
POLYCYCLIC QUASICONFORMAL
MAPPING CLASS SUBGROUPS

KATSUHIKO MATSUZAKI

Abstract. For a subgroup of the quasiconformal mapping class group of a
Riemann surface in general, we give an algebraic condition which guarantees
its discreteness in the compact-open topology. Then we apply this result to
its action on the Teichmüller space.

1. Introduction

We consider a Riemann surface R in general, not necessarily topologically
finite, and a subgroup G consisting of quasiconformal mapping classes of R.
Such a group usually appears as acting on the infinite dimensional Teichmüller
space of R and in particular discreteness of its orbit is often discussed. In this
case, the discreteness of G is understood through the action on the Teichmüller
space. In this paper however, we first start from a more basic viewpoint on G
as surface homeomorphisms and then look into its action on the Teichmüller
space.

Throughout this introduction, we assume that a Riemann surface R has no
ideal boundary at infinity ∂R for the sake of simplicity. The quasiconformal
mapping class group MCG(R) of R is the group of all quasiconformal auto-
morphisms g of R modulo homotopy equivalence. We introduce a topology
for this group induced by the compact-open topology of homeomorphisms of
R. Then a subgroup G of MCG(R) is defined to be discrete if it is discrete in
this topology. Our main theorem refers to a certain algebraic condition under
which G is always discrete. Here we say that a group G is polycyclic if G is
solvable and if every subgroup of G is finitely generated.

Theorem 2.4. If a subgroup G of MCG(R) is polycyclic, then G is discrete.

This result is sharp in a sense that there is a counter-example for either a
finitely generated solvable group or an infinitely generated abelian group.

In the first part of the application of this theorem, we deal with stationary
mapping class subgroups and consider their action on Teichmüller spaces. The
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quasiconformal mapping class group MCG(R) acts on the Teichmüller space
T (R) of a Riemann surface R biholomorphically and isometrically. A subgroup
G ⊂ MCG(R) is called stationary if there exists a compact subsurface V of
R such that every representative g of every mapping class [g] ∈ G satisfies
g(V ) ∩ V 6= ∅.

A basic nature of stationary subgroups in connection with their discreteness
in the compact open topology and discontinuity of the action on the Teich-
müller space is that, if G ⊂ MCG(R) is stationary and discrete, then G acts
discontinuously on T (R). Then we have the following consequence from the
main theorem. Recall that we assume ∂R = ∅ until the end of this section.

Corollary 4.2. If a polycyclic subgroup G of MCG(R) is stationary, then G
acts discontinuously on T (R).

We expect that this result should be valid for every finitely generated sta-
tionary subgroup G ⊂ MCG(R).

In the second part, we apply our main theorem to asymptotically conformal
mapping class subgroups. We say that a quasiconformal homeomorphism of a
Riemann surface R is asymptotically conformal if its complex dilatation van-
ishes at infinity of R. We say that a subgroup G ⊂ MCG(R) is asymptotically
conformal if there exists some p ∈ T (R) such that every element of G can be
realized as an asymptotically conformal automorphism of the Riemann surface
Rp corresponding to p. We denote by MCGp(R) the subgroup of MCG(R)
having this property for p ∈ T (R).

Theorem 5.1. If an asymptotically conformal subgroup G of MCGp(R) for
p ∈ T (R) is polycyclic, then the orbit G(p) is a discrete set in T (R).

One may ask a question about how the algebraic assumption on G can be
relaxed for this statement.

2. Discreteness of mapping class subgroups

We always assume that a Riemann surface R is hyperbolic, that is, R is
represented by a Fuchsian group F acting on the unit disk D and is endowed
with the hyperbolic metric. The quasiconformal mapping class group MCG(R)
for R is the group of all homotopy classes [g] of quasiconformal automorphisms
g of R. Here the homotopy is considered to be relative to the ideal boundary
at infinity ∂R of R, where ∂R = (∂D − Λ(F ))/F for the limit set Λ(F ) of F .
This means that, when ∂R 6= ∅, two quasiconformal automorphisms g0 and g1

are regarded as homotopic if there is a homotopy Φ : R × [0, 1] → R between
g0 = Φ(·, 0) and g1 = Φ(·, 1) such that its extension to each x ∈ ∂R is constant
over [0, 1].

The compact-open topology on the space of all homeomorphic automor-
phisms of R induces a topology on MCG(R). More precisely, we say that
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a sequence of mapping classes [gn] ∈ MCG(R) converges to a mapping class
[g] ∈ MCG(R) in the compact-open topology if we can choose representatives
gn ∈ [gn] and g ∈ [g] satisfying that gn converge to g locally uniformly on R.
When R has the ideal boundary at infinity ∂R, we further require that the
extensions ḡn of the quasiconformal automorphisms gn to ∂R converge to the
extension ḡ of g in such a way that ḡn is identical with ḡ on a compact subset
Wn ⊂ ∂R, where {Wn}∞n=1 is some compact exhaustion of ∂R, that is, an in-
creasing sequence of compact subsets of ∂R satisfying that the closure of the
union of all Wn is ∂R. We call this topology on MCG(R) compact-open topology
relative to the boundary. If [gn] converge to [g] in the compact-open topology
relative to the boundary, then there are quasisymmetric automorphisms g̃n and
g̃ of the unit circle ∂D corresponding to [gn] and [g] respectively such that g̃n

converge uniformly to g̃.

Definition. We say that a subgroup G of MCG(R) is discrete if it is a discrete
set in MCG(R) with respect to the compact-open topology relative to the
boundary. The discreteness is equivalent to the condition that, if a sequence
of mapping classes {[gn]}∞n=1 ⊂ MCG(R) converges to [id], then [gn] = [id] for
all sufficiently large n.

Concerning the discreteness of the full mapping class group MCG(R), we
have a simple characterization.

Proposition 2.1. The quasiconformal mapping class group MCG(R) is dis-
crete if and only if R is analytically finite, that is, R is a compact Riemann
surface from which at most finitely many points are removed.

Proof. Assume that R is analytically finite. In this case, there are a finite
number of simple closed geodesics {ci}k

i=1 such that, if [g] ∈ MCG(R) satisfies
that g(ci) is freely homotopic to ci for every i, then [g] = [id]. If a sequence
of mapping classes {[gn]}∞n=1 converges to [id], then gn(ci) is freely homotopic
to ci for every i and for all sufficiently large n. This implies that MCG(R) is
discrete.

Conversely, assume that R is not analytically finite. If R is topologically
finite, that is, the fundamental group π1(R) of R is finitely generated, then R
should have the ideal boundary at infinity and clearly MCG(R) is not discrete
in this case. If R is not topologically finite, then there is an infinite sequence of
simple closed geodesics {cn}∞n=1 diverging to the infinity of R, in other words,
escaping from any compact subset of R. Let [τn] be the mapping class caused
by the Dehn twist along cn. Then [τn] 6= [id] and {[τn]}∞n=1 converges to [id].
This implies that MCG(R) is not discrete. ¤

We will consider the discreteness of countable subgroups of MCG(R). Note
that MCG(R) is uncountable in many cases when R is analytically infinite. See
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[8]. An uncountable subgroup G of MCG(R) is not discrete as the following
proposition asserts.

Proposition 2.2. Assume that R has no ideal boundary at infinity ∂R. If a
subgroup G ⊂ MCG(R) is uncountable, then G is not discrete.

Proof. Let {ci}∞i=1 be the family of (free homotopy classes of) all simple closed
geodesics on R. We first consider the images of c1 under G. Since G is un-
countable whereas {ci} is countable, there are uncountably many elements of
G that map c1 to simple closed curves freely homotopic to each other. Then,
by composing the inverse of one of these elements, we have uncountably many
elements of G that keep c1 in its free homotopy class. Next we consider the
images of c2 under this uncountable subset of G and obtain an uncountably
many elements of G that keep c1 and c2 in their free homotopy classes. By
continuing this process and then by taking the diagonal, we can choose a se-
quence {[gn]}∞n=1 of elements in G such that gn(ci) is freely homotopic to ci for
all i = 1, 2, . . . , n and for each n. This implies that {[gn]} converges to [id]. ¤

In this section, we investigate an algebraic condition on a countable subgroup
G of MCG(R) under which G is always discrete. Our fundamental result is the
following. The proof will be given in the next section.

Theorem 2.3. If G ⊂ MCG(R) is a finitely generated abelian group, then G
is discrete.

Note that both assumptions that G is finitely generated and that G is abelian
are necessary for the above theorem as examples below show. However, we
cannot have the converse statement to the theorem. In fact, for any countable
group G, there exists a discrete subgroup of MCG(R) for some Riemann surface
R that is isomorphic to G. Indeed, we can construct R so that its conformal
automorphism group, which is always discrete unless π1(R) is abelian, contains
such a subgroup.

Example. (1) First we give an indiscrete G ⊂ MCG(R) that is abelian but
not finitely generated. Let R be a Riemann surface with an infinite family of
mutually disjoint simple closed geodesics {cn}∞n=1 and G a subgroup of MCG(R)
generated by all the mapping classes [τn] caused by the Dehn twist along cn for
each integer n ≥ 1. Since [τn] converge to [id], G is not discrete though G is
abelian.

(2) Next we give an indiscrete G ⊂ MCG(R) that is finitely generated but
not abelian. Assume that there are a simple closed geodesic c0 on R and a
mapping class [g] ∈ MCG(R) such that the images {gn(c0)}n∈Z of c0 under the
iteration of a representative g ∈ [g] are mutually disjoint. Define cn to be the
simple closed geodesic freely homotopic to gn(c0) and [τn] to be the mapping
classes caused by the Dehn twist along cn. Let G be a subgroup of MCG(R)
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generated by two elements [g] and [τ0]. Since [g]n[τ0] = [τn][g]n for every integer
n ∈ Z, we see that G contains the subgroup G′ generated by all such [τn]. Hence
G is not discrete as Example (1) shows.

In the second example above, the group G is solvable since the commutator
subgroup [G,G] is contained in the abelian subgroup G′. Although G itself
is finitely generated, G′ is not, which makes G not to be discrete. Hence we
consider the following stronger condition than solvability which requires all its
subgroups to be finitely generated.

Definition. We say that a group G is polycyclic if G is solvable and if every
subgroup of G is finitely generated.

See [12] for other equivalent conditions for G to be polycyclic. This name
comes from the fact that G is polycyclic if and only if G has a finite normal
chain of subgroups G = G0 .G1 . · · · .Gm = {1} such that each quotient group
Gi−1/Gi (i = 1, . . . ,m) is cyclic. We can say that G is polycyclic when G is
obtained in finitely many simple steps from finitely generated abelian groups.

Theorem 2.4. If G ⊂ MCG(R) is a polycyclic group, then G is discrete.

This extension of Theorem 2.3 is obtained by an inductive argument which
is easily seen from the following assertion.

Lemma 2.5. Assume that every subgroup of G ⊂ MCG(R) is finitely gener-
ated. If G is not discrete, then neither is the commutator subgroup [G,G].

Proof. Since G is not discrete, there is a sequence {[gn]}∞n=1 in G that converges
to [id] as n → ∞. Then we see that, for every n0 ≥ 1, there exist m,n ≥ n0

such that [gm] and [gn] are not commuting. Indeed, if not, there is n0 such
that [gm] and [gn] are commuting for any m, n ≥ n0. Then a subgroup G′ of G
generated by {[gn]}n≥n0 is abelian and G′ is not discrete. By assumption, G′ is
finitely generated. However, this contradicts Theorem 2.3.

Fix some n0 ≥ 1. We choose m1, n1 ≥ n0 such that [h1] := [[gm1 ], [gn1 ]]
is not the identity [id]. Then we choose m2, n2 ≥ max{m1, n1} such that
[h2] := [[gm2 ], [gn2 ]] is not the identity. Inductively, for each i ≥ 1, we choose
mi, ni ≥ max{mi−1, ni−1} such that [hi] := [[gmi

], [gni
]] is not the identity. Then

every [hi] belongs to the commutator subgroup [G,G] of G and [hi] converge
to [id] as i → ∞. This implies that [G, G] is not discrete. ¤

3. Restraint of mapping class groups

In this section, we will prove Theorem 2.3. The proof uses a certain property
of mapping class groups, not necessarily satisfied for abstract groups in general.
We first explain this situation by the following example.
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Example. Let S∞ be the infinite symmetric group acting on a countable set
X = {1, 2, . . .} as permutation. We consider an element g = (1)(23)(456) · · · of
S∞ which gives a cyclic permutation on mutually disjoint subsets of n points
in X where n runs over all positive integers. Then we see that gn! converge to
id in the compact open topology with respect to the discrete topology on X.
In particular, the cyclic subgroup 〈g〉 is not discrete.

Let X = {ci}∞i=1 be the family of (free homotopy classes of) all simple closed
geodesics on a Riemann surface R. The quasiconformal mapping class group
MCG(R) acts faithfully on the countable set X by the correspondence of the
free homotopy class g(c) to [g] · c for any [g] ∈ MCG(R) and for any c ∈ X.
In this way, we can represent MCG(R) as a subgroup of S∞. As the above
example shows, an arbitrary subgroup of S∞ cannot have the required property
which we want to prove in Theorem 2.3. The nature that MCG(R) ⊂ S∞ is
originated from R gives certain restriction to the action of MCG(R) and we
must use such restraint in order to prove our theorem. The following lemma
can be regarded as one of such properties of MCG(R).

Lemma 3.1. For every element [g] ∈ MCG(R) of infinite order, there exists
either a compact subsurface V in R or a compact subset V ′ in an arbitrarily
given compact exhaustion of the ideal boundary at infinity ∂R such that either
the restriction gn|V is homotopic to id|V on R or the extension ḡn is the identity
on V ′ for no positive integer n ∈ N.

Proof. Suppose to the contrary that there is no such compact subsurface V
in R nor compact subset V ′ in the compact exhaustion of ∂R. Then, for any
compact subsurface V1 ⊂ R, there is n1 ∈ N such that gn1 |V1 is homotopic to
id|V1 on R. Also, for any compact subset V ′

1 in the compact exhaustion of ∂R,
there is n′

1 ∈ N such that ḡn′
1 is the identity on V ′. Set h = gn1n′

1 . Since h is not
homotopic to the identity on R relative to ∂R, there is either some compact
subsurface V2 ⊂ R including V1 such that h|V2 is not homotopic to id|V2 on R
or some compact subset V ′

2 in the compact exhaustion of ∂R including V ′
1 such

that h̄ is not the identity on V ′
2 . We assume that the first case occurs. The

argument for the second case is similar.
For that compact subsurface V2, there is n2 ∈ N such that gn2 |V2 is homotopic

to id|V2 on R. We may assume that n2 is a proper multiple of n1n
′
1, that is,

n2 = kn1n
′
1 for some integer k > 1. Then h|V1 ∼ id|V1 , h|V2 6∼ id|V2 and

hk|V2 ∼ id|V2 , where ∼ means that they are homotopic to each other on R.
However, this is impossible, as we see in the following. Represent the Riemann
surface R by a Fuchsian group F acting on the unit disk D and take a subgroup
F1 of F corresponding to the subsurface V1. We choose a quasisymmetric
automorphism h̃ of ∂D corresponding to h so that h̃ is the identity on the limit
set Λ(F1) ⊂ ∂D of F1. We also take a subgroup F2 of F corresponding to the
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subsurface V2 which contains F1. Then the quasisymmetric automorphism h̃
is not the identity on the limit set Λ(F2) containing Λ(F1). This implies that

there is a point x ∈ Λ(F2)−Λ(F1) that is moved by h̃. Since the movement of
x is towards one direction in some interval of ∂D − Λ(F1), it cannot return to

the original place under the iteration of h̃. Thus h̃k(x) 6= x, which violates the
condition that hk|V2 ∼ id|V2 . ¤

Although the following fact is not special for mapping class groups, the
property of discreteness is shared with a subgroup of finite index as in usual
arguments. We also use this fact in the proof of Theorem 2.3.

Proposition 3.2. Let G′ be a subgroup of G ⊂ MCG(R) of finite index. If G′

is discrete, then so is G.

Proof. If G is not discrete, there is a sequence of distinct elements [gn] of G
that converges to [id]. Since the index of G′ in G is finite, we may assume that
[gn] are all in the same coset, say, G′[h] for some [h] ∈ G. Then [g′

n] = [gn] · [h]−1

belong to G′ and converge to [h]−1. This contradicts the assumption that G′ is
discrete. ¤

Now we are ready to prove our fundamental result.

Proof of Theorem 2.3. By Proposition 3.2, we may assume that G is isomorphic
to a free abelian group Zm of rank m ≥ 1. We will prove the statement of the
theorem by induction with respect to m. First, we show that the statement
is valid when m = 1. Assume that G ∼= Z is not discrete, that is, there is a
sequence of elements in G converging to [id]. When R has the ideal boundary
at infinity ∂R, some compact exhaustion of ∂R is associated to this converging
sequence. For a generator [g] ∈ MCG(R) of G, Lemma 3.1 gives either a
compact subsurface V of R or a compact subset V ′ in the exhaustion of ∂R as
in its statement. However, since G is not discrete, there is some n ∈ N such
that gn|V is homotopic to id|V on R and the extension ḡn of gn to ∂R is the
identity on V ′. This contradicts the choice of V and V ′.

We assume that the statement is true for any subgroup of MCG(R) isomor-
phic to Zj for every integer j with 1 ≤ j ≤ m − 1. Let G be a subgroup of
MCG(R) isomorphic to Zm and prove that G is discrete. Suppose to the con-
trary that G is not discrete. Then we have a sequence [gn] ∈ G converging to
[id] as well as a compact exhaustion of ∂R associated with this sequence. We
will choose a subsequence of [gn] so that any m elements in the subsequence
generates a subgroup isomorphic to Zm. To this end, first we notice that all the
elements [gn] in the convergent sequence cannot be contained in a finite union
of subgroups of G that are isomorphic to Zj with 1 ≤ j ≤ m − 1. This is be-
cause of the assumption of the induction. Then we choose a subsequence [gn(i)]
in the following way. The first m − 1 entries [gn(1)], . . . , [gn(m−1)] are chosen
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so that they are linearly independent over Z. Suppose that we have already
chosen l entries Gl = {[gn(1)], . . . , [gn(l)]} for l ≥ m − 1. Then we take the
(l +1)-st entry [gn(l+1)] so that any m− 1 elements of Gl together with [gn(l+1)]
are linearly independent over Z, in other words, [gn(l+1)] belongs to no maximal
proper subgroup (∼= Zm−1) of G containing m − 1 elements of Gl. The reason
why we can choose such [gn(l+1)] is that, if not, all [gn] must be contained in the
union of the finite number of subgroups of G determined by any m−1 elements
of Gl. By this construction, it is clear that any m elements in the subsequence
[gn(i)] generate a subgroup isomorphic to Zm.

We fix an arbitrary non-trivial element [g0] ∈ G. By Lemma 3.1, we take
either a compact subsurface V of R such that gn

0 |V 6∼ id|V or a compact subset
V ′ in the exhaustion of ∂R such that ḡn

0 |V ′ 6= id|V ′ for all n ∈ N. We only
consider the first case. The second case is similar. Since we are assuming
that [gn(i)] converge to [id], there is some i0 such that gn(i)|V ∼ id|V for every
i ≥ i0. We take arbitrary m elements [gn(i)] with i ≥ i0 and rename them as [gi]
(i = 1, . . . ,m). Since they generate a subgroup of G isomorphic to Zm, a linear
combination of [gi] (i = 1, . . . ,m) over Z yields some multiple of any element
of G. This implies that [g0]

n for some n ∈ N is represented by [g1]
k1 · · · [gm]km

for some ki ∈ Z. However, this forces gn
0 |V ∼ id|V , which contradicts the choice

of V . ¤

4. Discontinuity of the action on the Teichmüller space

We apply our theorem to the action of mapping class subgroups on Teich-
müller spaces. For a Riemann surface R, the Teichmüller space T (R) is defined
to be the set of all equivalence classes [f ] of quasiconformal homeomorphisms
f of R. Here we say that two quasiconformal homeomorphisms f1 and f2

of R are equivalent if there exists a conformal homeomorphism h : f1(R) →
f2(R) such that f−1

2 ◦ h ◦ f1 is homotopic to the identity on R. Here the
homotopy is considered to be relative to the ideal boundary at infinity ∂R. A
distance between two points [f1] and [f2] in T (R) is defined by dT ([f1], [f2]) =
(1/2) log K(f), where f is an extremal quasiconformal homeomorphism in the
sense that its maximal dilatation K(f) is minimal in the homotopy class of
f2 ◦ f−1

1 . Then dT is a complete distance on T (R) which is called the Teich-
müller distance. The Teichmüller space T (R) can be embedded in the complex
Banach space of all bounded holomorphic quadratic differentials on R′, where
R′ is the complex conjugate of R. In this way, T (R) is endowed with the
complex structure. Consult [6], [7] and [11] for the theory of Teichmüller spaces.

Each element [g] ∈ MCG(R) acts on T (R) from the left in such a way that
[g]·[f ] = [f ◦g−1] for [f ] ∈ T (R). It is evident from the definition that MCG(R)
acts on T (R) isometrically with respect to the Teichmüller distance. It also
acts biholomorphically on T (R). Except for few cases where the dimension of
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T (R) is lower, the action of MCG(R) on T (R) is faithful. Then MCG(R) can
be represented in the group of all isometric biholomorphic automorphisms of
T (R).

We say that a subgroup G ⊂ MCG(R) acts at p = [f ] ∈ T (R) discontinuously
if there exists a neighborhood U of p such that the number of the elements
g ∈ G satisfying g(U) ∩ U 6= ∅ is finite. We denote the orbit of p under G
by G(p) and the stabilizer subgroup of G at p by StabG(p). Then G acts
discontinuously at p if and only if G(p) is a discrete set and StabG(p) is a finite
group. If G acts discontinuously at every point p in T (R), then we say that
G acts discontinuously on T (R). When R is analytically finite, MCG(R) itself
acts discontinuously on T (R). However, for a Riemann surface in general, this
is not always true. See [4] for the discontinuity of the action of mapping class
groups on Teichmüller spaces.

We consider mapping class subgroups by imposing a stationary property on
them in the following sense.

Definition. We call a subgroup G of MCG(R) stationary if there exists a
compact subsurface V of R such that every representative g of every mapping
class [g] ∈ G satisfies g(V ) ∩ V 6= ∅.

The stationary property puts certain normalization on a family of quasicon-
formal automorphisms of R. Under this condition, the discreteness of G in the
compact open topology affects a behavior of its orbit on the Teichmüller space.

Lemma 4.1. Let G be a stationary subgroup of MCG(R) for a Riemann surface
R with ∂R = ∅. If G is discrete then the orbit G(p) for any p ∈ T (R) diverges
to the infinity of T (R), and in particular, G acts discontinuously on T (R).

Proof. Compactness of a family of normalized quasiconformal homeomorphisms
with uniformly bounded dilatations yields that, if there is a sequence [gn] in a
stationary subgroup G of MCG(R) such that [gn](p) is bounded in T (R), then a
subsequence of some representatives gn ∈ [gn] converges to some quasiconformal
automorphism of R locally uniformly. However, if G is discrete in the compact-
open topology, then there is no such sequence. This implies that [gn](p) is
bounded in T (R) for no sequence [gn] ∈ G, that is, the orbit G(p) diverges to
the infinity of T (R). ¤

The combination of Theorem 2.4 and Lemma 4.1 immediately yields the
following.

Corollary 4.2. Let G be a stationary subgroup of MCG(R) for a Riemann
surface R with ∂R = ∅. If G is polycyclic, then G acts discontinuously on
T (R).
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We expect that this corollary is valid for every finitely generated stationary
subgroup G of MCG(R). This will be a consequence of the following conjecture
for the discreteness of a stationary subgroup of the mapping class group.

Conjecture. If a finitely generated subgroup G ⊂ MCG(R) is stationary, then
G is discrete.

If R is analytically finite, then MCG(R) is finitely generated and stationary.
In this case, MCG(R) is discrete and acts on T (R) discontinuously. The above
conjecture can be regarded as a generalization of this property for mapping
class groups of analytically finite Riemann surfaces.

Note that there is an example of an infinitely generated (countable) station-
ary subgroup G such that G does not act discontinuously on T (R). This is
obtained similarly to Example (1) in Section 2 but we must further assume
that the lengths of the simple closed geodesic cn there tend to zero as n → ∞.

Remark. If we assume a bounded geometry condition concerning the hyper-
bolic metric on R, then we do not have to impose any algebraic condition on a
stationary subgroup G for the discontinuity of its action on T (R). This result
has been proved in [4] and [5]. See also these papers for the definition of the
bounded geometry condition.

5. Discreteness of the orbit on a fiver over the asymptotic
Teichmüller space

In this section, we impose a certain analytic condition on a subgroup of the
quasiconformal mapping class group and show the discreteness of its orbit in
the Teichmüller space. Our condition also generalizes certain properties of the
mapping class group of an analytically finite Riemann surface.

A quasiconformal homeomorphism f of a Riemann surface R is called asymp-
totically conformal if, for every ε > 0, there exists a compact subsurface V of R
such that the maximal dilatation of f restricted to R−V is less than 1+ε. The
asymptotic Teichmüller space AT (R) of R is defined by replacing the words
“conformal automorphisms” with “asymptotically conformal automorphisms”
in the definition of the Teichmüller space T (R). Since a conformal automor-
phism is asymptotically conformal, there is a projection α : T (R) → AT (R).
We denote the fiber of α containing p ∈ T (R) by Tp, that is, Tp = α−1(α(p)).
Consult [1], [2], [3] and [6] for the theory of asymptotic Teichmüller spaces.

The quasiconformal mapping class group MCG(R) acts on T (R) preserving
the fiber structure of α. Hence it acts on AT (R). We define MCGp(R) to be the
subgroup of MCG(R) consisting of all elements keeping the fiber Tp invariant.
Every element of MCGp(R) can be realized as an asymptotically conformal
automorphism of the Riemann surface Rp corresponding to p. We say that
a subgroup G of MCG(R) is asymptotically conformal if G is a subgroup of
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MCGp(R) for some p ∈ T (R). When R is analytically finite, AT (R) consists
of a single point and MCGp(R) coincides with the full MCG(R) for every p ∈
T (R).

We will show the following theorem concerning the discreteness of the orbit
of an asymptotically conformal subgroup.

Theorem 5.1. For a Riemann surface R with ∂R = ∅, if an asymptotically
conformal subgroup G of MCGp(R) is polycyclic, then the orbit G(p) is a dis-
crete set in T (R).

We first prove this theorem in the case that G is a finitely generated abelian
group. Before the proof, we give the definition of an escaping sequence of map-
ping classes. A sequence {[gn]}∞n=1 of mapping classes in MCG(R) is stationary
if there exists a compact subsurface V of R such that every representative gn

of each mapping class [gn] satisfies gn(V )∩V 6= ∅. If a subgroup G of MCG(R)
is stationary in the previous sense, then every sequence in G is stationary in
this sense. On the contrary, a sequence {[gn]}∞n=1 is called escaping if, for ev-
ery compact subsurface V of R, there exists some representative gn of each
mapping class [gn] such that {gn(V )} diverges to the infinity of R (that is,
escapes from every compact subset of R) as n → ∞. Remark that a sequence
{[gn]} ⊂ MCG(R) can be neither stationary nor escaping, but we can always
choose a subsequence either stationary or escaping.

The following lemma is crucial for considering an escaping sequence in an
asymptotically conformal mapping class group. The proof has been given in
[9] and [10, Theorem 5.6].

Lemma 5.2. Assume that the fundamental group π1(R) of R is non-cyclic.
Let G be an abelian subgroup of MCGp(R) having an escaping sequence [gn]
such that [gn](p) → p as n → ∞. Then [g](p) = p for every [g] ∈ G.

Then the following inductive step gives the full statement of Theorem 5.1 as
we have done in Section 2.

Lemma 5.3. Assume that ∂R = ∅ and every subgroup of G ⊂ MCGp(R) is
finitely generated. If the orbit G(p) is not a discrete set, then neither is the
orbit G1(p) of the commutator subgroup G1 = [G,G].

Proof of Theorem 5.1. Let G be a finitely generated abelian subgroup of
MCGp(R). If G is stationary, then Corollary 4.2 gives that G acts discon-
tinuously on T (R), and in particular, the orbit G(p) is a discrete set in T (R).
If G contains an escaping sequence, then Lemma 5.2 implies that G(p) = {p}
is a discrete set. Hence, if G is a finitely generated abelian subgroup, then the
statement of the theorem is valid. For the general case that G is polycyclic, we
apply Lemma 5.3 to obtain the statement. ¤
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Proof of Lemma 5.3. If G(p) is not a discrete set, then we find a sequence
{[gn]}∞n=1 ⊂ G such that [gn](p) 6= p converge to p as n → ∞. Then we can
apply the same arguments as in the proof of Lemma 2.5. Namely, for every
n0 ≥ 1, there exist m,n ≥ n0 such that [gm] and [gn] are not commuting.
Indeed, if not, there is n0 such that [gm] and [gn] are commuting for any m,n ≥
n0. Then the finitely generated subgroup G′ of G generated by {[gn]}n≥n0 is
abelian and G′(p) is not a discrete set. However, this contradicts Theorem
5.1 in the finitely generated abelian case. Note that this case has been proved
without Lemma 5.3.

Fix some n0 ≥ 1. We choose m1, n1 ≥ n0 such that [h1] := [gm1 , gn1 ] 6= [id].
Then we choose m2, n2 ≥ max{m1, n1} such that [h2] := [gm2 , gn2 ] 6= [id].
Inductively, for each i ≥ 1, we choose mi, ni ≥ max{mi−1, ni−1} such that
[hi] := [gmi

, gni
] 6= [id]. Then every [hi] belongs to the commutator subgroup

[G,G] of G. Note that all [hi] are not necessarily distinct. We see that [hi](p) →
p as i → ∞. Indeed,

d([hi](p), p) ≤ 2d([gmi
](p), p) + 2d([gni

](p), p) → 0

as i → ∞. If [hi](p) 6= p for infinitely many i, then we have done by passing
to a subsequence. Hence we have only to consider the case that all but finitely
many [hi] 6= [id] belong to the stabilizer subgroup H = StabG(p) of G for p,
and in particular the case that H is not trivial.

We may assume that p is the base point of the Teichmüller space T (R).
Then there is a conformal automorphism group of R identified with H. Let
Fix(H) be the fixed point locus of H in T (R), which can be identified with
the Teichmüller space T (R/H) of the orbifold R/H. If [gn](p) does not lie
in Fix(H), then there is some [en] ∈ H such that [en][gn](p) 6= [gn](p). We
set [hn] = [en]−1[gn]−1[en][gn] for such n, which belongs to [G, G] and satisfies
[hn](p) 6= p. If there are infinitely many such n, we have [hn](p) → p, which is
the desired consequence. Hence we have only to consider the case that [gn](p)
lie in Fix(H) for all but finitely many n.

The condition [gn](p) ∈ Fix(H) is equivalent to that [gn]−1[e][gn] ∈ H for
every [e] ∈ H. This is satisfied if and only if the mapping class [gn] ∈ MCG(R)
descends to a mapping class [ĝn] of R/H. We consider the subgroup of the
mapping class group MCG(R/H) generated by all {[ĝn]}∞n=1. Here [ĝn] belongs
to MCGp(R/H) for p ∈ T (R/H) = Fix(H) ⊂ T (R). In the case where H is a
finite group, this is easily seen. In the case where H is an infinite group, this
is possible only when [gn] belongs to H. Indeed, this follows from the fact that
Tp ∩ Fix(H) = {p} for the infinite group H [10, Theorem 4.2]. However, since
we are dealing with the elements [gn] ∈ G satisfying [gn](p) 6= p, this is not
in our case. Hence, by the same reason as before, we can choose a sequence
{[hi]} in [G,G] such that [hi](p) → p as i → ∞ and in addition that none of
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[hi] belongs to H = StabG(p). This implies that [hi](p) 6= p converge to p as
i → ∞ and thus completes the proof. ¤

In the remark of the previous section, we have mentioned that, when R
satisfies the bounded geometry condition, we do not have to impose any alge-
braic condition on G. Especially, G is not necessarily finitely generated. The
corresponding statement for the discreteness of the orbit of an asymptotically
conformal mapping class subgroup will be the following.

Proposition 5.4. Assume that a Riemann surface R satisfies the bounded
geometry condition. If a subgroup G of MCGp(R) is solvable, then the orbit
G(p) is a discrete set in T (R).

However, if G ⊂ MCGp(R) is an infinitely generated (countable) group for
instance, then the orbit is not necessarily a discrete set. Our problem asks for
some algebraic conditions upon G that guarantee this discreteness.
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