. The Beltrami differential i does not belong to Bel(G) + N.

PROOF. Suppose to the contrary that we can write 4 = v + A for v € Bel(G)
and A € N. Let a € G be the element of G chosen in Lemma 3.2. Take any weQR
with [|¢]|1 =1 and set ¢, = (a™).p for every n € N. Then {¢,} is a degenerating
sequence.

Using the facts that the action of the conformal automorphism a preserves the
integral of a (1, 1)-form u(z)dzdz and that v is G-invariant, we have

(ii) /A(a")*uwp:/Awn:/Aer/Awm

(@) w)(2) = Y ((a")"€)(9) 1w, (2)po(2).
geG

Since ((a™)*¢)(g) — 1 as n — oo by property (2) in Lemma 3.2, we see that
((a™)*u)(z) — po(z) pointwise. Hence the left side of equality (ii) converges
to [ A Moy by the dominated convergence theorem. On the other hand, / A Aon
converges to 0 because A\ € N and {¢n} is a degenerating sequence. Hence
S o = [y ve for every ¢ € Q, which implies that po —v € N C N. From
this and p = v 4 \, we have g — u = X for another X' € N.

Next, we set p_,, = (a™").p for every n € N and consider another degenerating
sequence {@_,}. Similar to the above paragraph and by the fact that po is G-
invariant, it satisfies

(iif) / (o = (a™") )y = / (ho = Wp—n = / Nepn,
A A A
where
(@) w)(z) = Y _((a™")"€)(9)1w, (2)mo(2).
geG

Since ((a=™)*¢)(g) — 0 as n — oo again by property (2) in Lemma 3.2, we see that
((a=™)*p)(z) — 0 pointwise. The left side of equality (iii) converges to [, oy and
the right side converges to 0 as n — co. Hence fA o = 0 for every ¢ € @, which
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implies that pug € N. However, this contradicts the fact that pg is chosen so that
po & N. U

Summing up all the above arguments, we have the proof of Theorem 1.1.

PrROOF OF THEOREM 1.1. Consider the arc p(t) = ®(tu) in T and its pro-
jection <i>(t,u) on AT. By Lemma 4.1, G, is a group of asymptotically conformal
automorphisms of A for all sufficiently small ¢ > 0. Hence the boundary extension
of Gy to A is a symmetric group. On the other hand, since p ¢ Bel(G) + N
by Lemma 5.1, the tangent vector d®,(u) of the arc ®(tu) at a(o) € AT does
not belong to the subspace defined by the submanifold «(7T(G)). Hence, for some
sufficiently small ¢ > 0, ®(¢x) does not belong to a(T(G)). This means that the
boundary extension G, of this G, which is the conjugate by the quasisymmetric
homeomorphism f corresponding to the quasiconformal homeomorphism f = feus
is conjugate to a Fuchsian group by no symmetric homeomorphism of 0A. (]
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