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Abstract. A Kleinian group (a discrete subgroup of conformal automorphisms of
the unit ball) G is said to have proper conjugation if it contains the conjugate αGα−1

by some conformal automorphism α as a proper subgroup in it. We show that a

Kleinian group of divergence type cannot have proper conjugation. Uniqueness of
the Patterson-Sullivan measure for such a Kleinian group is crucial to our proof.

§1. Introduction

The co-Hopf problem on an abstract group G asks whether any injective ho-
momorphism of G into itself should be surjective or not. As a variation of this
problem, we consider conditions under which there is no proper conjugation for
Kleinian groups.

A Kleinian group G is a discrete subgroup of the group Isom+(Hn+1) of all
orientation-preserving isometric automorphisms of the hyperbolic space Hn+1 for
n ≥ 1. We say that G has proper conjugation if there exists α ∈ Isom+(Hn+1) such
that the conjugate Γ = αGα−1 is a proper subgroup of G.

For n = 1, namely, when G is a Fuchsian group, Heins [4] proved that, if G
uniformizes a Riemann surface that does not admit the Green function, then G has
no proper conjugation. On the other hand, Jørgensen, Marden and Pommerenke
[5] gave a systematic construction of Fuchsian groups having proper conjugation.
For higher dimensional Kleinian groups, the problem of proper conjugation has
been studied topologically by Wang and Zhou [15] and Ohshika and Potyagailo [11]
among others.

For a Kleinian group Γ, the Poincaré series P s
Γ(x, z) of dimension s ≥ 0 is

defined by the sum of e−sd, where d runs over all the hyperbolic distances of the
orbits Γ(x) from z in Hn+1. Its critical exponent of convergence δ(Γ) is defined by
the infimum of the dimension s where the Poincaré series P s

Γ(x, z) converges. If
P s

Γ(x, z) diverges at the critical dimension s = δ(Γ), we say that Γ is of divergence
type. The hyperbolic manifold Hn+1/Γ admits no Green function if and only if Γ
is of divergence type and δ(Γ) = n.
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The main result of this paper is the following, which generalizes the aforemen-
tioned theorem due to Heins [4] in two directions: one is to higher dimension n ≥ 2
and the other is to general divergence type with δ(G) < n.

Theorem 1.1. A Kleinian group of divergence type cannot have proper conjuga-
tion.

To prove this theorem, we use a G-invariant conformal density of dimension
δ(G) called the Patterson-Sullivan measure. The uniqueness of this measure for
a Kleinian group G of divergence type is crucial to our arguments. According to
Culler and Shalen [1], we decompose the Patterson-Sullivan measure into parts
corresponding to the coset decomposition of G modulo the conjugate Γ = αGα−1.
Then we estimate the ratio of the decomposed measures to the original one. For this
purpose, we analyze an ascending sequence of the conjugated groups to G given
by the iteration of α and the Patterson-Sullivan measure of its geometric limit.
This system has appeared in a work by McMullen and Sullivan [8] for the case of
Fuchsian groups.

Since every geometrically finite Kleinian group is of divergence type, the following
result is easily obtained from our main theorem. This result has been proved by
Wang and Zhou [15].

Corollary 1.2. A geometrically finite Kleinian group has no proper conjugation.

§2. The Poincaré series

In this section, we introduce the Poincaré series for Kleinian groups and give its
basic properties. In particular, Kleinian groups of divergence type are defined.

A Kleinian group Γ is a discrete group of orientation-preserving isometric auto-
morphisms of the (n + 1)-dimensional hyperbolic space (Hn+1, d) for n ≥ 1. It acts
on Hn+1 properly discontinuously. We always assume that Γ is non-elementary.
The unit ball Bn+1 ⊂ Rn+1 with the metric 2|dx|/(1 − |x|2) is a model of the hy-
perbolic space and the group Isom+(Hn+1) of all orientation-preserving isometric
automorphisms of Hn+1 is identified with the group Conf(Bn+1) of all conformal
transformations preserving Bn+1. The euclidean boundary Sn of the model Bn+1

is located at infinity of the hyperbolic space and the action of Γ extends to Sn.
For a Kleinian group Γ, the Poincaré series of dimension s ≥ 0 with respect to

the base point z ∈ Bn+1 and to the orbit point x ∈ Bn+1 is defined by

P s
Γ(x, z) =

∑
γ∈Γ

exp(−sd(γ(x), z)).

The critical exponent of convergence for Γ is defined by

δ(Γ) = inf {s ≥ 0 | P s
Γ(x, z) < ∞},

which is independent of the choices of z and x. It is known that δ(Γ) satisfies
0 < δ(Γ) ≤ n. We say that Γ is of divergence type (at the critical exponent δ(Γ)) if
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P
δ(Γ)
Γ (x, z) = ∞ and of convergence type if P

δ(Γ)
Γ (x, z) < ∞. It is known that the

hyperbolic manifold NΓ = Hn+1/Γ does not admit the Green function if and only
if δ(Γ) = n and Γ is of divergence type. In particular, if NΓ is of finite volume,
then this condition is satisfied. More generally, every geometrically finite Kleinian
group Γ is of divergence type.

Here we introduce simple but important facts on the Poincaré series for our work.
They easily follow from the definition; we skip the proof.

Proposition 2.1. The Poincaré series P s
Γ(x, z) satisfies the following properties:

(1) P s
Γ(x, z) = P s

Γ(z, x) for any x and z in Bn+1;
(2) P s

Γ(g(x), g(z)) = P s
Γ(x, z) for every element g in the normalizer N(Γ) of Γ

in Conf(Bn+1).

§3. The Patterson-Sullivan measure

A fundamental tool for proving our main theorem is the Patterson-Sullivan mea-
sure. Uniqueness of such measures for Kleinian groups of divergence type is the key
to our proof. In this section, we explain basic facts concerning invariant conformal
densities.

We consider a family {µz}z∈Bn+1 of positive finite Borel measures on Sn, more
precisely, a map µ : Bn+1 → M(Sn) where M(Sn) is the set of such measures.

Definition. We say that {µz}z∈Bn+1 is a conformal density of dimension s ≥ 0 if
µz and µz′ are absolutely continuous to each other for any z and z′ in Bn+1 and
the Radon-Nikodym derivative satisfies

dµz

dµz′
(ξ) =

(
kz(ξ)
kz′(ξ)

)s

(ξ ∈ Sn),

where kz(ξ) is the Poisson kernel, which is explicitly given by

kz(ξ) =
1 − |z|2

|ξ − z|2
.

For any element hz ∈ Conf(Bn+1) sending z to the origin 0, the Poisson kernel
kz(ξ) is coincident with the linear stretch factor |h′

z(ξ)| of hz at ξ ∈ Sn.

Definition. We say that the measure family {µz}z∈Bn+1 is invariant under a sub-
group Γ ⊂ Conf(Bn+1) if

µγ(z)(γ(E)) = µz(E)

for any Borel set E ⊂ Sn, any element γ ∈ Γ and any point z ∈ Bn+1. If we define
the pull-back of a measure µ by γ as (γ∗µ)(E) = µ(γ(E)), then the Γ-invariance
can be expressed by γ∗µz = µγ−1(z).

Let Γ ⊂ Conf(Bn+1) be a Kleinian group. It is known that, if a Γ-invariant
conformal density of dimension s exists, then the dimension s is not less than
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the critical exponent δ(Γ) (see Corollary 4.5.3 of Nicholls [10] or [6]). Here, we
consider a Γ-invariant conformal density of dimension δ(Γ). When µz has support
on the limit set Λ(Γ), we call {µz}z∈Bn+1 the Patterson-Sullivan measure for Γ.
In the sequel, under the assumption that Γ is of divergence type, we review the
construction (existence) of the Patterson-Sullivan measure.

For any s > δ = δ(Γ) and for any x and z in Bn+1, we consider a measure

µs
x,z :=

1
P s

Γ(x, 0)

∑
γ∈Γ

e−sd(γ(x),z)Dγ(x)

on the compact space Bn+1 = Bn+1 ∪ Sn. Here Dx is the Dirac measure at x. Let
σ(µs

x,z) denote the total mass of µs
x,z, which is equal to P s

Γ(x, z)/P s
Γ(x, 0). It can

be estimated as e−sd(0,z) ≤ σ(µs
x,z) ≤ esd(0,z). In particular, σ(µs

x,0) = 1 for z = 0,
that is, µs

x,0 is a probability measure.
Fix x and z. For a sequence {si} of real numbers (si > δ) converging to δ as

i → ∞, consider the corresponding sequence {µsi
x,z} of the measures. Since the

space of normalized Radon measures on a compact Hausdorff space is compact in
the weak topology, we can choose a subsequence {µsi′

x,z} that converges weakly to a
measure µx,z on Bn+1. Since lims→δ+ P s

Γ(x, 0) = ∞, we see that the support of µx,z

is on the limit set Λ(Γ) ⊂ Sn. Moreover, µx,z is a Γ-invariant conformal density
of dimension δ, namely, it is the Patterson-Sullivan measure for Γ. The total mass
σ(µx,z) is given by

σ(µx,z) = lim
i′→∞

P
si′
Γ (x, z)

P
si′
Γ (x, 0)

.

In particular, we have σ(µx,0) = 1 for every x ∈ Bn+1.
For a Kleinian group Γ of divergence type, it is known that the Patterson-

Sullivan measure is unique up to constant multiples (see Corollaire 1.8 of Roblin
[12] or [6]). From this fact, we can deduce that the measures µx,z constructed above
are depending neither the orbit point x ∈ Bn+1 nor the choice of the subsequence
si′ . Giving the normalization at z = 0 as a probability measure, we denote the
Patterson-Sullivan measure for Γ by µΓ

z .
In particular, we have the following fact, which is a crucial observation in the

rest of this work.

Proposition 3.1. For a Kleinian group Γ of divergence type,

lim
s→δ+

P s
Γ(x, z)

P s
Γ(x, 0)

= σ(µΓ
z )

is satisfied independently of x ∈ Bn+1.

§4. Invariance of the Patterson-Sullivan
measure under the normalizer

As a consequence of Propositions 2.1 and 3.1, we will see in this section that, the
Patterson-Sullivan measure for a Kleinian group Γ of divergence type is invariant
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under its normalizer N(Γ) in Conf(Bn+1). This result is also contained in our
other work [7], as a more general statement applicable to a Kleinian group whose
Patterson-Sullivan measure is unique up to constant multiples.

The following fact has been used in Nayatani [9], which shows homothety of the
Patterson-Sullivan measure under the normalizer. We give its proof here, for it
helps us to understand the idea of our arguments.

Lemma 4.1. Let µz be the Patterson-Sullivan measure for a Kleinian group Γ and
assume that it is unique up to constant multiples. Then, for every element g in the
normalizer N(Γ), there exists a constant c = c(g) > 0 such that g∗µz = cµg−1(z).

Proof. We define a conformal density νz := g∗µg(z). This is invariant under Γ.
Indeed, for any γ ∈ Γ, we have gγ = γ̃g for some γ̃ ∈ Γ. Hence

γ∗νz = γ∗g∗µg(z) = g∗γ̃∗µg(z).

Here, by the Γ-invariance of µz, we conclude that

g∗γ̃∗µg(z) = g∗µγ̃−1g(z) = g∗µgγ−1(z) = νγ−1(z).

This shows the invariance of νz under Γ.
Since g ∈ N(Γ) keeps the limit set Λ(Γ) invariant, the support of νz is also on

Λ(Γ). Then, by the uniqueness of the Patterson-Sullivan measure, there exists a
constant c > 0 such that νz = cµz. This proves that g∗µg(z) = cµz, equivalently,
g∗µz = cµg−1(z). ¤

The following result in this section promotes the homothety in the above sense
to the invariance. The point of our proof is that we trace back to the construction
of the Patterson-Sullivan measure and utilize the properties of the Poincaré series.

Theorem 4.2. Let Γ be a Kleinian group of divergence type and N(Γ) the nor-
malizer of Γ. Then the Patterson-Sullivan measure µΓ

z for Γ is invariant under
N(Γ).

Proof. By Lemma 4.1, there exists a constant c(g) > 0 for every g ∈ N(Γ) such
that g∗µΓ

z = c(g)µΓ
g−1(z). We will show that c(g) = 1 for every g ∈ N(Γ), which

yields the assertion of the theorem.
By taking the total masses in the above equation on the measures, we have

c(g) =
σ(g∗µΓ

z )
σ(µΓ

g−1(z))
=

σ(µΓ
z )

σ(µΓ
g−1(z))

for every z ∈ Bn+1. In particular, we obtain

c(g) = σ(µΓ
g(0)); c(g)−1 = σ(µΓ

g−1(0))

by setting z = g(0) and z = 0 respectively. Here, Proposition 3.1 says that

σ(µΓ
g(0)) = lim

s→δ+

P s
Γ(x, g(0))
P s

Γ(x, 0)
; σ(µΓ

g−1(0)) = lim
s→δ+

P s
Γ(x, g−1(0))
P s

Γ(x, 0)

for every x ∈ Bn+1. When we set x = 0, we see P s
Γ(0, g(0)) = P s

Γ(0, g−1(0)) by
Proposition 2.1. Hence c(g) = c(g)−1. ¤
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Corollary 4.3. Let Γ be a Kleinian group of divergence type and G a Kleinian
group that contains Γ as a normal subgroup. Then δ(Γ) = δ(G) and G is also of
divergence type.

Proof. We have only to show that δ(Γ) ≥ δ(G). By Theorem 4.2, the Patterson-
Sullivan measure µΓ

z for Γ is invariant under G. Then µΓ
z is a G-invariant conformal

density of dimension δ(Γ). Since the dimension of such a density is not less than
δ(G), we have the required inequality δ(Γ) ≥ δ(G). ¤
Remark. If we drop the condition that Γ is of divergence type, Theorem 4.2
or Corollary 4.3 is not valid any more. Indeed, if Γ is a normal subgroup of a
convex cocompact Kleinian group G with δ(G) > n/2 and the quotient G/Γ is
non-amenable, then δ(Γ) < δ(G) by Theorem 3 of Brooks [2].

§5. The structure of proper conjugation

If a Kleinian group G has proper conjugation, it imposes certain constraint on
G in both senses of algebraic structure and invariance of conformal densities. In
this section, we summarize these facts in two folds. We first consider the algebraic
structure. Note that, in our work [3] with Fujikawa and Taniguchi, we have studied
the proper conjugation of Fuchsian groups (in the case of n = 1) based on the
following fact.

Proposition 5.1. For a Kleinian group G ⊂ Conf(Bn+1) and an element α ∈
Conf(Bn+1), assume that Γ = αGα−1 is properly contained in G. Set Γm =
α−mΓαm for every integer m ≥ 0 (Γ0 = Γ, Γ1 = G). Then the following are
satisfied:

(1) Γ0 $ Γ1 $ Γ2 $ · · · and α is of infinite order;
(2) Γ∞ =

∪
m≥0 Γm is a Kleinian group;

(3) α belongs to the normalizer N(Γ∞) of Γ∞.

Proof. Statement (1) is evident. Statement (2) is based on a fact that Γ∞ is discrete
if every two-generator subgroup of Γ∞ is discrete. This is a generalization of the
Jørgensen theorem to higher dimension, which can be seen by Theorem 1.1 of Wang
and Yang [16]. Since any two-generator subgroup of Γ∞ is contained in some Γm,
it is discrete. Statement (3) follows from the inclusion relations αΓ∞α−1 ⊂ Γ∞
and α−1Γ∞α ⊂ Γ∞, which are both clear by the definition of Γ∞. ¤

Next, we show that this structure of the proper conjugation yields the coincidence
of the Patterson-Sullivan measures for all the Kleinian groups Γm if they are of
divergence type.

Lemma 5.2. In the same circumstances as in Proposition 5.1, we further assume
that the Kleinian group G is of divergence type and hence so are all Γm (0 ≤ m <
∞). Set δ = δ(G) = δ(Γm). Then the following are satisfied:

(1) δ(Γ∞) = δ and Γ∞ is of divergence type;
(2) The Patterson-Sullivan measures µΓm

z for Γm are all coincident with µΓ∞
z

for Γ∞;
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(3) µΓ∞
z is invariant under N(Γ∞).

Proof. (1) It is clear that δ(Γ∞) ≥ δ. On the other hand, since Γ∞ is the limit of
the increasing sequence {Γm}, we have δ(Γ∞) ≤ limm→∞ δ(Γm) = δ (see Corollary
6 of Sullivan [13] or [6]). Hence δ(Γ∞) = δ. Since P δ

Γ∞
(x, z) ≥ P δ

Γm
(x, z) = ∞, we

see that Γ∞ is of divergence type.
(2) The Patterson-Sullivan measure µΓ∞

z is of course invariant under its sub-
groups Γm (m ≥ 0). Since they are all of divergence type and of the same critical
exponent δ, the uniqueness of the Patterson-Sullivan measure concludes that µΓ∞

z

is the Patterson-Sullivan measure for all these subgroups.
(3) Since Γ∞ is of divergence type, Theorem 4.2 implies that µΓ∞

z is invariant
under N(Γ∞). ¤

Lemma 5.2 is clearly true when the conjugate Γ = αGα−1 is coincident with G.
In this case, we can regard all Γm (m = 0, 1, . . . ,∞) as equal to G. Then, including
this case, we summarize the result in this section as follows.

Theorem 5.3. Let G ⊂ Conf(Bn+1) be a Kleinian group of divergence type. If
the conjugate Γ = αGα−1 is contained in G for some α ∈ Conf(Bn+1), then the
Patterson-Sullivan measure µG

z for G is coincident with µΓ
z for Γ and µG

z is invariant
under α.

Remark that the coincidence of the Patterson-Sullivan measures µG
z and µΓ

z

implies the coincidence of the limit sets Λ(G) and Λ(Γ).

§6. Proof of the main theorem

Now we state our main theorem precisely as follows and complete its proof in
this section.

Theorem 6.1. Let G ⊂ Conf(Bn+1) be a Kleinian group of divergence type. If the
conjugate Γ = αGα−1 is contained in G for some α ∈ Conf(Bn+1), then Γ = G.

Proof. We consider the coset decomposition of G by Γ:

G = g1Γ t g2Γ t · · · .

According to this decomposition, we also decompose the orbit G(x) of any point
x ∈ Bn+1 into

G(x) = g1Γ(x) t g2Γ(x) t · · · .

For each coset gkΓ(x) (k = 1, 2, . . . ), we define a measure νs
gkΓ(x),z (s > δ = δ(G)) on

Bn+1 in the same manner as in the construction of the Patterson-Sullivan measure:

νs
gkΓ(x),z =

1
P s

G(x, 0)

∑
γ∈Γ

e−sd(gkγ(x),z)Dgkγ(x).

Note that the measure µs
x,z for G can be represented by

µs
x,z =

∑
k

νs
gkΓ(x),z.
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In what follows, we claim that, for any x and z in Bn+1 and for each k ∈ N,
the measure νs

gkΓ(x),z converges weakly to the Patterson-Sullivan measure µΓ
z for Γ

as s → δ+. Then, since µs
x,z in the left-hand side of the above equation converges

to µG
z , we have µG

z ≥
∑

k µΓ
z . This is possible only for k = 1 since µG

z = µΓ
z by

Theorem 5.3. Thus the proof will complete.
We write

νs
gkΓ(x),z =

1
P s

G(x, 0)

∑
γ∈Γ

e−sd(gkγ(x),z)Dgkγ(x)

=
P s

Γ(x, 0)
P s

G(x, 0)

 1
P s

Γ(x, 0)

∑
γ∈Γ

e−sd(γ(x),g−1
k (z))(g−1

k )∗Dγ(x)

 .

Here the measure in curly bracket above converges weakly to (g−1
k )∗µΓ

g−1
k (z)

. Since

the Patterson-Sullivan measure µΓ
z is invariant under G by Theorem 5.3, we see

that this is equal to µΓ
z .

On the other hand,

P s
Γ(x, 0)

P s
G(x, 0)

=
P s

αGα−1(x, 0)
P s

G(x, 0)

=
P s

G(α−1(x), α−1(0))
P s

G(x, 0)

=
P s

G(x, α−1(0))
P s

G(x, 0)
· P s

G(0, α−1(0))
P s

G(x, α−1(0))
· P s

G(α−1(x), α−1(0))
P s

G(0, α−1(0))

=
P s

G(x, α−1(0))
P s

G(x, 0)
· P s

G(α−1(0), 0)
P s

G(α−1(0), x)
· P s

G(α−1(0), α−1(x))
P s

G(α−1(0), 0)
,

where we use Proposition 2.1 to obtain the last equality. Here Proposition 3.1 gives

lim
s→δ+

P s
G(x, α−1(0))
P s

G(x, 0)
= σ(µG

α−1(0));

lim
s→δ+

P s
G(α−1(0), x)

P s
G(α−1(0), 0)

= σ(µG
x );

lim
s→δ+

P s
G(α−1(0), α−1(x))
P s

G(α−1(0), 0)
= σ(µG

α−1(x)).

Since the Patterson-Sullivan measure µG
z is invariant under α by Theorem 5.3, we

have α∗µG
z = µG

α−1(z) for any z ∈ Bn+1. This implies that σ(µG
α−1(0)) = σ(µG

0 ) =
1 and σ(µG

α−1(x)) = σ(µG
x ), from which lims→δ+{P s

Γ(x, 0)/P s
G(x, 0)} = 1 follows.

Thus we conclude that νs
gkΓ(x),z converges weakly to µΓ

z . ¤
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§7. Certain generalization

In this section, we perform certain generalization of our main theorem, where
one can loosen the divergence type condition a little. Recall that we have defined
the Patterson-Sullivan measure µz for a Kleinian group Γ ⊂ Conf(Bn+1) to be a
Γ-invariant conformal density that has support on the limit set Λ(Γ) ⊂ Sn. For a
Kleinian group of divergence type, its Patterson-Sullivan measure is known to be
unique up to constants. On the other hand, there are Kleinian groups in a certain
class that are not of divergence type but their Patterson-Sullivan measures are still
unique (see Sullivan [14]). The statement of our main theorem can be extended to
such a class of Kleinian groups.

Theorem 7.1. Let G ⊂ Conf(Bn+1) be a Kleinian group whose Patterson-Sullivan
measure is unique up to constant multiples. If the conjugate Γ = αGα−1 is con-
tained in G for some α ∈ Conf(Bn+1) and the limit sets Λ(Γ) and Λ(G) are coin-
cident, then Γ = G.

Proof. Theorem 4.2 can be extended to Kleinian groups whose Patterson-Sullivan
measures are unique. This is verified in [7]. Hence we have only to consider the
extension of the results in Section 5. However, this is easy if we assume Λ(Γ) =
Λ(G). In this case, the Kleinian groups Γm and Γ∞ also have the same limit
set. Hence the uniqueness ensures that their Patterson-Sullivan measures are all
coincident. Then the same arguments as in Section 6 yield the conclusion. ¤
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