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Abstract. We consider a classification of Teichmüller modular transfor-
mations of an analytically infinite Riemann surface. If the orbit of a Teich-
müller modular transformation diverges to the point at infinity (divergent
type), then it has no accumulation points in the Teichmüller space (infinitely
discrete type). In this note, we show that there is a Teichmüller modular
transformation for some Riemann surface that is of infinitely discrete type
but not of divergent type.

We consider the Teichmüller space T (R) of an analytically infinite Riemann
surface R and the Teichmüller modular group Mod(R) acting on T (R), where
T (R) is not finite dimensional and Mod(R) is not finitely generated.

The Teichmüller space T (R) is the set of all Teichmüller equivalence classes
[f ] of quasiconformal homeomorphisms f of R. Here we say that f1 : R →
R1 and f2 : R → R2 are Teichmüller equivalent if there exists a conformal
homeomorphism h : R1 → R2 such that f2 ◦ f−1

1 is homotopic to h relative to
the ideal boundary at infinity of R1. It is known that T (R) is a complex Banach
manifold. Also, it has a metric structure such that the distance between p1 =
[f1] and p2 = [f2] is given by dT (p1, p2) = log K(f), where K(f) is the maximal
dilatation of an extremal quasiconformal homeomorphism f in the homotopy
class of f2 ◦ f−1

1 . Then dT is a complete distance on T (R), which is called the
Teichmüller distance. It is known that the Teichmüller distance on T (R) is
the same as its Kobayashi distance. See [3] and [4] for fundamental facts on
Teichmüller spaces.

A quasiconformal mapping class is a homotopy class [g] of quasiconformal
automorphisms g : R → R relative to the ideal boundary at infinity of R. The
quasiconformal mapping class group MCG(R) is the group of all quasiconfor-
mal mapping classes. Each γ = [g] ∈ MCG(R) acts on T (R) from the left in
such a way that γ∗ : [f ] 7→ [f ◦ g−1]. It is evident from the definition that
MCG(R) acts on T (R) isometrically with respect to the Teichmüller distance
dT . Also, it acts biholomorphically on T (R).
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Let ι : MCG(R) → Aut(T (R)) be the homomorphism defined by γ 7→ γ∗,
where Aut(T (R)) denotes the group of all isometric biholomorphic automor-
phisms of T (R). The image Im ι ⊂ Aut(T (R)) is called the Teichmüller mod-
ular group and is denoted by Mod(R). Each element γ∗ ∈ Mod(R) is called
a Teichmüller modular transformation. Dynamics of the action of Mod(R) on
T (R) when R is analytically infinite has been studied since [2].

We classify the Teichmüller modular transformations into several types ac-
cording to the behavior of their orbits.

Definition. A Teichmüller modular transformation γ∗ ∈ Mod(R)− {id} is of

(i) divergent type if the orbit 〈γ∗〉(p) = {γn
∗ (p)}n∈Z diverges to the point

at infinity of T (R) as n → ±∞;
(ii) infinitely discrete type if it is of infinite order and if the orbit 〈γ∗〉(p) of

each point p ∈ T (R) has no accumulation points in T (R);
(iii) unbounded type if the orbit 〈γ∗〉(p) is unbounded in T (R).

Conditions (i) and (iii) are independent of the choice of p ∈ T (R).

Note that the type of a Teichmüller modular transformation γ∗ ∈ Mod(R)−
{id} is consistent in 〈γ∗〉 − {id} ([5, Theorem 1]). Namely, γ∗ is of infinitely
discrete (divergent, unbounded, respectively) type if and only if so is γm

∗ for
some and every m ∈ Z − {0}.

It is evident from the definition that, if γ∗ ∈ Mod(R) is of divergent type,
then it is of infinitely discrete type. Furthermore it was proved in [5, Theorem
3] that if γ∗ ∈ Mod(R) is of infinitely discrete type, then it is of unbounded
type. Thus we have the following inclusion relations for the classes of Teich-
müller modular transformations:

{divergent type} ⊂ {infinitely discrete type} ⊂ {unbounded type}.
In [5, Theorem 4], it was proved that the second inclusion is proper. In this

note, we will prove that the first inclusion is also proper. This was mentioned
in [5], and an example was given in [6, Example 2.10] without proof.

Theorem 1. There exists a Teichmüller modular transformation γ∗ ∈ Mod(R)
for some Riemann surface R that is of infinitely discrete type but not of diver-
gent type.

The construction of the Riemann surface R as in this theorem is given below.
Let S be a closed Riemann surface of genus 3 and we take 3 mutually disjoint
non-dividing simple closed geodesics a, b and c. We cut S along a and b
to make a totally geodesic surface S ′ of genus 1 with 4 boundary components
and give a pants decomposition for S ′ having a, b and c as boundary geodesics.
We prepare infinitely many copies of S ′ and paste them to make an abelian
covering surface R0 of S with the covering transformation group isomorphic
to Z2. Then we index all the lifts of c to R0 in such a way that cij is the
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image of some fixed lift c00 under the covering transformation corresponding
to (i, j) ∈ Z2. We extend the pants decomposition of S ′ to R0 so that the
action of the covering transformation group Z2 preserves this decomposition.

By assigning the geodesic lengths `(cij) to each cij and keeping the lengths
of the other boundary geodesics of the pants decomposition invariant, we con-
struct our Riemann surface R. This is performed by a locally quasiconformal
deformation but it is not necessarily globally quasiconformal. In our purpose,
we define

`(cij) = exp
{
−2|i|+1 h(2−|i|(|i|+1)/2j)

}
,

where h is a periodic function of period one defined on R such that h(x) = x
for 0 ≤ x ≤ 1/2 and h(x) = 1 − x for 1/2 ≤ x ≤ 1.

Take a mapping class [g] ∈ MCG(R) corresponding to the element of the
covering transformation j 7→ j + 1 in Z2. Then, we will see that [g] gives a
Teichmüller modular transformation γ∗ ∈ Mod(R) such that 〈γ∗〉 acts discon-
tinuously on T (R). We will also see that there is a subsequence {nk} such that
{γnk

∗ (o)} is bounded for the basepoint o = [id] ∈ T (R).
We use the following elementary fact on a bilateral sequence.

Proposition 2. Let {aj}j∈Z be a bilateral sequence of real numbers and T a
positive integer that is a multiple of 4. For a positive constant L > 0, assume
that aj satisfies aj ≥ L + a0 if T/4 ≤ j ≤ 3T/4 (mod T ). Then, for every
integer m 6= 0 (mod T ), there exists some integer k such that

|ak+m − ak| ≥ 4L/T

holds.

Proof. Suppose to the contrary that there is some m 6= 0 (mod T ) such that

|ak+m − ak| < 4L/T

for every integer k. Let t ≥ 1 be the smallest positive integer satisfying

T/4 ≤ tm ≤ 3T/4 (mod T ).

Then t ≤ T/4 always holds. For k = 0,m, . . . , (t − 1)m, we apply the above
inequality, which yields

|atm − a0| < t · 4L/T ≤ L.

However, this contradicts the assumption on {aj}j∈Z. ¤

First, we show that γ∗ is of infinitely discrete type.

Lemma 3. For the cyclic group 〈γ∗〉 generated by γ∗ ∈ Mod(R), the orbit
〈γ∗〉(p) of each point p ∈ T (R) is a discrete set in T (R).
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Proof. Consider an arbitrary point p ∈ T (R) and set dT (o, p) = log K. Let
i0(p) be the smallest integer i0 ≥ 1 such that log K ≤ 2i0−2. We will show that
dT (γn

∗ (p), p) is uniformly bounded away from zero for all n ∈ Z − {0}. Since
dT (γ−n

∗ (p), p) = dT (γn
∗ (p), p), we have only to show this for n ≥ 1. Represent

each integer n ≥ 1 uniquely by

n =
∞∑
i=0

ai · 2i(i+1)/2 (0 ≤ ai ≤ 2i+1 − 1).

Here, the summation is actually a finite sum. Let i(n) be the smallest integer
i ≥ 1 such that ai 6= 0.

Set lp(i, j) = − log `p(cij) for p ∈ T (R) and for (i, j) ∈ Z2. Consider the i-th
row for i > i0(p). As a function of j ∈ Z, lo(i, j) is periodic with prime period
θ(i) = 2i(i+1)/2. Then

lo(i, j) = 0 for j = 0 (mod θ(i));

lo(i, j) ≥ 2i/2 for θ(i)/4 ≤ j ≤ 3θ(i)/4 (mod θ(i)).

Since
|lp(i, j) − lo(i, j)| ≤ log K ≤ 2i0(p)−2,

by Sorvali [7] and Wolpert [8], we have

lp(i, j) ≤ 2i0(p)−2 for j = 0 (mod θ(i));

lp(i, j) ≥ 2i/2 − 2i0(p)−2 for θ(i)/4 ≤ j ≤ 3θ(i)/4 (mod θ(i)).

Then we define the difference of these values by

v(i, p) = 2i/2 − 2i0(p)−2 − 2i0(p)−2 = 2i0(p)−1(2i−i0(p) − 1)

for each integer i > i0(p).
Case 1: i(n) ≤ i0(p). Consider the i-th row for i = i0(p) + 1. We apply

Proposition 2 for aj = lp(i, j), T = θ(i) and L = v(i, p). Then there is some k
such that

|lp(i, k + m) − lp(i, k)| ≥ 4L/T

for all m 6= 0 (mod T ). Since n 6= 0 (mod T ) by i(n) < i, we can apply this
estimate for m = n. Then

dT (γn(p), p) ≥ |lp(i, k + n) − lp(i, k)|
≥ 4 · 2i0(p)−1/2(i0(p)+1)(i0(p)+2)/2

= 2−i0(p)(i0(p)+1)/2.

Case 2: i(n) ≥ i0(p) + 1. Consider the i-th row for i = i(n) + 1. We apply
Proposition 2 for aj′ = lp(i, θ(i(n))j′), T = θ(i)/θ(i(n)) and L = v(i, p). Then
there is some k = θ(i(n))k′ such that

|lp(i, θ(i(n))(k′ + m′)) − lp(i, θ(i(n))k′)| ≥ 4L/T
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for all m′ 6= 0 (mod T ). Since n′ 6= 0 (mod T ) for n = θ(i(n))n′ due to the
definition of i(n), we can apply this estimate for m′ = n′. Then

dT (γn
∗ (p), p) ≥ |lp(i, k + n) − lp(i, k)|

≥ 4 · 2i0(p)−1 · 2i(n)−i0(p)+1/2i(n)+1

= 2.

By dividing the arguments into the above two cases, we have seen that
dT (γn

∗ (p), p) is uniformly bounded away from zero for all n ∈ Z − {0}. By
isometric group invariance, this implies that the orbit 〈γ∗〉(p) is a discrete set
in T (R). ¤

Next, we show that γ∗ is not of divergent type.

Lemma 4. The orbit 〈γ∗〉(o) of the basepoint o ∈ T (R) does not diverge to
the infinity. More precisely, {γn

∗ (o) | n = 2m(m+1)/2, m ≥ 1} is a bounded set
in T (R).

Proof. By its construction, the Riemann surface R has a pants decomposition
that is invariant under the action of the mapping class [g] ∈ MCG(R). We
consider a pair of pants Pij for each (i, j) ∈ Z2 that has cij as a geodesic
boundary component. (There are two such pairs of pants for each (i, j).)
The lengths of the other geodesic boundary components c′ and c′′ of Pij are
mutually the same for all (i, j).

The mapping class [gn] for each n ∈ Z is realized by sending each pair
of pants in the invariant pants decomposition to the corresponding pair of
pants quasiconformally in such a way that the boundary geodesics are mapped
linearly with respect their length parameters and without twists. Note that
the lengths of geodesic boundaries of the pants decomposition are uniformly
bounded and can be taken small enough if necessary. Then, by Bishop [1],
the maximal dilatation of the quasiconformal homeomorphism of each pair of
pants can be estimated above in terms of the ratio of the geodesic length `(cij)
of cij to that of the image of cij. Therefore, dT (γn

∗ (o), o) is estimated above
by the supremum of the difference of log `(cij) and log `(gn(cij)) taken over all
(i, j) ∈ Z2.

Set l(i, j) = − log `(cij) as before and consider |l(i, j + n) − l(i, j)| for n =
2m(m+1)/2 with m ≥ 1. If |i| ≤ m, then l(i, j + n) = l(i, j). Regarding
l(i, j) = l(−i, j), we have only to consider the case for i > m. Then an
elementary observation using the period θ(i) = 2i(i+1)/2 on the i-th row shows
that

|l(i, j + n) − l(i, j)| ≤ 2i+1n/θ(i)

≤ 2i+12m(m+1)/2/2i(i+1)/2

≤ 2
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for all integer j. This implies that dT (γn
∗ (o), o) is uniformly bounded by some

constant for all n = 2m(m+1)/2. ¤
Proof of Theorem 1. We have already done. ¤
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