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THE CONSERVATIVE-DISSIPATIVE DICHOTOMY FOR
GEOMETRIC COVERS OF RIEMANN SURFACES

KATSUHIKO MATSUZAKI

We characterize Riemann surfaces which admit non-constant
bounded harmonic functions by a certain property of their normal
covers. It is concerning the degree of growth of the hyperbolic area
within the distance r as r tends to infinity and indicated by the con-
servative and dissipative part for the action of the Fuchsian models.
For this characterization, we study inheritance of this property to
geometric normal covers of Riemann surfaces.

Throughout this note, a Riemann surface W is assumed to be hyper-
bolic, that is, Wis represented by a quotient space of the unit disk A with the
hyperbolic metric by a discrete isometry group ( = Fuchsian group ) I

Let us denote by Ogg the class of Riemann surfaces which do
not admit non-constant bounded harmonic functions. In[M], we have
seen the following result about normal covers of Riemann surfaces
which belong to Ogsg.

PROPOSITION ([ M, Th.5.4 ]1). If W €Ogyg, then any normal
cover of W either belongs to the class C or does not belong to the class Uc.

Here, we will explain the classes C and Uc . Let I' be the
Fuchsian model acting on A of a hyperbolic Riemann surface W. The
action of I divides the circle at infinity S' = 9 A into conservative part Z (")
and dissipative part 2(I") up to null sets, where S! is equipped with the Lebes-
gue measure. Let o be a Dirichlet fundamental region of I'. 'Then we may de-
fine D(T)=U e v(cl(0)n 5') and 2(T) = 5'- D). Ttis

known that up to null sets £ (I") is equal to the horocyclic limit set of

I'[S] and @D (I") is equal to the set where Green’s function of I has an

angular derivative [P]. We define C(Uc) as a class of Riemann sur-

faces whose Fuchsian model has full (positive) measure conservative -
part, respectively. There is the following inclusion relation. Opg < C < Ug.
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Next, we introduce a similar dichotomy for the family of all geo-
desic rays departing from a point in W. Let © : A — W be the universal
covering map. For a given point pe W, we may assume that n(0) = p.
Then the family o (p, W) of all geodesic rays from p is identified with s!
and a sub-family E of ¢ (p, W) is measured by the Lebesgue measure on
S (we call this measure the visual measure at p). Let E(p,r) be the set
. of points in E which are within the distance r from p along the rays.We
define @ (p, W) as the maximal measurable sub-family of & (p, W) that
has the following property (it is well- defined up to null sets):

for any sub-family E < (p, W) of positive visual measure,
Area (E(p,r))/ Area (disk of radius r) -» O as r — .

And we set Z(p, W) = S(p, W) — D (p, W). The condition We C is
equivalent to that & (p, W) is of full visual measure (see [S]). We can
also prove that We U, if & (p, W) is of positive visual measure.

We apply this to subregions of Riemann surfaces and classify them. In
this note, we treat only subregions X of hyperbolic Riemann surfaces W with
totally geodesic boundary 0.X. Take a point p of X and let &' (p,X') be the sub-
family of geodesic rays in &' (p, W) which do not exit from X. When & (p,X) is
of null measure, we say that X belongs to SO (= SOgg in the usual notation).
Moreover we say that a subregion X which does not belong to SO is in the class
SCif S(p,X)N R(p,W)=F(p, X) a.e. for some p € X, and in the class SU¢
if £(p,X)N R (p,W)is of positive measure for some p € X.

These definitions enable us to localize the conservative-
dissipative property of Riemann surfaces as follows.

LEMMA (localization lemma). Let W be a hyperbolic Riemann
surface and X a subregion with totally geodesic boundary . We have

(1) If X e SUg, then We Uc’ and

(2) If X & SC, then We C.

Now, we will consider inheritance to covering surfaces. In this
note, we focus on the following geometric setting. Let W be a Riemann
surface with the complementary subregions X and Y whose fundamental
groups are non-trivial. We define the geometric normal cover W * with
respect to X as a normal cover of W whose fundamental group m; ( W *) is
the normal closure of w; (X ) in m;( W), that is, the minimal normal sub-
group generated by m; (X ). Then, W * consists of subregions which are
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copies of X and the planar subregion which is the preimage of Y under
the covering map. The following theorem is the key to our investigation.

THEOREM 1. Let W be a hyperbolic Riemann surface which
has the complementary subregions X and Y whose boundary 0.X=0Y
1s totally geodesic. Let . W* — W be the geometric normal cover
with respect to X and denote the subregion _1( Y) by Y*. Further,
we assume that (#) the hyperbolic lengths of loop components of 0X=0Y
are bounded from below by some positive constant.

Under these circumstances, if Y ¢ SO, then Y* ¢ SUC. In
addition, if X € SO, then W*¢ Ug.

Remark. If Y e SO, then Y* € SO, which is always valid.

Proof of Theorem 1. Let {y;},;=1,.. be the set of geodesic loops
in 9X=0Y. For each y; ,we consider the widest collar G; of it. Since the
lengths of {y;};=12,. are bounded from below, the widths of collars are
bounded from above by a constant. We denote Y — U cl(G;) by Y' and
take a point p in Y '. Consider the family & (p, W) of geodesic rays.
Since Y ¢SO, f (p,Y ) is of positive visual measure. Further, we can
prove that almost every ray in &' (p, V') is eventually far away sufficiently
from @Y (e.g. by McMillan’s twist point theorem, cf. [P,§3] ). Thus, we
have a family #(= & (p, Y) a.e. ) each of whose rays stays in ¥ ' except
for a bounded set of intervals.

Let t : A >Wand g: A > W * be the universal covering maps
such that = = fo g and ©(0) = p. We identify & (p, W), & (p *, W *) and
F(0, A)= S, where p* = g(0). In the set & consider any set E of positive
measure. When we regard E as the family of rays in A, we can choose a
sub-family E' of E of positive measure and a component  of n—l( Y') such
that all the rays in E ' eventually stay in Q. Remark that the map g is
homeomorphic on each component of 7 '(Y"'). Hence each ray of E' pro-
jected to W * does not intersect with oneself or one another in g (2). On
E’' (= W*), the hyperbolic area within the distance r from p * grows as in
the hyperbolic space, thus we have proved that for any family E of positive
measurein & (=F(p*,Y*)ae)

Area (E(p*,r))/ Area (disk of radius r) »0asr— .
This implies that S(p*, Y*) = @ (p*,Y*) a.e., thatis Y* ¢ SUc.

In addition, assume that X € SO. Then, almost every ray of & (p, W) '
eventually stays in Y sufficiently far away from 0 Y. By the same argu-
ment as in the first part of the proof, it follows that for any positive
measure set £ of f (p*, W *), there exists £’ ( < E) of positive measure
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such that the rays of E’ are eventually “parallel”. Thus, £’ determines a
wandering set on the circle at infinity S bz of (p*, W*) for the action of the
Fuchsian model of W*. Since E'is arbitrary, this implies that W* ¢ Uc. ]

By the above Lemma and Theorem | combined with Proposi-
tion, we obtain the following result:

THEOREM 2. For a Riemann surface W which satisfies that
(##) the lengths of closed geodesics in W are bounded from below
by a positive constant, W belongs to Uc — Oyg If and only if it has
a normal cover which belongs to U¢ — C.

Proof. The “if part” is known from Proposition and the fact that any
cover of a Riemann surface not in Ug is not in Ug. We will show the “only if
part”. Suppose that We U — Ogg. If We Uc — C, we have nothing to
prove. Thus, we may assume that We C — Ogg. Since W¢g Ogg, the two
region test ( cf. [SN, p.242] ) gives the two complementary subregions X and
Y such that X, Y'¢ SO. Further, we may take them so that 0. X = 0Y is to-
tally geodesic. Then by Theorem 1, Y *& SUg, in particular, Y * ¢ SC. Us-
ing Lemma (2), we have W * ¢ C. On the other hand, since We C, we
have X € SC again by Lemma (2), in particular, X € SUc. The normal
cover W* has a subregion which is a copy of X, hence we have W * e Ug
by Lemma (1). Therefore, W* belongs to Uc — C. O]

Remarks.1. Theorem 1 gives another proof of [M, Th.5.2].

2. By Theorem 1, we can see that the Riemann surface R’ con-
structed in [M, Th.6.1, cf.§6. Remark (1)] does not belong to Ug.

3. We do not know whether the condition (#) is needed for
Theorem 1, or (##).for Theorem 2.
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