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The Petersson series for short geodesics

Katsuhiko Matsuzaki*

Abstract. We consider the relative Poincaré series of a certain automorphic form with
respect to a hyperbolic cyclic subgroup, and estimate the difference of the sum from the
first term in terms of the translation length of the generator of the subgroup. As an ap-
plication we explicitly construct an integrable but unbounded holomorphic automorphic
(2, 0)-form for any Fuchsian group containing hyperbolic elements of arbitrarily small
translation length.
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1. Introduction

The holomorphic quadratic differentials on a closed Riemann surface R of genus
g ≥ 2 form a vector space of dimension 3g − 3. This number is the same as the
maximal number of non-trivial simple closed curves on R which are mutually dis-
joint and not freely homotopic to each other. For any non-trivial simple closed
curve σ, we consider the annular covering of R with respect to σ, namely, a holo-
morphic covering Aσ → R which induces an injection of the fundamental group
of Aσ onto 〈σ〉 ⊂ π1(R). On the annulus Aσ, there is a canonical holomorphic
quadratic differential ϕ(z)dz2 associated with the euclidean structure of Aσ. The
relative Poincaré series operator with respect to the covering Aσ → R projects
ϕ(z)dz2 to a holomorphic quadratic differential Θσ(z)dz2 on R. We call this the
Petersson series operator.

Wolpert [5] proved that the first variation of the Bers embedding for the
Fenchel–Nielsen deformation about σ is a constant multiple of Θσ. The differ-
ential of the geodesic length function for a homotopy class σ at the point R of
the Teichmüller space is also given by Θσ. Using these facts, he showed that for
the maximal curve system {σ1, . . . , σ3g−3}, the set {Θσ1 , . . . , Θσ3g−3} is a basis
system of the vector space of the holomorphic quadratic differentials on R which is
regarded as the cotangent space of the Teichmüller space at R. Thus the Petersson
scalar product gives the Weil–Petersson metric on the Teichmüller space in terms
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of the Petersson series. These results link differential geometry on the Teichmüller
space with hyperbolic geometry on the Riemann surface.

A certain estimate of the Petersson series is utilized in the above context by
Wolpert [6]. Appreciating its importance, we prove his estimate in a different way
and a little more generally in this note. Our technique is based on an idea of
Ahlfors [1]. Our result is valid for any Fuchsian group, possibly with an infinite
number of generators and with torsion. As an application, we give a method of
constructing an integrable but unbounded holomorphic automorphic (2, 0)-form
for any Fuchsian group which contains hyperbolic elements of arbitrarily small
translation length.

The author would like to express his sincere thanks to Dr. Lesley Ward for
reading the manuscript carefully and making a number of helpful suggestions.

2. Preliminaries

In this section, we give notation and facts which are used later.
We use the upper half plane model of the hyperbolic plane H equipped with the

hyperbolic metric ds = ρ(ζ)|dζ|, where ρ(ζ) = 1/ Im ζ. Let G be a non-elementary
Fuchsian group acting on H, not necessarily finitely generated. By conjugation, we
may assume that G contains a hyperbolic element with repelling fixed point 0 and
attracting fixed point ∞. Let γ(ζ) = elζ be a primitive element of this form; l is
the translation length of γ.

A collar of γ is a neighborhood of the axis αγ of the form

{
ζ ∈ H

∣∣∣ π

2
− θ ≤ arg ζ ≤ π

2
+ θ

}
that is invariant under the normalizer of 〈γ〉 and equivariant under G. It is known
that there is a universal constant L0 > 0 (the Margulis constant) such that γ has
a collar whenever l is not greater than L0. Furthermore, the collar lemma (see [3])
asserts that there is a collar of γ whose area m modulo 〈γ〉 is l/(2 sinh l

2 ) (then
π
2 − θ = arctan(l/m)). Letting this collar be Ĉγ , we denote by Cγ a smaller collar
of half the area of Ĉγ . We call the geodesic line β joining −1 and 1 the transverse
line. Along this line, the euclidean distance from ∂Ĉγ to the real axis R is O(l)
(∼ π

2 − θ) as l → 0, and so the euclidean distance from ∂Cγ to R has the same
property.

We choose a positive constant L1 as follows: for γ(ζ) = eL1ζ, the collar Cγ

has width (that is, distance between the axis αγ and the boundary ∂Cγ) equal to
2 log(

√
2+1). The meaning of this value will become clearer in the proof of Propo-

sition 2. Hereafter, we always assume that l is not greater than L = min{L0, L1}.
The normalizer of 〈γ〉 is either the cyclic group itself or the dihedral group with

an additional generator of order 2. We denote the normalizer of 〈γ〉 by Γ.
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We transfer this discussion to the unit disk D = { z ∈ C | |z| < 1 } via the
Möbius transformation

F : H 3 ζ 7→ z =
ζ − i

ζ + i
∈ D.

The hyperbolic metric on D is F∗(ds) = ρ(z)|dz|, where ρ(z) = 2/(1 − |z|2). The
Fuchsian group G is conjugated by F to a Fuchsian group, and the element γ is
conjugated by F to a hyperbolic element

z 7→ (el + i)z + (el − i)
(el − i)z + (el + i)

,

with fixed points −1 and 1. We denote these by the same symbols, G and γ, as
before. We do the same for the axis F (αγ), the collar F (Cγ) and the transverse
line F (β) = D ∩ { z | Re z = 0}. Since |F ′(ζ)| is bounded away from 0 and ∞ in a
neighborhood of the transverse line, we also see that the euclidean distance from
∂Cγ to ∂D along β is O(l) as l → 0.

We say a function f on H or D is an automorphic (m,n)-form (m, n ∈ Z) for
a Fuchsian group G if it satisfies f(g(z))g′(z)mg′(z)n = f(z) for every g ∈ G. If
ϕ(z) is an automorphic (2, 0)-form for G, then |ϕ(z)| is a (1, 1)-form. We say ϕ(z)
is integrable if the integral of |ϕ(z)| over a fundamental region of G is finite.

Given a subgroup Γ of a Fuchsian group G and an integrable automorphic
(2, 0)-form ϕ for Γ, we define the relative Poincaré series operator ΘΓ\G by

ΘΓ\Gϕ(z) =
∑

[h]∈Γ\G

ϕ(h(z))h′(z)2.

The sum is well-defined since it is independent of the choice of representatives of
the right cosets [h] ∈ Γ\G. It converges to an integrable automorphic (2, 0)-form
for G. We can also apply the relative Poincaré series operator to an integrable
(1, 1)-form ψ for Γ,

ΘΓ\Gψ(z) =
∑

[h]∈Γ\G

ψ(h(z))h′(z)h′(z),

obtaining a (1, 1)-form for G.
The holomorphic function 1/ζ2 on H is an integrable automorphic (2, 0)-form

for Γ, for any translation length l, where Γ is either a subgroup of G generated
by γ(ζ) = elζ or an index 2 extension of such a subgroup. We call the relative
Poincaré series ΘΓ\G(1/ζ2) the Petersson series.

Again we consider a Fuchsian group G acting on D. We regard the constant
function ≡ 1 as an integrable (1, 1)-form for {id} and apply the (relative) Poincaré
series operator ΘG to it. Then we have an automorphic (1, 1)-form for G,

λ2
G(z) =

∑
g∈G

|g′(z)|2.

It is obvious that for any subgroup Γ of G,

ΘΓ\Gλ2
Γ(z) = λ2

G(z).
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The square of the hyperbolic density ρ2(z) is an automorphic (1, 1)-form for the
group of all Möbius transformations. Thus for an automorphic (2, 0)-form ϕ for G,
ρ−2(z)|ϕ(z)| is an (0, 0)-form (in other words, an automorphic function for G),
and so is ρ−2(z)λ2

G(z).

3. Statement of theorems

First we estimate the relative Poincaré series ΘΓ\G of an automorphic form ϕ
for Γ. We need not assume that ϕ is holomorphic, though we require that ϕ is
bounded relative to λ2

Γ. Hence our estimate is actually for ΘΓ\Gλ2
Γ = λ2

G. Ahlfors
[1] proved that ρ−2λ2

G is bounded by a constant depending only on G. Our result
gives a bound depending only on the translation length of γ in certain regions.

Theorem 1. Let G be a Fuchsian group acting on D which contains a primitive
hyperbolic element γ of translation length l (≤ L) with fixed points −1 and 1.
Suppose that |ϕ(z)| is an automorphic (1, 1)-form for Γ such that λ−2

Γ (z)|ϕ(z)| is
bounded by some positive constant M . Then there is a constant K1 > 0 depending
neither on l nor on G such that

(1) ρ−2(z)ΘΓ\G|ϕ(z)| ≤ K1Ml for z ∈ D − G(Cγ); and

(2) ρ−2(z)ΘΓ\G|ϕ(z)| − ρ−2(z)|ϕ(z)| ≤ K1Ml for z ∈ Cγ .

Next we apply Theorem 1 to the estimate of the Petersson series. We have
only to compare 1/ζ2 with the pull-back of λ2

Γ to H by F : H → D. The following
theorem asserts that the Petersson series with weight ρ−2

H is approximated by its
first term in the collar Cγ , and converges to zero outside the collar, as l tends to
zero. This result has been obtained by Wolpert [6] (Lemma 2.2) with a hyperbolic
geometry proof, whereas our proof has a flavor of complex analysis.

Theorem 2. Let G be a Fuchsian group acting on H which contains a primitive
hyperbolic element γ(ζ) = elζ (l ≤ L). Then there is a constant K2 > 0 depending
neither on l nor on G such that

(1) ρ−2(ζ)ΘΓ\G|1/ζ2| ≤ K2l
2 for ζ ∈ H − G(Cγ); and

(2) ρ−2(ζ)ΘΓ\G|1/ζ2| − ρ−2(ζ)|1/ζ2| ≤ K2l
2 for ζ ∈ Cγ .
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4. Preparation for proof

In this section, we prove two propositions used in the proof of Theorem 1.
The first one is based on the mean value property of holomorphic functions.

We also use a certain property of the collar.

Proposition 1. Let G be a Fuchsian group acting on D which contains a primitive
hyperbolic element γ of translation length l (≤ L) with fixed points −1 and 1. Then
there is a constant K > 0 depending neither on l nor on G such that

ρ−2(z)λ2
G(z) ≤ Kl

for any z on ∂Cγ .

Proof. By the mean value theorem for a holomorphic function f , we have

f(z) =
1

πr2

∫∫
U(z,r)

f(w) du dv,

where U(z, r) is an euclidean disk with center z and euclidean radius r. We apply
this to g′(z)2 at z ∈ ∂Cγ . We also require that the orbits G(U(z, r)) are mutually
disjoint. The following lemma (cf. Bers [2], Lemma 4) enables us to choose a
positive constant δ depending neither on l nor on G such that G(U(z, r)) are
mutually disjoint for z ∈ ∂Cγ and r = δρ−1(z).

Lemma 1. Let G be a Fuchsian group which contains a primitive hyperbolic el-
ement γ of translation length l (≤ L). Then there is a constant d > 0 depending
neither on l nor on G such that every hyperbolic disk B with hyperbolic radius d
and center on ∂Cγ satisfies g(B) ∩ B = ∅ for all g ∈ G − {id}.

Now setting U = U(z, δρ−1(z)), we have

g′(z)2 =
1

πδ2ρ−2(z)

∫∫
U

g′(w)2 du dv.

Then taking the absolute value and the sum over g ∈ G, we have

ρ−2(z)λ2
G(z) ≤ 1

πδ2

∫∫
U

∑
g∈G

|g′(w)|2 du dv =
1

πδ2

∫∫
G(U)

du dv.

Here the orbits G(U) are outside the collar Cγ , except for Γ(U). The euclidean
area of D − Cγ is O(l) as l → 0 because the distance from ∂Cγ to ∂D along the
transverse line β is O(l). Therefore the last integral is bounded by a constant
multiple Kl of l. ut

The next proposition is a crucial point in our argument, which is based on
Ahlfors’ argument in [1].
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Proposition 2. Let G be a Fuchsian group acting on D which contains a prim-
itive hyperbolic element γ of translation length l not greater than L and with
fixed points −1 and 1. Then the automorphic function ρ−2(z)λ2

G(z) restricted to
D − G(Cγ) is subharmonic, and it takes its maximum value on ∂Cγ . Moreover,
ρ−2(z)(λ2

G(z) − λ2
Γ(z)) restricted to Cγ is subharmonic and takes its maximum

value on ∂Cγ .

Proof. We know

ρ−2(z)λ2
G(z) = 1

4

∑
g∈G

(1 − |g(z)|2)2.

We calculate the Laplacian of (1 − |g(z)|2)2:

∆(1 − |g(z)|2)2 = 8(2|g(z)|2 − 1)|g′(z)|2.

This is positive outside g−1(B), where B = { z | |z| ≤ 2−1/2 }. By the definition
of L, we see that if l ≤ L, then B ⊂ Cγ . Hence each (1 − |g(z)|2)2 is subharmonic
outside G(Cγ), and so the sum

∑
g∈G(1 − |g(z)|2)2 is also subharmonic outside

G(Cγ).
Suppose that there is a point z0 ∈ D−G(Cγ) where ρ−2(z)λ2

G(z) takes a greater
value than on G(∂Cγ). Then we can take a finite approximation

∑
(1 − |g(z)|2)2

whose value at z0 is still greater than on G(∂Cγ). However, the finite sum is also
subharmonic and identically zero on ∂D, so it satisfies the maximum principle.
Thus we have a contradiction. Since ρ−2(z)λ2

G(z) is an automorphic function for G,
the maximum value on G(∂Cγ) is the same as the maximum value on ∂Cγ .

Next we have

ρ−2(z)(λ2
G(z) − λ2

Γ(z)) = 1
4

∑
g∈G−Γ

(1 − |g(z)|2)2,

Since g−1(B) is disjoint from Cγ for every g ∈ G− Γ, we see that ρ−2(z)(λ2
G(z)−

λ2
Γ(z)) is subharmonic in Cγ , where the maximum principle holds. Thus it takes

its maximum value on ∂Cγ . ut

5. Proof of theorems

Proof. (Theorem 1) By the assumption λ−2
Γ (z)|ϕ(z)| ≤ M , we have

ΘΓ\G|ϕ(z)| ≤ MΘΓ\Gλ2
Γ(z) = Mλ2

G(z);

ΘΓ\G|ϕ(z)| − |ϕ(z)| ≤ M(ΘΓ\Gλ2
Γ(z) − λ2

Γ(z)) = M(λ2
G(z) − λ2

Γ(z)).

Thus we have only to estimate ρ−2(z)λ2
G(z) and ρ−2(z)(λ2

G(z) − λ2
Γ(z)).

By Proposition 2, it suffices to estimate them on ∂Cγ . By Proposition 1, they
are bounded by Kl. Thus, setting K1 = K, we have the theorem. ut
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Proof. (Theorem 2) We transfer the automorphic (2, 0)-form 1/ζ2 to D via the
Möbius transformation F : H → D, and then apply Theorem 1. Let

ϕ(z) = F∗

(
1
ζ2

)
=

(F−1)′(z)2

F−1(z)2
.

This is an automorphic (2, 0)-form for FΓF−1. We consider the ratio of |ϕ(z)| to
λ2

FΓF−1(z):

|ϕ(z)|
λ2

FΓF−1(z)
=

|ϕ(F (ζ))| |F ′(ζ)|2∑
γ∈Γ |(FγF−1)′(F (ζ))|2|F ′(ζ)|2

=
|1/ζ2|∑

γ∈Γ |F ′(γ(ζ))γ′(ζ)|2
=

[∑
γ∈Γ

4|ζγ′(ζ)|2

|γ(ζ) + i|4
]−1

.

Now we estimate this value. We may assume that ζ ∈ H is in a fundamental
region { 1 ≤ |ζ| ≤ el } of 〈γ〉. Then∑

γ∈〈γ〉

4|ζγ′(ζ)|2

|γ(ζ) + i|4
=

∑
n∈Z

4|enlζ|2

|enlζ + i|4
≥

∑
n∈Z

4e2nl

(e(n+1)l + 1)4

≥
∑
n≥0

4e2nl

(2e(n+1)l)4
+

∑
n≤−2

4e2nl

24
=

1
2e2l(e2l − 1)

.

Therefore

|ϕ(z)|
λ2

FΓF−1(z)
≤ e2l(e2l − 1) ≤ kl

for some positive constant k.
Setting M = kl, we apply Theorem 1. We have

ρ−2(z)ΘF (Γ\G)F−1 |ϕ(z)| ≤ K1kl2 for z ∈ D − G(Cγ)

and

ρ−2(z)ΘF (Γ\G)F−1 |ϕ(z)| − ρ−2(z)|ϕ(z)| ≤ K1kl2 for z ∈ Cγ .

Pulling back by F , we get the required inequalities (1) and (2) with K2 = K1k. ut

6. Application

As an application of Theorem 2, we give an explicit construction of an inte-
grable holomorphic automorphic (2, 0)-form ϕ(z) for a Fuchsian group G such
that ρ−2(z)|ϕ(z)| is not bounded. Such examples were first constructed by Pom-
merenke, and recently, by Ohsawa. In this section, which is motivated by Ohsawa’s
preprint, we show the construction is possible whenever G contains hyperbolic el-
ements of arbitrarily small translation length. The existence of such a (2, 0)-form
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was a problem raised by Lehner. Niebur and Sheingorn [4] answered the question
completely, but they did not give an explicit construction.

Our construction is as follows. Let G be a Fuchsian group of the type just
described. We can choose a sequence {γn}n∈N of primitive hyperbolic elements
whose translation lengths ln satisfy ln ≤ L/n4. For each n, we construct an
automorphic (2, 0)-form ψn(z) for G by the Petersson series for Γn\G, and set
ψ̂n(z) = ln

−1/2ψn(z). Then take the sum

Ψ(z) =
∑
n∈N

ψ̂n(z),

which is also an automorphic (2, 0)-form for G if it converges.

Theorem 3. For a Fuchsian group G which contains hyperbolic elements of arbi-
trarily small translation length, the above Ψ(z) is an integrable holomorphic auto-
morphic (2, 0)-form for G such that ρ−2(z)|Ψ(z)| is not bounded.

Proof. First we show Ψ(z) is integrable. Let ω be a fundamental region of G. For
each n, we have∫∫

ω

|ψ̂n(z)| dx dy ≤ ln
−1/2

∫∫
1≤|ζ|≤eln

1
|ζ|2

dξ dη = πln
1/2.

Since we have chosen ln ≤ L/n4, we see
∫∫

ω
|Ψ(z)| dx dy ≤ π

√
L

∑
(1/n2), which

converges.
Next we show ρ−2(z)|Ψ(z)| is unbounded. By Theorem 2, we have ρ−2(z)|ψn(z)|

≤ K2ln
2 outside G(Cγn) and ρ−2(z)|ψn(z)| ≥ 1 − K2ln

2 on G(αγn), where αγn is
the axis of γn. Since the collars are disjoint for distinct n, we see

ρ−2(z)|Ψ(z)| ≥ ln
−1/2 − K2

∑
m∈N

lm
3/2

on G(αγn
). The sum on the right hand side converges. Letting n → ∞, we see that

ρ−2(z)|Ψ(z)| is unbounded. ut
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