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Abstract. Under a certain geometric assumption on a hyperbolic Rie-
mann surface, we prove an asymptotic version of the fixed point theorem for
the Teichmüller modular group, which asserts that every finite subgroup of
the asymptotic Teichmüller modular group has a common fixed point in the
asymptotic Teichmüller space. For its proof, we use a topological character-
ization of the asymptotically trivial mapping class group, which has been
obtained in the authors’ previous paper but a simpler argument is given
here. As a consequence, every finite subgroup of the asymptotic Teichmül-
ler modular group is realized as a group of quasiconformal automorphisms
modulo coincidence near the infinity. Furthermore, every finite subgroup
of a certain geometric automorphism group of the asymptotic Teichmüller
space is realized as an automorphism group of the Royden boundary of the
Riemann surface. These results can be regarded as asymptotic versions of
the Nielsen realization theorem.

1. Introduction and statement of results

We consider the group QC(R) of all quasiconformal automorphisms of a
Riemann surface R, the quasiconformal mapping class group MCG(R) of all
homotopy equivalence classes of the elements of QC(R), and the surjective ho-
momorphism q : QC(R) → MCG(R). The realization problem of the mapping
class group is asking whether there exists a homomorphism E : Γ → QC(R)
such that q ◦ E = id|Γ for a given subgroup Γ of MCG(R). In particular, we
refer to the realization problem for a finite subgroup of MCG(R) as the Nielsen
realization problem.

For an analytically finite Riemann surface R (in other words, for a hyper-
bolic surface R of finite area), Kerckhoff [16] proved the fixed point theorem
for a finite subgroup of the Teichmüller modular group Mod(R). It asserts that
every finite subgroup of Mod(R) has a common fixed point in the Teichmüller
space T (R). This is equivalent to the statement that every finite subgroup of
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MCG(R) can be realized as a group of conformal automorphisms of the Rie-
mann surface corresponding to the fixed point, and thus gives an affirmative
answer to the Nielsen realization problem. The Nielsen realization problem is
also true even for an analytically infinite Riemann surface. Indeed, a gener-
alization of the fixed point theorem to analytically infinite Riemann surfaces
follows from a result by Markovic [20].

In this paper, we consider an asymptotic version of the fixed point theorem
for the asymptotic Teichmüller modular group. The asymptotic Teichmül-
ler space AT (R) is defined in a similar manner to the Teichmüller space by
replacing conformal equivalence with asymptotically conformal equivalence.
Every element of MCG(R) induces a biholomorphic automorphism of AT (R),
which gives a representation ιAT from MCG(R) to the group Aut(AT (R))
of all biholomorphic automorphisms of AT (R). The asymptotic Teichmüller
modular group ModAT (R) is defined to be the image of ιAT . Our fixed point
theorem can be stated as follows.

Theorem 2.5. Every finite subgroup of ModAT (R) has a common fixed point
in AT (R) if R satisfies the weak bounded geometry condition.

The (weak) bounded geometry condition is a condition of hyperbolic geom-
etry on Riemann surfaces. Its definition is given in the next section. We will
prove Theorem 2.5 in Section 4 after reviewing a topological characterization
of the kernel of ιAT as Theorem 3.2 in Section 3.

As a consequence of Theorem 2.5, we have two asymptotic versions of the
Nielsen realization theorem. The first one is for the asymptotic Teichmül-
ler modular group. The end quasiconformal automorphism group QCe(R)
is the group of all end equivalence classes of quasiconformal automorphisms
of R. Here we say that two quasiconformal automorphisms of R are end
equivalent if they are coincident outside some topologically finite subsurface of
finite area in R. The projection is denoted by e : QC(R) → QCe(R), which
induces a surjective homomorphism qe : QCe(R) → ModAT (R). Then the
realization problem for the asymptotic Teichmüller modular group is asking
whether there exists a local section for qe. The following theorem says that
this problem is true for every finite subgroup of ModAT (R) under the same
geometric assumption on R, and thus this can be regarded as an asymptotic
version of the Nielsen realization theorem.

Theorem 5.2. For every finite subgroup Γ̂ of ModAT (R), there exists a ho-

momorphism Ee : Γ̂ → QCe(R) such that qe ◦Ee = id|Γ̂ under the weak bounded
geometry condition of R.
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In fact, every finite subgroup Γ̂ of ModAT (R) can be realized as a subgroup
of QCe(R) whose elements are conformal outside some topologically finite sub-
surface of finite area in the Riemann surface corresponding to the fixed point.
We demonstrate these arguments in Section 5.

Another asymptotic version of the Nielsen realization theorem is for the
boundary geometric automorphism group of the asymptotic Teichmüller space.
We consider the Royden boundary dR of R and its subset d0R that is obtained
by removing all boundary points corresponding to punctures of R. Every
quasiconformal automorphism of R extends to a homeomorphism of dR and
keeps d0R invariant. Let Homeo∗(d0R) denote the group of all homeomorphic
automorphisms of d0R that extend continuously to quasiconformal homeo-
morphisms of some neighborhoods of d0R. This extension of an element of
Homeo∗(d0R), which is called a supporting map, induces a biholomorphic au-
tomorphism of AT (R).

We define the boundary geometric automorphism group Aut∗(AT (R)) as the
group of all biholomorphic automorphisms of AT (R) induced by supporting
maps. Then we have a surjective homomorphism qb from Homeo∗(d0R) to
Aut∗(AT (R)) and the following commutative diagram, where i stands for the
inclusion map:

QC(R)
e−−−→ QCe(R)

ν−−−→ Homeo∗(d0R)yq

yqe

yqb

MCG(R) ∼= Mod(R)
ιAT−−−→ ModAT (R)

i−−−→ Aut∗(AT (R))

The realization problem for the boundary geometric automorphism group
is asking whether there exists a local section of the surjective homomorphism
qb for a given subgroup of Aut∗(AT (R)). The following theorem states that
this problem is true for every finite subgroup of Aut∗(AT (R)) under the same
geometric assumption on R as before.

Theorem 6.5. For every finite subgroup Γ̃ of Aut∗(AT (R)), there exists a

homomorphism Eb : Γ̃ → Homeo∗(d0R) such that qb ◦ Eb = id|Γ̃ under the weak
bounded geometry condition of R.

We will see this version of the realization theorem using the Royden bound-
ary in Section 6. Finally in Section 7, we introduce the space of ends of R and
deal with the pure mapping class group, which is defined to be a subgroup of
MCG(R) consisting of all elements fixing each non-cuspidal end.
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2. Statement of the fixed point theorem

In this section, we first review the fixed point theorem for the Teichmül-
ler modular group and the Nielsen realization theorem for the quasiconfor-
mal mapping class group, especially for analytically infinite Riemann surfaces.
Then we explain our fixed point theorem for the asymptotic Teichmüller mod-
ular group.

Throughout this paper, we assume that a Riemann surface R admits a hyper-
bolic structure, that is, R is represented as the quotient space H/H of the hy-
perbolic plane H by a torsion-free Fuchsian group H. Let QC(R) be the group
of all quasiconformal automorphisms of R. A quasiconformal mapping class
of R is the homotopy equivalence class [g] of quasiconformal automorphisms
g ∈ QC(R), and the quasiconformal mapping class group MCG(R) of R is the
group of all quasiconformal mapping classes of R. Here the homotopy is con-
sidered to be relative to the ideal boundary at infinity ∂R = (∂H−Λ(H))/H,
where Λ(H) is the limit set of H. The correspondence g 7→ [g] gives a surjec-
tive homomorphism q : QC(R) → MCG(R). The realization problem for the
quasiconformal mapping class group MCG(R) is asking whether there exists a
homomorphism E : Γ → QC(R) such that q ◦ E = id|Γ for a given subgroup Γ
of MCG(R).

The quasiconformal mapping class group acts on the Teichmüller space. The
Teichmüller space T (R) of a Riemann surface R is the set of all equivalence
classes [f ] of quasiconformal homeomorphisms f of R. Here we say that two
quasiconformal homeomorphisms f1 and f2 of R are equivalent if there exists
a conformal homeomorphism h : f1(R) → f2(R) such that f−1

2 ◦ h ◦ f1 is
homotopic to the identity on R. Here the homotopy is again considered to
be relative to the ideal boundary at infinity ∂R. The Teichmüller space T (R)
can be embedded in the complex Banach space of all bounded holomorphic
quadratic differentials on R−, where R− is the complex conjugate of R. In this
way, T (R) is endowed with the complex structure. For details, see [17] and
[26].

Every element [g] ∈ MCG(R) induces a biholomorphic automorphism [g]∗ of
T (R) by [f ] 7→ [f ◦ g−1], which is also isometric with respect to the Teichmül-
ler-Kobayashi distance. Let Aut(T (R)) denote the group of all biholomorphic
automorphisms of T (R). Then we have a homomorphism

ιT : MCG(R) → Aut(T (R))

given by [g] 7→ [g]∗, and we define the Teichmüller modular group by

Mod(R) = ιT (MCG(R)).

We call an element of Mod(R) a Teichmüller modular transformation. It is
proved in [2] that the homomorphism ιT is injective (faithful) for all Riemann
surfaces R of non-exceptional type. See also [6] and [23] for other proofs.
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Here we say that a Riemann surface R is of exceptional type if R has finite
hyperbolic area and satisfies 2g +n ≤ 4, where g is the genus of R and n is the
number of punctures of R. It was a problem to determine the homomorphism
ιT is also surjective, especially for an analytically infinite Riemann surface. By
the combination of the results of [1] and [19], this problem has been solved
affirmatively, namely, Mod(R) = Aut(T (R)). See also [9] for simplifying a
part of the proof in a special case.

The Nielsen realization problem is the realization problem for a finite sub-
group of MCG(R), namely, it is asking whether there exists a homomorphism
E : Γ → QC(R) such that q ◦ E = id|Γ for a finite subgroup Γ of MCG(R). For
a compact Riemann surface R, Nielsen himself proved that a finite cyclic sub-
group Γ can be always realized, and after several partial solutions by Fenchel
and Zieschang, Kerckhoff [16] finally proved the following fixed point theorem,
which gives an affirmative answer to the Nielsen realization problem.

Theorem 2.1. Let R be an analytically finite Riemann surface. Then a sub-
group of Mod(R) is finite if and only if it has a common fixed point in T (R).

Since a Teichmüller modular transformation having a fixed point p = [f ] ∈
T (R) is realized as a conformal automorphism of the Riemann surface Rp =
f(R) corresponding to p, Theorem 2.1 is equivalent to the statement that, if a
subgroup of MCG(R) is finite, then it can be realized as a group of conformal
automorphisms of Rp (and vice versa). Since the groups QC(R) and QC(Rp)
are quasiconformally conjugate, this implies that there exists a homomorphism
E : Γ → QC(R) such that q ◦ E = id|Γ for every finite group Γ of MCG(R).

A generalization of Theorem 2.1 to analytically infinite Riemann surfaces
follows from the result on uniformly quasisymmetric groups by Markovic [20].

Theorem 2.2. Let R be a Riemann surface in general. For a subgroup G of
Mod(R), the orbit G(p) is bounded for some p ∈ T (R) if and only if G has a
common fixed point in T (R). In particular, a finite subgroup of Mod(R) has a
common fixed point in T (R).

Hence Theorem 2.2 implies the following statement and eventually the Nielsen
realization problem is true for all Riemann surfaces.

Corollary 2.3. Let R be a Riemann surface in general. Every finite subgroup
Γ of MCG(R) can be realized as a group of conformal automorphisms of some
Riemann surface that is quasiconformally equivalent to R. In particular, there
exists a homomorphism E : Γ → QC(R) such that q ◦ E = id|Γ for every finite
subgroup Γ of MCG(R).

Note that the realization problem is not true for the whole quasiconformal
mapping class group. Indeed, for a compact Riemann surface R of genus g ≥ 2,
there exists no homomorphism E : MCG(R) → QC(R) such that q ◦ E = id.
See [21] and [22].
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In what follows, we consider an asymptotic version of the fixed point theorem
for the asymptotic Teichmüller modular group. The asymptotic Teichmüller
space has been introduced in [15] for the hyperbolic plane and in [3] and [4]
for an arbitrary Riemann surface. We say that a quasiconformal homeomor-
phism f of R is asymptotically conformal if, for every ε > 0, there exists a
compact subset V of R such that the maximal dilatation K(f |R−V ) of the
restriction of f to R − V is less than 1 + ε. We say that two quasiconformal
homeomorphisms f1 and f2 of R are asymptotically equivalent if there exists
an asymptotically conformal homeomorphism h : f1(R) → f2(R) such that
f−1

2 ◦ h ◦ f1 is homotopic to the identity on R relative to the ideal boundary
at infinity ∂R. The asymptotic Teichmüller space AT (R) of R is the set of all
asymptotic equivalence classes [[f ]] of quasiconformal homeomorphisms f of
R.

The asymptotic Teichmüller space AT (R) is of interest only when R is an-
alytically infinite. Otherwise AT (R) is trivial, that is, it consists of just one
point. Since a conformal homeomorphism is asymptotically conformal, there is
a projection α : T (R) → AT (R) that maps each Teichmüller equivalence class
[f ] ∈ T (R) to the asymptotic Teichmüller equivalence class [[f ]] ∈ AT (R).
The asymptotic Teichmüller space AT (R) has a complex structure such that
α is holomorphic. See also [5] and [14].

Every element [g] ∈ MCG(R) induces a biholomorphic automorphism [g]∗∗
of AT (R) by [[f ]] 7→ [[f ◦ g−1]], which is also isometric with respect to the
asymptotic Teichmüller distance. See [4]. Let Aut(AT (R)) be the group of all
biholomorphic automorphisms of AT (R). Then we have a homomorphism

ιAT : MCG(R) → Aut(AT (R))

given by [g] 7→ [g]∗∗, and we define the asymptotic Teichmüller modular group
(the geometric automorphism group of AT (R)) by

ModAT (R) = ιAT (MCG(R)).

We call an element of ModAT (R) an asymptotic Teichmüller modular trans-
formation. It is different from the case of the representation ιT : MCG(R) →
Aut(T (R)) that the homomorphism ιAT is not injective, namely, Ker ιAT 6=
{[id]} unless R is either the unit disc or the once-punctured disc ([2]). We call
an element of Ker ιAT asymptotically trivial and call Ker ιAT the asymptotically
trivial mapping class group.

To formulate our results, we need to introduce the following geometric con-
ditions on the hyperbolic structure of an analytically infinite Riemann surface.
Hereafter, Ṙ denotes the non-cuspidal part of R obtained by removing all
horocyclic cusp neighborhoods of area one. Also, for a constant M > 0, RM

denotes the set of all points x in R satisfying a property that there exists



THE NIELSEN PROBLEM FOR TEICHMÜLLER MODULAR GROUPS 7

a homotopically non-trivial and non-cuspidal closed curve based at x whose
hyperbolic length is less than M .

Definition 2.4. We say that a Riemann surface R satisfies the bounded ge-
ometry condition if the following three conditions are fulfilled:

(i) lower bound condition: there exists a constant m > 0 such that, for
every point x ∈ Ṙ, every homotopically non-trivial curve based at x
has hyperbolic length greater than or equal to m;

(ii) upper bound condition: there exist a constant M > 0 and a connected
component R0

M of RM such that inclusion map R0
M → R induces a

surjective homomorphism π1(R
0
M) → π1(R).

(iii) R has no ideal boundary at infinity ∂R.

Moreover, we say that a Riemann surface R satisfies the weak bounded geometry
condition if only two conditions (i) and (ii) above are satisfied, namely, R may
have an ideal boundary at infinity.

Every non-universal normal cover of an analytically finite Riemann surface
satisfies the bounded geometry condition and every non-universal normal cover
of a topologically finite Riemann surface satisfies the weak bounded geometry
condition. Moreover, if the convex core of a Riemann surface R admits such
pants decomposition that the diameter of the non-cuspidal part of each pair
of pants (possibly degenerate) is uniformly bounded, then R satisfies the weak
bounded geometry condition. The bounded geometry condition is preserved
under quasiconformal homeomorphisms. Thus, this can be regarded as a con-
dition for the Teichmüller space.

In [12], we have proved that every element of ModAT (R) of finite order has
a fixed point in AT (R) if R satisfies a certain stronger bounded geometry
condition. Our main theorem in this paper is an extension of this result to the
following asymptotic version of the fixed point theorem.

Theorem 2.5. (Fixed point theorem) Let R be a Riemann surface satisfying
the weak bounded geometry condition. Then every finite subgroup of ModAT (R)
has a common fixed point in AT (R).

We prove Theorem 2.5 in Section 4 after some preparation in Section 3.

3. Topological characterization of the asymptotically trivial
mapping class group

For the proof of Theorem 2.5, a topological characterization of the asymp-
totically trivial mapping class group plays a central role. To state this result
and give a proof for it, we begin with several definitions.

By a subsurface of a Riemann surface R, we mean a surface possibly with
boundary in R. We say that a subsurface V of R is topologically finite if its
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fundamental group is finitely generated and, in addition, if each component of
the relative boundary ∂V ⊂ R is homeomorphic to a circle.

For a homotopically non-trivial and non-cuspidal simple closed curve c on
a hyperbolic Riemann surface R, let c∗ be the unique simple closed geodesic
that is freely homotopic to c. For a subsurface V of R whose relative boundary
∂V consists of simple closed curves, let V∗ be a subsurface of R each of whose
relative boundary components is the simple closed geodesic that is freely ho-
motopic to the corresponding component of ∂V . We call such V∗ a geodesic
subsurface. Remark that, if a relative boundary component of ∂V is homotopi-
cally trivial or cuspidal, then we assume that the corresponding component of
∂V∗ degenerates.

We consider the following subgroup of the quasiconformal mapping class
group.

Definition 3.1. The stable quasiconformal mapping class group G∞(R) is a
subgroup of MCG(R) consisting of all essentially trivial mapping classes [g] of
a Riemann surface R. Here [g] ∈ MCG(R) is said to be essentially trivial (or
trivial near infinity) if there exists a topologically finite subsurface V of finite
area in R such that, for each connected component U of R−V , the restriction
g|U : U → R is homotopic to the inclusion map id|U : U ↪→ R relative to the
ideal boundary at infinity.

It is obvious from definition that G∞(R) ⊂ Ker ιAT . This inclusion is not
necessarily equality, in general. See [10, Remark 4.1] for the difference. How-
ever, under the weak bounded geometry condition, we have the equality, which
gives the topological characterization of Ker ιAT .

Theorem 3.2. Let R be a Riemann surface satisfying the weak bounded ge-
ometry condition. Then Ker ιAT = G∞(R).

In [12], we have proved this theorem as a consequence of several other related
theorems. In this section, we give a rather direct proof for it by summariz-
ing necessary results proved in [12]. Remark that, in the previous paper, we
used the upper bound condition in a stronger sense that every point of R has
uniformly bounded injectivity radius (and hence there is no ideal boundary
at infinity) and imposed this condition on R together with the lower bound
condition. This is because of avoiding inessential complexity in the entire ar-
guments. However, only to prove Theorem 3.2, it is enough to assume the
upper bound condition introduced in Section 2. Actually, it is easy to verify
that Lemma 4.9 in [12], which is used in the proof of Proposition 3.3 below, is
still valid under this upper bound condition.

In this paper (with a slight difference from [12]), a thetaframe X = (~c, η) in a
Riemann surface R is defined by an oriented simple closed geodesic ~c together
with a non-degenerate oriented simple geodesic arc η connecting ~c to itself



THE NIELSEN PROBLEM FOR TEICHMÜLLER MODULAR GROUPS 9

perpendicularly and having no intersection with ~c except for its end points.
Furthermore, we say that X = (~c, η) is a D-thetaframe for a constant D > 0 if
the hyperbolic lengths of ~c and η are not greater than D. For a quasiconformal
homeomorphism f of R onto another Riemann surface R′ and for a thetaframe
X = (~c, η) in R, we denote by f(X)∗ the thetaframe in R′ that is homotopic
to f(X) = (f(~c), f(η)). More precisely, the thetaframe f(X)∗ = (f(~c)∗, f(η)∗)
consists of the oriented simple closed geodesic f(~c)∗ freely homotopic to f(~c)
and the oriented geodesic arc f(η)∗ defined as follows. Let f(x1) and f(x2) be
the end points of f(η) in f(~c) and let Ht (0 ≤ t ≤ 1) be a homotopy sending
f(~c) to f(~c)∗. Then Ht(f(xi)) defines an arc si from f(xi) to a point in f(~c)∗
for i = 1, 2. The geodesic arc f(η)∗ connects f(~c)∗ to itself in the homotopy
class of s−1

1 · f(η) · s2 with the end points throughout on f(~c)∗.
The next proposition, which has been essentially proved in [12], ensures that

we can always take a thetaframe that is not fixed by a non-trivial quasiconfor-
mal mapping class.

Proposition 3.3. Let R be a Riemann surface satisfying the weak bounded
geometry condition, and U∗ a topologically infinite geodesic subsurface of R.
Let g be a quasiconformal automorphism of R such that the restriction g|U∗

is not homotopic to the inclusion map U∗ ↪→ R, where the homotopy is not
necessarily relative to the ideal boundary at infinity. Then there exists a D-
thetaframe X in the B-neighborhood of U∗ such that g(X)∗ 6= X. Here D and
B are constants depending only on the constants m and M for the lower and
upper bound conditions.

Proof. We choose a point x in U∗ ∩ R0
M sufficiently far away from ∂U∗ and a

non-trivial, non-cuspidal simple loop cx based at x whose length is less than
M . Clearly cx is contained in R0

M . Let c be the simple closed geodesic freely
homotopic to cx. Then the length of c is between m and M , and c is also
contained in R0

M . Moreover, there is a constant B > 0 depending only on m
and M such that the distance between cx and c is not greater than B. Since x
is sufficiently far away from ∂U∗, we may assume that c is contained in U∗. By
[8, Proposition 3.1], giving an orientation to c and choosing a suitable geodesic
arc η, we have a D-thetaframe X = (~c, η) for a constant D > 0 depending only
on m and M . We may also assume that X is contained in U∗.

If g(X)∗ 6= X, then the thetaframe X is a desired one. If g(X)∗ = X, then
applying [12, Lemma 4.9] and modifying the obtained frame to a thetaframe

(see [12, Proposition 4.3]), we can find a D̃-thetaframe X̃ in the B̃-neighborhood

of U∗ such that g(X̃)∗ 6= X̃. Here the constants D̃ and B̃ again depend only
on m and M . ¤

The following proposition is crucial for our proof of Theorem 3.2. This has
been proved in [12, Lemma 7.3].
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Proposition 3.4. Let R be a Riemann surface satisfying the lower bound
condition, and {cn}∞n=1 a sequence of mutually disjoint simple closed geodesics
on R such that the hyperbolic lengths of cn are uniformly bounded from above.
Let [g] ∈ MCG(R) be a quasiconformal mapping class such that g(cn)∗ 6= cn′

for any n and n′. Then [g] /∈ Ker ιAT .

Now we are ready to give the proof for our theorem.

Proof of Theorem 3.2. Let R be a Riemann surface satisfying the weak
bounded geometry condition for the constants m and M . We may assume
that R is topologically infinite. We take a quasiconformal mapping class [g]
that does not belong to G∞(R), and prove that [g] /∈ Ker ιAT . The assumption
[g] /∈ G∞(R) in particular implies that, for each compact subsurface V of R,
there exists a topologically infinite connected component U of R − V such
that the restriction g|U∗ to the geodesic subsurface U∗ is not homotopic to the
inclusion map id|U∗ : U∗ ↪→ R relative to the ideal boundary at infinity.

First, we consider the case where R has no ideal boundary at infinity. Then
by Proposition 3.3, there exists a D-thetaframe X in the B-neighborhood
of U∗ such that g(X)∗ 6= X. Let {Rn}∞n=1 be a regular exhaustion of R.
Namely, {Rn}∞n=1 is an increasing sequence of compact subsurfaces Rn such
that R =

⋃∞
n=1 Rn and each connected component of the complement R − Rn

is not relatively compact. Then, for each n ≥ 1, there exists a D-thetaframe
Xn = (~cn, ηn) in the B-neighborhood of (Un)∗ for some topologically infinite
connected component Un of R − Rn such that g(Xn)∗ 6= Xn.

We will choose a sequence of simple closed geodesics {c̃n}∞n=1 of uniformly
bounded lengths tending to the infinity of R (that is, escaping from each
compact subsurface of R) and satisfying g(c̃n)∗ 6= c̃n as follows. Fix n. For the
thetaframe Xn = (~cn, ηn), if the non-oriented simple closed curve cn underlying
~cn satisfies g(cn)∗ 6= cn, then we just set c̃n = cn. Hence, hereafter, we only
consider the case where g(cn)∗ = cn. The assumption g(Xn)∗ 6= Xn implies
g(ηn)∗ 6= ηn in this case. The two end points of ηn on cn divide cn into two
subarcs α1

n and α2
n. Let ci

n be a closed curve αi
n · ηn for each i = 1, 2, which

has the length bounded by 2D. If one of {ci
n}i=1,2, say c1

n, is freely homotopic
to a simple closed geodesic (c1

n)∗, then we have g(c1
n)∗ 6= (c1

n)∗ by g(ηn)∗ 6= ηn.
We set c̃n = (c1

n)∗ in this case.
Now we only deal with the case where each of {ci

n}i=1,2 is cuspidal, that is,
freely homotopic to a simple closed curve around a puncture. Then a connected
component of R−cn must be a twice punctured disk Pn. Consider a half-collar
An of cn in R − Pn, which is a ring domain within some distance ω from cn.
By the bounded geometry condition for R, the maximal width ω for such An

is uniformly bounded by a constant D′ > 0 depending only on m and M .
See [8, Proposition 3.1] for this argument. This implies that the length of
the shortest geodesic arc η′

n connecting cn to itself in R − Pn is bounded by
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2D′. Then we take the other thetaframe X ′
n = (~cn, η

′
n) and make the simple

closed curves c′in = αi
n · η′

n in the same way. Remark that, in this case, at least
one of {c′in}i=1,2 must be non-cuspidal, for otherwise, R would be a four-times
punctured sphere.

If g(X ′
n)∗ = X ′

n, then we choose a simple closed curve of length not greater
than 2(D + D′), which is made of ηn and η′

n together with the subarcs in cn

connecting the end points of ηn and η′
n suitably. We set the geodesic realization

of this simple closed curve by c̃n. Then g(c̃n)∗ 6= c̃n. If g(X ′
n)∗ 6= X ′

n, then
one of {c′in}i=1,2 is freely homotopic to a simple closed geodesic (c′in)∗, which
is defined to be c̃n. Thus we have checked all possibilities.

By passing to a subsequence, we may assume that the sequence {c̃n}∞n=1 of
simple closed geodesics are mutually disjoint as well as each g(c̃n)∗ is disjoint
from c̃n′ for every n′ 6= n. Also by g(c̃n)∗ 6= c̃n, we see that g(c̃n)∗ 6= c̃n′ for
any n and n′. Then we apply Proposition 3.4 to conclude that [g] /∈ Ker ιAT .

Next, we consider the case where R has ideal boundary at infinity ∂R. If
there exists a D-thetaframe X in the B-neighborhood of U∗ such that g(X)∗ 6=
X, then the proof can be carried out in the same way as above. If there exists
no such thetaframe, then Proposition 3.3 implies that g|U∗ is homotopic to the
inclusion map id|U∗ : U∗ ↪→ R. However, since g|U∗ is not homotopic to the
inclusion map relative to the ideal boundary at infinity, g is not the identity
on ∂R. Then we apply the following lemma to complete the proof. ¤

Lemma 3.5. Let R be a Riemann surface with ideal boundary at infinity ∂R.
Then a mapping class [g] ∈ MCG(R) induced by a quasiconformal automor-
phism g ∈ QC(R) that is not the identity on ∂R is not asymptotically trivial.

Proof. Suppose to the contrary that [g] ∈ Ker ιAT . Since g|∂R 6= id, there
is some x0 ∈ ∂R such that g(x0) 6= x0. Choose an open interval I ⊂ ∂R
containing x0 such that g(I)∩ I = ∅. By the correspondence under a universal
covering map of R, we may identify I with an interval (−1, 1) in R and x0

with 0. Consider a quasiconformal homeomorphism f : R → R such that f is
the identity on ∂R − I and f : I → I is defined by f(x) = 3

2
x + 1

2
on (−1, 0]

and f(x) = 1
2
x + 1

2
on [0, 1).

The symmetric ratio

mt(f, x0) =
f(t) − f(0)

f(0) − f(−t)

for f locally defined at x0 ∈ I satisfies limt→0 mt(f, x0) = 1
3
. On the other

hand, since [g] is assumed to be asymptotically trivial, both g and fgf−1 are
homotopic to asymptotically conformal automorphisms of R relative to ∂R.
Then, by [7] (see also [15]), the symmetric ratios for g and fgf−1 tend to 1
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everywhere on ∂R as t → 0. In particular,

λ = lim
t→0

mt(fgf−1, fg−1(x0)) = 1.

Since g−1(x0) /∈ I and f is the identity outside I, we see that λ is actually
equal to limt→0 mt(fg, g−1(x0)). However, by using limt→0 mt(g, g−1(x0)) = 1
as well as the piecewise linearity of f , we obtain a contradicting value λ = 1/3.
This completes the proof. ¤

4. Proof of the fixed point theorem

In this section, we prove the fixed point theorem on the asymptotic Teich-
müller space.

Proof of Theorem 2.5. We take an arbitrary finite subgroup Γ̂ of ModAT (R)
and number all its elements by {γ̂i}n

i=1, where γ̂1 = [id]∗∗. For each i, we
choose a quasiconformal mapping class [gi] ∈ MCG(R) ([g1] = [id]) such that
ιAT ([gi]) = γ̂i and fix it. For any i and j, there exists a unique k = k(i, j) such
that γ̂iγ̂j = γ̂k. Then an asymptotically trivial mapping class [hij] ∈ Ker ιAT

is so determined that [gi][gj] = [hij][gk].
Since R satisfies the weak bounded geometry condition, we have Ker ιAT =

G∞(R) by Theorem 3.2. Then [hij] for any i and j is an essentially trivial
mapping class. Thus there exists a topologically finite subsurface Vij of finite
area in R such that the restriction hij|R−Vij

: R − Vij → R is homotopic to
the inclusion map id|R−Vij

: R − Vij ↪→ R relative to the ideal boundary at
infinity. We take a topologically finite subsurface V0 of finite area so that all Vij

(1 ≤ i, j ≤ n) are contained in V0. Then, the restriction hij|R−V0 : R−V0 → R
is homotopic to the inclusion map id|R−V0 : R − V0 ↪→ R relative to the ideal
boundary at infinity for any i and j.

Take a representative gi of each [gi] and choose a topologically finite subsur-
face V of finite area that contains all gigj(V0) (1 ≤ i, j ≤ n). In particular, V
satisfies gi(V ) ∩ V 6= ∅ for every representative gi.

Take the union
Ṽ = g1(V )∗ ∪ · · · ∪ gn(V )∗

and consider the topologically finite geodesic subsurface Ṽ∗. We see that this

is homotopically gi-invariant for each i, in other words, gi(Ṽ )∗ = Ṽ∗. This can
be verified as follows. Since the restriction of hij to each connected component
of R − V0 is homotopic to the inclusion map for any i and j, and since both
gigj(V ) and gk(V ) for k = k(i, j) contain V0, we have gigj(V )∗ = gk(V )∗. Hence

{gigj(V )∗}n
j=1 = {gk(V )∗}n

k=1 for each i. Note that Ṽ∗ can be characterized as
the minimal geodesic subsurface that contains all g1(V )∗, . . . , gn(V )∗. Then

this is ready to show gi(Ṽ )∗ = Ṽ∗. By replacing the representative gi of [gi],

we may assume that gi(Ṽ∗) = Ṽ∗.
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Let {W (l)
∗ }m

l=1 be the family of all connected components of R − Ṽ∗. We

make the double Ŵ (l) of each W
(l)
∗ with respect to the geodesic boundary

∂W
(l)
∗ . Extend gi|R−eV∗

to a quasiconformal automorphism ĝi of the union

S =
⋃m

l=1 Ŵ (l) of the Riemann surfaces by reflection. Then ĝiĝj is homotopic

to ĝk for k = k(i, j) on each component Ŵ (l) of S relative to the ideal boundary
at infinity. We consider the mapping classes [ĝi] on S and define a map ε :

Γ̂ → MCG(S) by the correspondence γ̂i 7→ [ĝi]. Since ε is a homomorphism
by the definition of k(i, j), we see that the image G = {[ĝi]}n

i=1 constitutes a
finite subgroup of MCG(S).

The quasiconformal mapping class group MCG(S) acts on the product

Teichmüller space T (S) =
∏m

l=1 T (Ŵ (l)) in the same manner as usual. Then G
has a common fixed point (p1, . . . , pm) in T (S). Indeed, for some l = 1, . . . ,m,

we consider the stabilizer subgroup Gl of G preserving Ŵ (l) and apply Theo-

rem 2.2 to obtain a fixed point pl of Gl in T (Ŵ (l)). Then we pick the images
of pl as the fixed points for the conjugates of Gl in G, which are the stabilizer

subgroups for the images of Ŵ (l). We repeat this process for all possible com-

ponents to assign the fixed point to T (Ŵ (l)) for every l. Giving each Ŵ (l) the
complex structure corresponding to pl, we can realize the mapping class group
G as a conformal automorphism group of the corresponding Riemann surfaces
S(p1,...,pm).

The statement of the theorem follows directly from this consequence. Indeed,

by restricting the complex structure pl to W
(l)
∗ for each l, we have a point p̂

of the asymptotic Teichmüller space AT (R). Since the mapping class [gi] has

a representative that is conformal outside Ṽ∗ with respect to this complex
structure, we see that each γ̂i = ιAT ([gi]) fixes the point p̂. ¤

In light of Theorem 2.2, we will explore a problem asking whether we can
extend Theorem 2.5 to the statement that there exists a common fixed point
in AT (R) if the orbit of a subgroup of ModAT (R) is bounded.

In [24], we constructed a Riemann surface R not satisfying the upper bound
condition so that ModAT (R) has a common fixed point in AT (R). Moreover in
[25], we gave an example where ModAT (R) acts on AT (R) trivially, namely, all
points in AT (R) are common fixed points of ModAT (R). On the other hand,
it was proved in [11, Theorem 3.3] that ModAT (R) does not have a common
fixed point in AT (R) if R satisfies the upper bound condition. This means
that the asymptotic version of the fixed point theorem is not always true for
the whole asymptotic Teichmüller modular group.
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5. Realization in the end quasiconformal automorphism group

Theorem 2.5 induces two asymptotic Nielsen realization theorems. In this
section, we give one of them, which is for the asymptotic Teichmüller modular
group. For its statement, we introduce the following concept.

Definition 5.1. We say that two quasiconformal automorphisms of a Rie-
mann surface R are end equivalent if they coincide outside some topologically
finite subsurface of finite area in R. The end quasiconformal automorphism
group QCe(R) is the group of all end equivalence classes (g)e of quasiconfor-
mal automorphisms g of R. Furthermore, the end conformal automorphism
group Confe(R) is the subgroup of QCe(R) consisting of all end equivalence
classes that have representatives conformal outside some topologically finite
subsurface of finite area in R.

Let e : QC(R) → QCe(R) be the homomorphism given by the projection.
It is clear that e splits the surjective homomorphism ιAT ◦ q : QC(R) →
ModAT (R) into a surjective homomorphism qe : QCe(R) → ModAT (R). Hence
we have the following commutative diagram:

QC(R)
e−−−→ QCe(R)yq

yqe

MCG(R) ∼= Mod(R)
ιAT−−−→ ModAT (R)

The Nielsen realization theorem for the asymptotic Teichmüller modular
group can be stated as follows.

Theorem 5.2. Let R be a Riemann surface satisfying the weak bounded geom-
etry condition. Then every finite subgroup Γ̂ of ModAT (R) can be realized as
the end conformal automorphism group Confe(Rp) of some Riemann surface
Rp quasiconformally equivalent to R. In particular, there exists a homomor-

phism Ee : Γ̂ → QCe(R) such that qe ◦ Ee = id|Γ̂.

Proof. By Theorem 2.5, every finite subgroup Γ̂ of ModAT (R) has a common
fixed point p̂ in AT (R). Let Rp be the Riemann surface corresponding to p ∈
T (R) with α(p) = p̂. Then, for each element γ̂ ∈ Γ̂, we have an asymptotically
conformal automorphism g of Rp as a representative in the mapping class
[g] ∈ MCG(R) satisfying ιAT ([g]) = γ̂. Moreover, by the proof of Theorem
2.5, these asymptotically conformal automorphisms g are actually conformal
outside some topologically finite subsurface of finite area in Rp, namely, it
determines an element (g)e of Confe(Rp). We note that such an element (g)e ∈
Confe(Rp) is uniquely determined for each γ̂ ∈ Γ̂. Indeed, if there exist two
such elements (g1)e and (g2)e in Confe(Rp), then g1 ◦ g−1

2 is homotopic to
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the identity relative to the ideal boundary at infinity and is conformal outside
some topologically finite subsurface V of finite area in g2(Rp). We may assume
that each component of the complement of V is topologically infinite. By
[18], we see that g1 ◦ g−1

2 is the identity outside V . This shows that (g1)e =
(g2)e. Since the groups QC(R) and QC(Rp) are quasiconformally conjugate,

the correspondence γ̂ 7→ g induces the homomorphism Ee : Γ̂ → QCe(R) such
that qe ◦ Ee = id|Γ̂. ¤

6. Realization in the automorphism group of the
Royden boundary

In this section, we give another asymptotic Nielsen realization theorem for
the boundary geometric automorphism group of the asymptotic Teichmüller
space. The asymptotic Teichmüller modular group is determined by the action
of the group of quasiconformal automorphisms near the infinity of the Riemann
surface. We extend this action to a certain ideal boundary of the Riemann sur-
face and investigate the realization problem with respect to a homomorphism
from the group of such boundary automorphisms to the biholomorphic auto-
morphism group of the asymptotic Teichmüller space.

For a Riemann surface R, the Royden algebra M(R) is a complex Banach
algebra consisting of all bounded continuous functions f on R that are differ-
entiable in the distribution sense with the Dirichlet integral D(f) =

∫
R

df∧∗df
finite. The norm is defined by ‖f‖ = sup |f |+D(f)1/2. There exists a compact
Hausdorff space R∗ containing R as an open and dense subset such that each
function f ∈ M(R) can be extended to a continuous function on R∗ and every
pair of points in R∗ is separable by a function in M(R). Then R∗ is uniquely
determined up to homeomorphisms that are the identity on R. This is called
the Royden compactification of R and the boundary dR = R∗−R is called the
Royden boundary of R. An important property of the Royden compactification
is that every quasiconformal homeomorphism f of R onto another Riemann
surface R′ extends continuously to a homeomorphism f̄ : dR → dR′. See [28,
Chapter III] for details.

We deal with a smaller subset d0R of the Royden boundary dR as in [29],
which is obtained by removing all boundary points corresponding to punctures
of R. More precisely, d0R is defined as follows. There is a canonical continuous
map π from the Royden boundary dR onto the space of all topological ends of
R, which extends continuously to the identity of R. The inverse image π−1(a)
of a topological end a corresponding to a puncture constitutes a connected
component of dR. We remove all such connected components π−1(a) from
dR and define the remaining compact subset as d0R, which we call the non-
cuspidal Royden boundary. Note that a neighborhood of dR in R is given by
the complement of a compact subsurface V of R whereas a neighborhood of
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d0R in R is given by the union of the non-cuspidal connected components of
R−V , which is the complement of some topologically finite subsurface of finite
area in R. Since a quasiconformal homeomorphism f of R preserves punctures,
its extension f̄ to dR preserves d0R.

The converse property for the above extendability of quasiconformal homeo-
morphisms to the Royden boundary is also true in a certain sense, and we know
that, if a homeomorphism f̄ : dR → dR′ is the restriction of a homeomorphism
of R∗ onto R′∗ that is orientation preserving on R, then f̄ extends continuously
to a quasiconformal homeomorphism f : R → R′. This was proved in [27].
In fact, local extendability is essential for its proof, and we can formulate this
claim for homeomorphic automorphisms of the non-cuspidal Royden boundary
as in [29, Proposition 3].

Proposition 6.1. Let ḡ be a homeomorphic automorphism of d0R extending
continuously to an orientation preserving homeomorphism g of some neighbor-
hood of d0R in R into R. Then there exists a topologically finite subsurface V
of finite area in R such that g is quasiconformal on the complement R − V .

The homeomorphism g as in Proposition 6.1 is called a supporting map for ḡ.
Note that the image of the neighborhood of d0R by g is also a neighborhood of
d0R in R. We say that a homeomorphic automorphism ḡ of d0R is extendable
if there is a supporting map for ḡ. We denote by Homeo∗(d0R) the group of all
extendable homeomorphic automorphisms of d0R. Proposition 6.1 says that,
for every element of Homeo∗(d0R), its supporting map is always quasiconformal
on R − V for some topologically finite subsurface V of finite area in R. Since
g(R − V ) is a neighborhood of d0R in R, we see that R − g(R − V ) is also
topologically finite.

Let ν : QCe(R) → Homeo∗(d0R) be a homomorphism defined by extending
a quasiconformal automorphism of R to d0R. Since an element of QCe(R) has
ambiguity on topologically finite subsurfaces of finite area, it cannot determine
an automorphism of the entire boundary dR uniquely, but the restriction to
d0R kills such ambiguity to define the unique element of Homeo∗(d0R).

The homomorphism ν is injective but not surjective. The reason why ν
is not surjective is that a supporting map does not necessarily extend to the
entire surface R. An example has been given in [29, Theorem 4]. In contrast,
the injectivity of ν can be shown by a usual argument as follows.

Proposition 6.2. Let g be a supporting map for ḡ ∈ Homeo∗(d0R). If ḡ is
the identity, then there exists a topologically finite subsurface V of finite area
in R such that g is the identity on R − V .

Proof. Assume that g is not the identity outside any topologically finite sub-
surface V of finite area in R. Then we can choose a discrete sequence of points
{zn}∞n=1 in R tending to the infinity of R but not to any puncture such that
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Z = {zn} and g(Z) = {g(zn)} are disjoint. Then it is easy to construct a
function ϕ in the Royden algebra M(R) such that ϕ(zn) = 1 and ϕ(g(zn)) = 0
for every n. Indeed, choose a disk neighborhood Un ⊂ R − V of zn such that
Un ∩ (Z ∪ g(Z)) consists only of zn for each n. Take a Riemann map ζn of Un

onto the unit disk ∆ such that ζn(zn) = 0. We consider a function

hn(ζ) = min

{
− log |ζ|

n2
, 1

}
≥ 0 (hn(0) = 1)

on ∆. An easy calculation shows that the Dirichlet integral of hn is D(hn) =
2π/n2. Define the function ϕ(z) on R so that ϕ(z) = hn(ζn(z)) if z ∈ Un for
some n and otherwise ϕ(z) = 0. Then ϕ is continuous and bounded with the
Dirichlet integral D(ϕ) = π3/3, and hence belongs to M(R). By construction,
we see that ϕ(zn) = 1 and ϕ(g(zn)) = 0.

Since every infinite set in a compact Hausdorff space has an accumulation
point, Z has an accumulation point z∞ in d0R. Then ḡ(z∞) is an accumulation
point of g(Z). If the extension ḡ of g is the identity on d0R, then ḡ(z∞) = z∞.
This implies that Z and g(Z) have the common accumulation point z∞. On
the other hand, since ϕ ∈ M(R) extends to a continuous function on R∗, the
sets X1 = {z ∈ R∗ | ϕ(z) = 1} and X0 = {z ∈ R∗ | ϕ(z) = 0} are both closed.
Since Z ⊂ X1 and g(Z) ⊂ X0, the common accumulation point z∞ belongs to
both X1 and X0. This contradiction proves the statement. ¤

Next, we consider a representation of Homeo∗(d0R) in the biholomorphic
automorphism group Aut(AT (R)) of the asymptotic Teichmüller space AT (R).
This has been also introduced in [29]. A quasiconformal supporting map g :
R − V → R for ḡ ∈ Homeo∗(d0R) induces a biholomorphic automorphism
of AT (R) by [[f ]] 7→ [[f ◦ g−1]] for each element [[f ]] in AT (R). Although
the quasiconformal homeomorphism f ◦ g−1 is defined only on g(R − V ), it
determines the asymptotic Teichmüller class [[f ◦ g−1]] because the value of
f ◦ g−1 on the topologically finite subsurface R − g(R − V ) of finite area is
negligible and hence it can be arbitrarily given. In this manner, we have a
homomorphism qb : Homeo∗(d0R) → Aut(AT (R)).

Definition 6.3. The boundary geometric automorphism group is the subgroup
of Aut(AT (R)) consisting of all elements induced by supporting maps for
Homeo∗(d0R) and is denoted by Aut∗(AT (R)):

Aut∗(AT (R)) = qb(Homeo∗(d0R)).

It is clear that the asymptotic Teichmüller modular group ModAT (R) is
contained in Aut∗(AT (R)), namely, there is an inclusion map i : ModAT (R) →
Aut∗(AT (R)).
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Remark 6.4. We conjecture that the boundary geometric automorphism
group Aut∗(AT (R)) actually coincides with the whole biholomorphic auto-
morphism group Aut(AT (R)). This claim is corresponding to the fact for
Teichmüller spaces that the Teichmüller modular group Mod(R) coincides
with Aut(T (R)). We also expect ModAT (R) to be a proper subgroup of
Aut∗(AT (R)). Actually, it is proved in [12] that ModAT (R) is geometrically
isomorphic to the biholomorphic automorphism group Aut(IT (R)) of the in-
termediate Teichmüller space IT (R) under the bounded geometry condition.

Now having the following commutative diagram

QCe(R)
ν−−−→ Homeo∗(d0R)yqe

yqb

ModAT (R)
i−−−→ Aut∗(AT (R))

we formulate the Nielsen realization theorem for the surjective homomorphism

qb : Homeo∗(d0R) → Aut∗(AT (R)) and give a proof for it.

Theorem 6.5. Let R be a Riemann surface satisfying the weak bounded geom-

etry condition. Then, for every finite subgroup Γ̃ of Aut∗(AT (R)), there exists

a homomorphism Eb : Γ̃ → Homeo∗(d0R) such that qb ◦ Eb = id|
eΓ.

As is shown below, the essential part of this theorem lies in the following
lemma. Then Theorem 6.5 will be just an interpretation of Theorem 5.2, the
realization for qe : QCe(R) → ModAT (R).

Lemma 6.6. Let R be a Riemann surface satisfying the weak bounded geometry
condition. Then every element γ̃ of Aut∗(AT (R)) of finite order belongs to
ModAT (R).

Proof. We take a quasiconformal supporting map g inducing γ̃, which maps
R − V0 into R for some topologically finite subsurface V0 of finite area in R.
If γ̃ is of order n, then gn maps R − V0 into R and induces the trivial action
on AT (R). By the same reason as the assertion that an asymptotically trivial
mapping class is essentially trivial (Theorem 3.2), we see that there exists a
topologically finite subsurface V of finite area containing V0 such that gn|R−V

is homotopic to the inclusion map id|R−V : R − V ↪→ R relative to the ideal
boundary at infinity.

Similarly to the proof of Theorem 2.5, we consider
⋂n−1

i=0 gi(R − V )∗, whose

complement in R is defined to be Ṽ . Since gn(R − V )∗ = (R − V )∗, we see

that g(R − Ṽ )∗ = (R − Ṽ )∗. By replacing g, we may assume that g preserves

(R− Ṽ )∗. Then we can extend g to the topologically finite geodesic subsurface

Ṽ∗ to construct a quasiconformal automorphism g̃ of R. Hence γ̃ is induced
by g̃, which means that γ̃ ∈ ModAT (R). ¤
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We are ready to prove our theorem.

Proof of Theorem 6.5. Let Γ̃ be a finite subgroup of Aut∗(AT (R)). By

Lemma 6.6, each element of Γ̃ actually belongs to ModAT (R), and hence

Γ̃ ⊂ ModAT (R). We define a homomorphism Eb of Γ̃ to be the composition of

Ee : Γ̃ → QCe(R) obtained in Theorem 5.2 and ν : QCe(R) → Homeo∗(d0R).
From qe ◦ Ee = id|

eΓ, it follows that

qb ◦ Eb = qb ◦ ν ◦ Ee = qe ◦ Ee = id|
eΓ.

This proves the statement. ¤

7. The automorphism group of the space of the ends

We conclude this paper by giving a comment that the sequence of homo-
morphisms

QC(R) → QCe(R) → Homeo∗(d0R)

for raw mappings and the sequence of homomorphisms

Mod(R) → ModAT (R) → Aut∗(AT (R))

for mapping classes meet into the group of homeomorphic automorphisms of
the space of the ends of R. We use a slightly finer concept of ends as follows,
which has been introduced in [13].

The end compactification R
δ

of a Riemann surface R is given by adding all
the ends of R and by providing the canonical topology. Here an end means a
topological end if R has no ideal boundary at infinity. However, if R has the
ideal boundary at infinity ∂R, we first consider the double R̂ of R with respect
to ∂R and then take the closure of R in the end compactification of R̂, which

we define to be R
δ
. The boundary R

δ − R is denoted by δR. As before, we
remove all ends corresponding to punctures from δR and denote the space of all
non-cuspidal ends by δ0R. A supporting map g for ḡ ∈ Homeo∗(d0R) extends
to a homeomorphic automorphism of δ0R, which defines a homomorphism
κ : Homeo∗(d0R) → Homeo(δ0R). Note that there is a continuous surjective
map π̂ : dR → δR from the Royden boundary to the space of the ends that
extends to the identity of R. The restriction of π̂ to d0R is compatible with
the above homomorphism κ.

On the other hand, since each mapping class [g] ∈ MCG(R) induces a
homeomorphic automorphism of δ0R, there is a well-defined homomorphism
ιδ0R : MCG(R) → Homeo(δ0R). The kernel of ιδ0R is defined to the pure
mapping class group. In [10], it has been shown that Ker ιAT ⊂ Ker ιδ0R,
that is, the asymptotically trivial mapping class group is contained in the pure
mapping class group, though the definition of δ0R used for this group is slightly
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coarser than the above one. The inclusion Ker ιAT ⊂ Ker ιδ0R would yield a
homomorphism of ModAT (R) to Homeo(δ0R).

In what follows, we will show the existence of a homomorphism from the
larger group Aut∗(AT (R)) to Homeo(δ0R). For this purpose, we prove the fol-
lowing inclusion relation under the new definition of the end compactification.

Lemma 7.1. Ker qb ⊂ Ker κ.

Proof. Let ḡ ∈ Homeo∗(d0R) not belong to Ker κ. We take a supporting map
g for ḡ defined on R − V , where V is a topologically finite subsurface of finite
area in R. Then there is an end e ∈ δ0R such that g(e) 6= e. If R has
no ideal boundary at infinity, then there exists a neighborhood of e whose
intersection with R is a topologically infinite subsurface W in R−V such that
g(W ) ∩ W = ∅. In this case, g induces a non-trivial automorphism of AT (R)
by the same argument as that for the inclusion Ker ιAT ⊂ Ker ιδ0R proved in
[10, Theorem 1.5].

Next we assume that R has ideal boundary at infinity ∂R. If g extends to
∂R as a non-identical map, then, by the same argument as Lemma 3.5, we
see that g induces a non-trivial automorphism of AT (R). If g is the identity
on ∂R, then its extension to the boundary δR of the end compactification is

the identity on the closure ∂R
δ

of ∂R. Since g(e) 6= e for some e ∈ δ0R, this

means that e is not in ∂R
δ
. Then again we can find a topologically infinite

subsurface W of R such that g(W )∩W = ∅ and hence g induces a non-trivial
automorphism of AT (R) by [10]. In all cases, we have shown that ḡ does not
belong to Ker qb. ¤

Thus we have the following diagram by factorizing κ into qb and κ′:

Homeo∗(d0R)
κ−−−→ Homeo(δ0R)yqb

∥∥∥
Aut∗(AT (R))

κ′
−−−→ Homeo(δ0R)

The existence of the homomorphism κ′ : Aut∗(AT (R)) → Homeo(δ0R) in
particular verifies the following fact we have mentioned above.

Corollary 7.2. The pure mapping class group Ker ιδ0R contains the asymp-
totically trivial mapping class group Ker ιAT .

This is the end of our supplementary comments.
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