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Abstract. We say that a complete metric space X has the fixed point property if every
group of isometric automorphisms of X with a bounded orbit has a fixed point in X. We
prove that if X is uniformly convex then the family of admissible subsets of X possesses
uniformly normal structure and if so then it has the fixed point property. We also show
that from other weaker assumptions than uniform convexity, the fixed point property
follows. Our formulation of uniform convexity and its generalization can be applied not
only to geodesic metric spaces.

1. Introduction

In this paper, we consider certain properties of metric spaces which can be used in the
geometric group theory. If a group acts on a complete metric space isometrically, one may
ask a question about whether it has a fixed point in it or not. Usually we are interested in
what kind of groups satisfy this property when the metric space in question is canonical
such as a Hilbert space. A weaker problem than this is to see whether the group has a
bounded orbit in it and thus we can reduce the original problem to finding a condition
under which the bounded orbit implies the fixed point.

We extract this situation as a property of a metric space and define a metric space to
have the fixed point property if this is always the case. A well-known sufficient condition
for this property of a complete metric space is uniform convexity, which is a generalization
of the concept of uniform convexity for Lp spaces. In this space, the circumcenter of an
arbitrary bounded subset exists uniquely; for a bounded orbit of an isometry group, its
unique circumcenter is a fixed point. In Section 5, we prove this property for a complete
metric space of more general uniform convexity (Theorem 8). In Section 4, we will find a
weaker condition than uniform convexity that still hold the fixed point property (Theorem
6), which we call uniform pseudo-convexity. An advantage of uniform pseudo-convexity
is that it is invariant under a bi-Lipschitz homeomorphism with Lipschitz constant suffi-
ciently close to one (Theorem 7).

On the other hand, for a non-expanding self-map of a metric space, the problem of
finding its fixed point seems to have another history as the fixed point theory, which
originates in the Brouwer fixed point theorem. Normal structure for a certain family of
admissible subsets in a metric space is an important concept in this theory and we can
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borrow this condition for investigating the fixed point property of isometric group action.
In Section 3, we verify that under a certain extra assumption the normal structure implies
the fixed point property (Theorem 2). Before reviewing this claim, we will see that uniform
convexity of a metric space implies uniformly normal structure (Theorem 1) in Section 2.

Our definition of uniform convexity in this paper is applicable to metric spaces in
general, not necessarily to geodesic metric spaces. In Section 5, in order to present
another example for which our formulation works, we generalize the concept of uniform
convexity of metric spaces more widely in this manner and prove that it still holds the
fixed point property via the normal structure condition (Theorem 9).

2. Uniformly convexity and normal structure

Let us begin with defining properties of a metric space X which we are concerned
with. The first one is a numerical generalization of the concept of uniform convexity for
Lp spaces to metric spaces. For p = 2, this is called the NC-inequality, which was first
introduced in [4]. The following definition, which is inspired by [2, Proposition I.5.1], is
slightly different from the usual one. In particular, we do not have to assume that X is a
geodesic metric space (i.e., for any x, y ∈ X there is a geodesic segment connecting them).

Definition. A metric space X with distance d is (p, c)-uniformly convex for p ∈ [1,∞)
and c > 0 if for any x, y ∈ X there is some m ∈ X such that every z ∈ X satisfies

d(z,m)p ≤ 1

2
{d(z, x)p + d(z, y)p} − c d(x, y)p.

If we can find such p and c, then we simply say that X = (X, d) is uniformly convex.

Remark. In the usual definition, one assumes that X is a geodesic metric space and the
above condition is replaced with a similar condition for each point m on every geodesic
segment connecting x and y. See [10] and [11]. The usual definition for uniform convexity
implies ours and in this case the constants should be restricted to p > 1 and c ≤ 1/2p.
However, when X is complete and when p = 2 and c = 1/4, our condition automatically
implies that X is a uniquely geodesic metric space (i.e., for any x, y ∈ X there is a unique
geodesic segment connecting them) and X is contractible. These facts were shown in [2].
Moreover, a complete metric space X is (2, 1/4)-uniformly convex if and only if it is a
CAT(0)-space.

In the above definition, the freedom of the constant c has the benefit of generalizing the
concept of uniform convexity. This was already done in [11, Proposition 3.1] for geodesic
metric spaces with p = 2. Actually, a CAT(1)-space (X, d) with diameter not greater than
π/2 − ε for ε ∈ (0, π/2) is (2, c)-uniformly convex for c = (π − 2ε) sin ε/(2 cos ε). This in
particular shows that the sphere with diameter less than π/2 is uniformly convex though
its spherical distance function d : X × X → [0,∞) is not convex on geodesic segments.

Furthermore, as an example below shows, there is a complete metric space X which
is uniformly convex but is not a geodesic metric space. Note that a complete metric
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space (X, d) is geodesic if and only if it is metrically convex, that is, for any two points
x, y ∈ X there is a midpoint m ∈ X satisfying d(x,m) = d(y,m) = d(x, y)/2 (see
[2, Proposition I.1.5] and [7, Theorem 2.16]). Although the following example is rather
artificial, our definition of uniform convexity might have the advantage of treating a
possible situation where a subspace X with relative distance d embedded in an infinite-
dimensional Riemannian or Finsler manifold M is not known to be a geodesic metric
space but (M,d) is uniformly convex.

Example. Let Sθ = {w ∈ R2 | 0 ≤ arg w ≤ θ} be the infinite circular sector with center
at the origin 0 and angle θ ∈ (0, π/3). Then X = Xθ is given as the part of Sθ that is
not contained in the open unit disk D = {w ∈ R2 | |w| < 1}, that is, Xθ = Sθ \ D. We
provide Xθ with the restriction of the Euclidean distance d on R2. Clearly (Xθ, d) is not
a geodesic metric space. However, we see that Xθ is (p, c)-uniformly convex for p = 2 and
c = (2 cos θ − 1)/4. Its proof is as follows.

For arbitrary points x, y ∈ Xθ, take m0 ∈ R2 as the midpoint of x and y with respect
to the Euclidean distance on R2. If m0 is in Xθ then just set m = m0. Otherwise, take
m ∈ Xθ on the unit circle so that m and m0 are on the same radial ray ` from the origin.
We have only to consider the latter case.

Take z ∈ Xθ arbitrarily. Let z′ ∈ ` be the orthogonal projection of z onto `. We may
assume that d(z,m) ≥ d(z,m0), which is equivalent to that d(z′,m) ≥ d(z′,m0). Then

d(z,m)2 − d(z,m0)
2 = d(z′,m)2 − d(z′,m0)

2

= (d(z′,m) + d(z′,m0))(d(z′,m) − d(z′, m0))

≤ 2d(z′,m) · d(m,m0).

Here, we see that d(z′, m) ≤ 1− cos θ and d(m,m0) ≤ d(x, y)2/4 by elementary geometric
observation. Indeed, for the first inequality, we consider an extremal case where z is at
one of the two corners of Xθ and m is at the other. For the second inequality, let x′ and
y′ be the intersections of the unit circle with the segment between x and y. We take the
midpoint m′

0 of x′ and y′, and take m′ on the unit circle so that m′ and m′
0 are on the

same radial ray `′ from the origin. Then d(m,m0) ≤ d(m′,m′
0). Moreover,

d(m′m′
0) = 1 −

{
1 −

(
d(x′, y′)

2

)2
}1/2

≤ d(x′, y′)2

4
≤ d(x, y)2

4
.

Therefore

d(z,m)2 − d(z,m0)
2 ≤ 1 − cos θ

2
d(x, y)2

for every z ∈ Xθ. Since d(z,m0) satisfies the inequality for (2, 1/4)-uniform convexity, we
can conclude that

d(z,m)2 ≤ 1

2
{d(z, x)2 + d(z, y)2} − 2 cos θ − 1

4
d(x, y)2

for every z ∈ Xθ.



4 KATSUHIKO MATSUZAKI

Next, the relation between the radius and the diameter of certain admissible subsets
gives another condition for a metric space. Here, for a subset A of a metric space (X, d),
denote its diameter and Chebyshev radius by

diam(A) = sup {d(x, y) | x, y ∈ A}; rad(A) = inf {r > 0 | A ⊂ B(z, r), z ∈ A},
where B(z, r) = {x ∈ X | d(z, x) ≤ r} is the closed metric ball with center z and radius
r. We regard a non-empty subset A ⊂ X admissible if it is the intersection of some closed
metric balls {B(zi, ri)}i∈I (I is an index set) of X. The family of all such non-empty
bounded closed subsets A of X is denoted by A(X).

Definition. The family A(X) of admissible subsets of a metric space (X, d) possesses
normal structure if every subset A ∈ A(X) with diam(A) > 0 satisfies rad(A) < diam(A).
Moreover, A(X) possesses uniformly normal structure if there exists a positive constant
α > 0 such that this inequality is uniformly valid in the form

rad(A) ≤ (1 − α) diam(A).

Our first result shows the implication of the above two properties.

Theorem 1. If a metric space (X, d) is (p, c)-uniformly convex, then A(X) has uniformly
normal structure. More precisely,

rad(A) ≤ (1 − c)1/p diam(A)

for every A ∈ A(X).

Proof. Take an arbitrary A ∈ A(X) with d = diam(A) > 0. Choose an arbitrary ε > 0.
Then there are x, y ∈ A such that d(x, y) ≥ d − ε. For these x and y, the definition of
(p, c)-uniform convexity finds some point mε ∈ X that satisfies

d(z,mε)
p ≤ 1

2
{d(z, x)p + d(z, y)p} − c d(x, y)p

for every z ∈ X.
First we check that mε belongs to A. Suppose that A is the intersection of closed metric

balls B(zi, ri) for all indices i ∈ I. Since x, y ∈ A ⊂ B(zi, ri), we have d(zi, x) ≤ ri and
d(zi, y) ≤ ri for each i ∈ I. Then, applying the above inequality to z = zi, we obtain

d(zi, mε)
p ≤ 1

2
{d(zi, x)p + d(zi, y)p} ≤ rp

i .

This implies that mε ∈ B(zi, ri) and hence mε ∈ A.
Consider an arbitrary z ∈ A. Then d(z, x) ≤ d and d(z, y) ≤ d. Substituting these

bounds and d(x, y) ≥ d− ε to the above inequality, we obtain d(z,mε)
p ≤ dp − c(d− ε)p.

This yields that

d(z,mε) ≤ d (1 − c(1 − ε/d)p)1/p ,

and hence A is in the closed ball of center mε ∈ A and radius d (1 − c(1 − ε/d)p)1/p. Since
ε > 0 is arbitrary, letting ε → 0, we see that rad(A) ≤ (1 − c)1/p diam(A). ¤
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3. The fixed point property

We investigate the following property of a metric space (X, d) concerning the action of
its automorphism group. We denote by Aut(X, d) the group of isometric bijections of X
onto itself with respect to distance d.

Definition. A metric space (X, d) has the fixed point property if every subgroup G ⊂
Aut(X, d) with a bounded orbit in X has a fixed point in X.

Remark that if the orbit G(x) of x ∈ X is bounded then the orbit G(x′) for any other
x′ ∈ X is also bounded. In particular, if G has a fixed point in X then G has a bounded
orbit G(x) for every x ∈ X.

Hereafter, we use the following terminology: the family A(X) of admissible subsets
of X is compact if every totally ordered sub-family {Ai}i∈I ⊂ A(X) with respect to the
inclusion relation satisfies

∩
i∈I Ai 6= ∅, that is,

∩
i∈I Ai ∈ A(X).

We will see that the properties introduced in the previous section imply the fixed point
property. The following result can be proved by a similar argument to [7, Theorem 5.1],
which has its origin in [8] and whose abstract formulation is due to [12]. Note that if
A(X) is compact then (X, d) is complete (see [7, Proposition 5.1]).

Theorem 2. If the admissible family A(X) of a metric space (X, d) possesses normal
structure and A(X) is compact, then (X, d) has the fixed point property.

Proof. Let G ⊂ Aut(X, d) with a bounded orbit G(x) (x ∈ X). For a closed metric
ball containing G(x), we take the intersection A∗ 6= ∅ of all its images under G. Then
A∗ ∈ A(X) is invariant under G. We consider the G-invariant sub-family of A(X):

AG(X) = {A ∈ A(X) | g(A) = A (∀g ∈ G)}.
Since A∗ ∈ AG(X), this is not an empty family. Also it is clear that if Ai ∈ AG(X) for
all i ∈ I then

∩
i∈I Ai is G-invariant. Then the compactness of A(X) implies that AG(X)

is inductive and Zorn’s Lemma ensures the existence of a minimal element A0 ∈ AG(X)
with respect to the inclusion relation.

We will prove that A0 consists of a single point a ∈ X. This shows that a is a fixed
point of G. Suppose to the contrary that A0 is not a single point set. Then diam(A0) > 0
and the normal structure of A(X) implies that rad(A0) < diam(A0). Choose a constant
r with rad(A0) < r < diam(A0) and set

C = {x ∈ A0 | A0 ⊂ B(x, r)}.
This is not empty since rad(A0) < r. Then we have

C =

( ∩
y∈A0

B(y, r)

)
∩ A0,

which can be verified as follows. Take x ∈ C ⊂ A0 arbitrarily. Since A0 ⊂ B(x, r) by
the definition of C, every y ∈ A0 satisfies d(x, y) ≤ r. Hence x belongs to

∩
y∈A0

B(y, r).
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Conversely, take x ∈ (
∩

y∈A0
B(y, r))∩A0 arbitrarily. Then every y ∈ A0 satisfies d(x, y) ≤

r. This implies A0 ⊂ B(x, r) and the definition of C says that x belongs to C.
The above representation of C in particular implies that C ∈ A(X). Moreover, we

will prove that C ∈ AG(X), that is, g(C) = C for every g ∈ G. It is enough to show
that g(C) ⊂ C for every g ∈ G because this includes g−1(C) ⊂ C and hence C ⊂ g(C).
Take an arbitrary x ∈ C, which satisfies d(x, y) ≤ r for every y ∈ A0. It follows that
d(g(x), g(y)) ≤ r for every g ∈ G. This implies that g(y) ∈ B(g(x), r) for every y ∈ A0,
that is, A0 = g(A0) ⊂ B(g(x), r). On the other hand, we know that g(x) ∈ A0 from
x ∈ C ⊂ A0. Therefore g(x) belongs to C. This means that g(C) ⊂ C.

However, we see that diam(C) ≤ r. Indeed, for any x and y in C, it holds that
d(x, y) ≤ r because x ∈ A0 ⊂ B(y, r). Since diam(C) ≤ r < diam(A0), we have C $ A0.
This contradicts the minimality of A0 in AG(X). Thus we have proved that A0 = {a},
which is fixed by G. ¤

If (X, d) is complete and A(X) has uniformly normal structure then A(X) is compact,
which was proved in [1] and [5] for a weaker condition of the compactness (countable
compactness) and completed by the work of [9] (see Section 5). We may also consult [7,
Theorem 5.4]. Consequently, we obtain the following result as a corollary to Theorem
2. The fact is that an argument in [5] can directly show this result without using the
compactness.

Corollary 3. If the admissible family A(X) of a complete metric space (X, d) has uni-
formly normal structure, then (X, d) has the fixed point property.

Also, Theorem 1 and Corollary 3 yield the following result.

Corollary 4. If a complete metric space (X, d) is uniformly convex, then (X, d) has the
fixed point property.

Note that this result is already known and can be proved directly. Actually, every
bounded subset A in a uniformly convex complete metric space (X, d) has the unique
circumcenter, which is the center of a closed metric ball containing A with the minimum
radius attained. See below in the next section for precise definition. This fact will be
also proved later in Theorem 8 under a weaker assumption. If we take A as the bounded
orbit of G ⊂ Aut(X, d), then its unique circumcenter is a fixed point of G. This result is
called the Bruhat-Tits theorem [4]. The presentation using circumcenter can be found in
[3, Section VI.4]. In the case of p in general, see [10, Lemma 2.3].

4. Uniform pseudo-convexity

We extend the concept of uniform convexity of a complete metric space so that it still
holds the fixed point property.

Definition. A metric space (X, d) is uniformly k-pseudo-convex for k ∈ [0, 1) if there are
some constants p ≥ 1 and c > 0 such that for any x, y ∈ X there is some m ∈ X such
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that every z ∈ X satisfies

d(z,m)p ≤ 1 + kpc

2
{d(z, x)p + d(z, y)p} − c d(x, y)p.

If there is such k, then we simply say that (X, d) is uniformly pseudo-convex.

We define the following points close to circumcenter for each bounded subset A of a
metric space (X, d). For A ⊂ X and x ∈ X, set rx(A) = supa∈A d(x, a). Let us define the
circumradius of A by

rX(A) = inf
x∈X

rx(A) = inf{r > 0 | A ⊂ B(x, r), x ∈ X},

which is not greater than the Chebyshev radius rad(A). In general, we see that

rX(A) ≤ rad(A) ≤ diam(A) ≤ 2rX(A).

For every ε ≥ 0, we say that x ∈ X is an ε-circumcenter of a bounded subset A ⊂ X if it
satisfies

rx(A) ≤ rX(A) + ε.

When ε = 0, this is nothing but a circumcenter of A. Clearly an ε-circumcenter always
exists for every bounded subset A and for every positive ε > 0.

Lemma 5. Let A be a bounded subset with rX(A) > 0 (or diam(A) > 0) in a uniformly

k-pseudo-convex metric space (X, d). Then, for any k̃ ∈ (k, 1), there is some ε > 0 such

that any ε-circumcenters x, y ∈ X of A satisfy d(x, y) ≤ k̃rX(A).

Proof. For an arbitrary ε > 0, consider any ε-circumcenters x, y ∈ X of A. For these x
and y, we choose some m ∈ X that satisfies the inequality of uniform k-pseudo-convexity
for some p ≥ 1 and c > 0. We also take z ∈ A such that

d(z,m) ≥ rm(A) − ε.

By definition, d(z, x) ≤ rx(A) and d(z, y) ≤ ry(A). Substituting these three estimates to
the uniformly pseudo-convex inequality, we have

(rm(A) − ε)p ≤ 1 + kpc

2
{rx(A)p + ry(A)p} − c d(x, y)p.

Moreover, since rx(A) ≤ rX(A) + ε and ry(A) ≤ rX(A) + ε, it follows that

(rX(A) − ε)p ≤ (rX(A) + ε)p + kpc(rX(A) + ε)p − c d(x, y)p.

By using (rX(A) + ε)p − (rX(A) − ε)p ≤ 2pε(rX(A) + ε)p−1 for p ≥ 1, we see that

d(x, y)p ≤ 2pε

c
(rX(A) + ε)p−1 + kp(rX(A) + ε)p

=

{
2pε

c(rX(A) + ε)
+ kp

}{
1 +

ε

rX(A)

}p

rX(A)p.

Then, for any k̃ ∈ (k, 1), we can make the last term bounded by k̃prX(A)p if we choose a
sufficiently small ε > 0. ¤



8 KATSUHIKO MATSUZAKI

Applying this lemma, we obtain the required result.

Theorem 6. If a complete metric space (X, d) is uniformly pseudo-convex, then it has
the fixed point property.

Proof. Suppose that (X, d) is uniformly k-pseudo-convex for k ∈ [0, 1) and that G ⊂
Aut(X, d) has a bounded orbit G(x0) for x0 ∈ X. Choose any k̃ ∈ (k, 1) and fix it. First
we apply Lemma 5 to A0 = G(x0). We may assume that diam A0 > 0 for otherwise
we obtain a fixed point x0 of G. Then there is some ε1 ∈ (0, diam A0) such that any

ε1-circumcenters x1 and y1 of A0 satisfy d(x1, y1) ≤ k̃rX(A0). Note that every point of
the orbit G(x1) is an ε1-circumcenter of A0. Hence, for A1 = G(x1), the above inequality
implies that

diam A1 ≤ k̃rX(A0) ≤ k̃ diam A0.

Next we apply Lemma 5 to A1 = G(x1), for which we may assume that diam A1 > 0.
Then there is some ε2 ∈ (0, diam A1) such that any ε2-circumcenters x2 and y2 of A1

satisfy d(x2, y2) ≤ k̃rX(A1). For A2 = G(x2), we have

diam A2 ≤ k̃rX(A1) ≤ k̃ diam A1.

Repeating this process, we obtain a sequence {xn}n∈N ⊂ X such that each xn is an εn-
circumcenter of the orbit An−1 = G(xn−1) for some εn ∈ (0, diam An−1) and that the
orbits satisfy

diam An−1 ≤ k̃ diam An

for every n ∈ N. Since k̃ < 1, this implies that diam An → 0 as n → ∞.
On the other hand, we see that {xn} is a Cauchy sequence. Indeed, since xn is an

εn-circumcenter of An−1 = G(xn−1),

d(xn, xn−1) ≤ rX(An−1) + εn ≤ 2 diam An−1.

Then
∞∑

n=1

d(xn, xn−1) ≤ 2(diamA0)
∞∑

n=0

k̃n < ∞,

which shows that {xn} is a Cauchy sequence. Since (X, d) is complete, the limit x∞ of
{xn} exists in X. For every g ∈ G, we see that

d(g(x∞), x∞) = lim
n→∞

d(g(xn), xn) ≤ lim
n→∞

diam An = 0.

Thus x∞ is a fixed point of G. ¤
Uniform pseudo-convexity is preserved under a bi-Lipschitz homeomorphism with a

small Lipschitz constant. We say that a (surjective) homeomorphism f : X → X ′ between
metric spaces (X, d) and (X ′, d′) is λ-bi-Lipschitz for λ ≥ 1 if

1

λ
d(x, y) ≤ d′(f(x), f(y)) ≤ λd(x, y)

is satisfied for any x, y ∈ X.
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Theorem 7. Let (X, d) be a (p, c)-uniformly convex metric space. If f : X → X ′ is a
λ-bi-Lipschitz homeomorphism onto another metric space (X ′, d′) with Lipschitz constant
λ < (1 + c)1/(2p). Then (X ′, d′) is uniformly pseudo-convex.

Proof. Take any x′, y′ ∈ X ′. For x, y ∈ X with f(x) = x′ and f(y) = y′, we choose
m ∈ X that satisfies the inequality for (p, c)-uniform convexity of (X, d). Then set
m′ = f(m) ∈ X ′. For every z′ ∈ X ′, we have

d′(z′,m′)p + cd′(x′, y′)p ≤ λp{d(z,m)p + cd(x, y)p}

≤ λp

2
{d(z, x)p + d(z, y)p} ≤ λ2p

2
{d′(z′, x′)p + d′(z′, y′)p},

where z ∈ X is taken as f(z) = z′. Here, since 1 ≤ λ2p < 1 + c, there is some k ∈ [0, 1)
such that λ2p = 1 + kpc. This shows that (X ′, d′) is uniformly pseudo-convex. ¤

Similarly, we can prove that if (X, d) is uniformly pseudo-convex and f : X → X ′ is a
λ-bi-Lipschitz homeomorphism onto another metric space (X ′, d′) with λ ≥ 1 sufficiently
close to 1, then (X ′, d′) is also uniformly pseudo-convex.

If there is a bi-Lipschitz homeomorphism f : (X, d) → (X ′, d′), then the conjugate G′ =
fGf−1 for an isometry group G ⊂ Aut(X, d) acts on (X ′, d′) as uniformly bi-Lipschitz
homeomorphisms, meaning that the Lipschitz constants λ are uniformly bounded for all
elements of G′. In this situation, the existence of a fixed point of G is equivalent to that
of G′. In [6, Theorem 3.1], a certain fixed point property of a uniformly Lipschitz map is
investigated.

Example. Let ds(x, y) =
√

dx2 + dy2 be the Euclidean metric on R2. Define a new
metric ds̃(x, y) on R2 by ds̃(x, y) = ds(x, y) if (x, y) ∈ R2 −D and ds̃(x, y) = λds(x, y)
if (x, y) ∈ D, where D is the unit disk and λ is a constant with 1 < λ < (5/4)1/4. Then
the identity map is a λ-bi-Lipschitz homeomorphism between (R2, ds) and (R2, ds̃). Since
(R2, ds) is (2, 1/4)-uniformly convex, Theorem 7 shows that (R2, ds̃) is uniformly pseudo-
convex. On the other hand, the family of admissible subsets of (R2, ds̃) does not have
normal structure. Indeed, by taking two closed balls with large radii and centers far away
from the origin, which are put in a symmetric position with respect to the origin, we can
make an admissible subset A as the intersection of these balls that consists of exactly two
points. Actually, the distance between (R+1, 0) and the origin with respect to ds̃ is R+λ
whereas the distance between (R + 1, 0) and (0, 1) is less than

(R + 1) cos θ − sin θ + 2θ (tan θ = (R + 1)−1).

This verifies that rad(A) = diam(A), which implies that the admissible family of (R2, ds̃)
does not have normal structure. In fact, although (R2, ds̃) is a geodesic metric space, the
distance function is not convex on geodesic segments. This example shows that neither
uniform convexity nor normal structure of the admissible family are invariant under bi-
Lipschitz homeomorphisms.
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5. Uniform convexity in the wider sense

This section is added in revision. We will see here that our fashion of defining uniform
convexity also works for more general uniform convexity, which is the generalization of
uniform convexity of Banach spaces to metric spaces. See [6] for a recent account of such
usual definition.

Definition. A metric space X with distance d is uniformly convex in the wider sense
if there is a function δ(r, t) : [t/2,∞) × [0,∞) → [0, 1], which is called the modulus of
convexity, such that

(1) δ(r, t) = 0 if and only if t = 0;
(2) for each fixed r, δ(r, t) is increasing with respect to t;
(3) for each fixed t, δ(r, t) is decreasing with respect to r,

and if for any x, y ∈ X there is some m ∈ X such that

d(z,m) ≤ max{d(z, x), d(z, y)}(1 − δ(max{d(z, x), d(z, y)}, d(x, y)))

is satisfied for every z ∈ X.

It is easy to see that if X is (p, c)-uniformly convex, then it is uniformly convex in the
wider sense for modulus of convexity δ(r, t) = ctp/(prp).

We will state two theorems which are closely related to the fixed point property of a
complete metric space uniformly convex in the wider sense. The first one is concerning
the existence and uniqueness of a circumcenter of every bounded subset. This property
implies the fixed point property. Indeed, the circumcenter of a bounded orbit of the
isometric action of G is fixed by G. This is well-known as the Bruhat-Tits theorem,
which was mentioned at Corollary 4.

Theorem 8. Let (X, d) be a complete metric space that is uniformly convex in the wider
sense. Then every bounded subset A ⊂ X has the unique circumcenter.

Proof. For any x, y ∈ X, there is some m ∈ X that satisfies the inequality for the definition
of uniform convexity in the wider sense. We consider rm(A) for this m. For every ε > 0,
there is zε ∈ A such that d(zε,m) ≥ rm(A) − ε. Then we have

rX(A) − ε ≤ d(zε,m) ≤ max{d(zε, x), d(zε, y)}(1 − δ(max{d(zε, x), d(zε, y)}, d(x, y))).

Using property (3) of δ for d(zε, x) ≤ rx(A), ry(A), and taking ε → 0, we obtain an
inequality

(∗) rX(A) ≤ max{rx(A), ry(A)}(1 − δ(max{rx(A), ry(A)}, d(x, y)))

for any x, y ∈ X.
The existence of a circumcenter of A is proved as follows. We may assume that rX(A) >

0. Take a sequence {xn} ⊂ X such that rxn(A) → rX(A) as n → ∞. For every k ∈ N,
there is nk such that n ≥ nk implies rxn(A) < rX(A) + 1/k. We apply inequality (∗) for
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x = xn and y = xn′ with n, n′ ≥ nk. It turns out that

rX(A) ≤ max{rxn(A), rxn′ (A)}(1 − δ(max{rxn(A), rxn′ (A)}, d(xn, xn′)))

≤ (rX(A) + 1/k)(1 − δ(rX(A) + 1/k, d(xn, xn′)))

≤ rX(A) +
1

k
− rX(A) δ(rX(A) + 1, d(xn, xn′)).

Here, the latter two estimates come again from property (3) of δ. This implies that

δ(rX(A) + 1, d(xn, xn′)) ≤ 1

k rX(A)

for any n, n′ ≥ nk. Letting k → ∞ and using properties (1) and (2) of δ, we see that
d(xn, xn′) → 0 as n, n′ → ∞. Hence {xn} is a Cauchy sequence. Since X is complete,
there is the limit x0 = limn→∞ xn in X. By rx0(A) = limn→∞ rxn(A) = rX(A), we find
that x0 is a circumcenter of A.

The uniqueness is already seen from the above argument. Or, if x and y are circum-
centers of A, then the substitution of rx(A) = rX(A) and ry(A) = rX(A) to (∗) gives
δ(rX(A), d(x, y)) = 0. This is possible only when x = y. ¤

The second one is concerning normal structure and compactness of the family of ad-
missible subsets. For the normal structure, we have only to modify the proof of Theorem
1. For the (countable) compactness, we refer to [6, Theorem 2.2] in the case of geodesic
metric spaces.

Theorem 9. If a metric space (X, d) is uniformly convex in the wider sense, then it has
normal structure. If (X, d) is complete in addition, then the family A(X) of admissible
subsets is compact.

Proof. Take an arbitrary A ∈ A(X) with d = diam(A) > 0. Then there are x, y ∈ A such
that d(x, y) ≥ d−ε for an arbitrary ε > 0. For these x and y, there is m ∈ X that satisfies
the inequality for uniform convexity in the wider sense. We will check that m belongs to
A. Suppose that A is the intersection of closed metric balls B(zi, ri) for all indices i ∈ I.
Since x, y ∈ A ⊂ B(zi, ri), we have d(zi, x) ≤ ri and d(zi, y) ≤ ri for each i ∈ I. It follows
from the inequality that

d(zi,m) ≤ max{d(zi, x), d(zi, y)} ≤ ri.

This implies that m ∈ B(zi, ri) and hence m ∈ A.
Consider an arbitrary z ∈ A. Then d(z, x) ≤ d and d(z, y) ≤ d. Substituting these

bounds and d(x, y) ≥ d − ε to the inequality and using the properties of δ, we obtain

d(z,m) ≤ d(1 − δ(d, d − ε)) < d.

Thus we have rad(A) < diam(A).
Now we assume that X is complete and consider a decreasing sequence of admissible

subsets {An}n∈N ⊂ A(X). For a fixed point z ∈ X, the distances d(z, An) from z to An

are bounded and increasing, so we have R = limn→∞ d(z, An) < ∞. Also, we can choose
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a point xn ∈ An for each n ∈ N such that limn→∞ d(z, xn) = R. We will show that {xn}
is a Cauchy sequence. Then there is the limit point x∞ ∈ X of {xn} since X is complete.
Each An contains x∞ because xn′ ∈ An for every n′ ≥ n. Thus x∞ ∈

∩
n∈N An, which

shows that the intersection is not empty.
Suppose to the contrary that {xn} is not a Cauchy sequence. Then there is some ε > 0

such that for every n ∈ N there are n1, n2 ≥ n with d(xn1 , xn2) ≥ ε. We apply the
inequality of uniform convexity in the wider sense to xn1 and xn2 ; there is some mn ∈ X
such that

d(z,mn) ≤ max{d(z, xn1), d(z, xn2)}(1 − δ(max{d(z, xn1), d(z, xn2)}, d(xn1 , xn2)))

for every z ∈ X. By choosing the fixed z in particular for this inequality, we have

d(z,mn) ≤ R(1 − δ(R, ε)) < R.

Here mn is contained in An by the same reason as in the first paragraph. Hence d(z, An) ≤
d(z,mn). Taking the limit as n → ∞, we have a contradiction. This proves that {xn} is
a Cauchy sequence.

We have shown that any decreasing sequence of admissible subsets {An}n∈N ⊂ A(X)
has non-empty intersection. This property is called countably compact. It was proved in
[9] (see also [7, Theorem 5.5]) that if A(X) has normal structure then compactness and
countable compactness of A(X) are equivalent. ¤

This theorem combined with Theorem 2 also implies that a complete metric space that
is uniformly convex in the wider sense has the fixed point property.

Remark. We can modify the definition of uniformly convexity in the wider sense by
changing the modulus of convexity δ to an increasing function

δ̂ : [0, 2] → [0, 1] (δ̂(s) = 0 ⇔ s = 0)

and the inequality to

d(z,m) ≤ max{d(z, x), d(z, y)}
(

1 − δ̂

(
d(x, y)

max{d(z, x), d(z, y)}

))
.

This condition is stronger than the previous one because δ(r, t) = δ̂(t/r) gives the impli-
cation. The above proof of Theorem 9 shows that if X is uniformly convex in this sense
then A(X) has uniformly normal structure with the property rad(A) ≤ (1 − α) diam(A)

for α = lims↗1 δ̂(s). Note that if (X, d) is an ultrametric space where

d(x, y) ≤ max{d(z, x), d(z, y)}
is always satisfied, then the modulus of convexity is uniformly bounded by δ̂(1).
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