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Invariance of the Nayatani metrics for Kleinian manifolds
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Abstract The Nayatani metrigy is a Riemannian metric on a Kleinian manifdiwhich

is compatible with the standard flat conformal structure. It is known thaifoorrespond-
ing to a geometrically finite Kleinian grougy has large symmetry: the isometry group of
(M,gn) coincides with the conformal transformation grouphf In this paper, we prove
that this holds for a larger class M. In particular, this class contains sudithat correspond
to Kleinian groups of divergence type.
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1 Introduction

Let M be a differentiable manifold of dimension> 2 endowed with a conformal structure
C. We call the paifM,C) conformally flatif eachg € C has an expression of the form

n

9=10 3 (@)

locally for some local coordinategs!) of M and a functiorA > 0 onM. If n= 2, it fol-

lows from the existence of the isothermal coordinates {Ma(C) is always conformally

flat. Hence a conformally flat structure can be regarded as a generalization of the conformal
structure of a surface. Schoen and Yau [7] showed that there is an extensive class of con-
formally flat manifolds that can be realized as Kleinian manifolds. In particular, this class
contains all compact conformally flat manifol@d,C) of dimensiom > 4 having the prop-

erty thatRy > 0 for someg € C, whereRy denotes the scalar curvature g@fHere, by a
Kleinian manifold, we mean a quotient spa@¢ ™ of a I -invariant subdomaim2 of the
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n-dimensional spher®’, by a Kleinian groug™ acting freely and properly discontinuously
on Q. Since the action of preserves the conformal structure®f Q /I has the standard
flat conformal structur€ induced by the natural projection.

Let " be a Kleinian group with the domain of discontinuiB(I") # 0 and the critical
exponentd(I) > 0. Nayatani [4] constructed -invariant metricgy on Q(I"), which is
conformal to the standard sphere metgon S" = {x € R™?* | [x = 1}, by

2 5(r) 2/8(I)
= — d , xeQ(l),
N /3ﬂ<|xfy|2) Lo(y) 9o (r)

whered(I" ) denotes the critical exponent 6fand i is a Patterson-Sullivan measure based
at 0c B, Here a Patterson-Sullivan measure §(& )-dimensional” -invariant confor-
mal measure of” having its support on the limit set(I") of I". Note thatd(I") measures
the size of the action df .

A Kleinian groupl™ is said to beconvex cocompadt the convex core Hull")/I" is
compact, where Hull") denotes the hyperbolic convex hull 4f(") in B"*1. Note that
a convex cocompadi is characterized as a geometrically finite group without parabolic
elements. It is also known that ff is non-elementary and convex cocompact, there exists
a unique Patterson-Sullivan measure, which coincides with, up to a constant multiple, the
o(I")-dimensional Hausdorff measure on the limit sefofn general, the uniqueness of the
Patterson-Sullivan measure holds for a large class of Kleinian groups, which in particular
contains those of divergence type (see Theorem 2.4).

Since the metrigy is I -invariant, it projects to a metric on the Kleinian maniféd T,
denoted by the same symlm), which is compatible witlCy. The metricgy is called the
Nayatani metric

There are remarkable relations between curvatures of the Nayatani metric and the critical
exponentd(I") of I". For instance, the scalar curvature is positive (resp. zero, negative) if
and only if6(I") < (resp.=,>) (n—2)/2 forn > 3 (see [4, Theorem.3]). These relations
enable us to study Kleinian groups by means of Riemannian geometry of Kleinian manifolds
and vice versa.

On the other hand, the Nayatani metric has large symmetry in the following sense:

Theorem 1.1 (Nayatani [4]) Let Q/I be a Kleinian manifold of dimensionx 3 with
o(I") > 0and gy a Nayatani metric o2 /I". Suppose that

(&) I has a unique Patterson-Sullivan measure, and
(b) gn is a complete metric o®/I".

Then the isometry group ¢f2 /I ,gn) coincides with the conformal transformation group
of (Q/I ,Cyp).

If I is geometrically finite, it satisfies condition (a) in Theorem 1.1, since a geometri-
cally finite Kleinian group is of divergence type. However, condition (b) does not hold in
general even for a geometrically finite Kleinian group (see [3]). In [10], the second author
showed that, if” is geometrically finitegy has large symmetry even wheg is not com-
plete. In this paper, we show that assumption (b) in Theorem 1.1 can be dropped altogether,
that is,

Theorem 3.5 Let Q/I" be a Kleinian manifold of dimension>a 3 with (/") > 0 and gy

a Nayatani metric o2 /. Suppose thaf has a unique Patterson-Sullivan measure up
to a constant multiple. Then the isometry groug@f/I" ,gn) coincides with the conformal
transformation group ofQ /I ,Cyp).



2 Preliminaries

In this section, we briefly review several definitions and basic facts on Kleinian groups,
Patterson-Sullivan measures and Nayatani metrics. More details can be found in [4] and [6]
for example.

2.1 Kleinian groups

Let (B™,h), n> 2, denote the Poincaiball model of the hyperbolitn + 1)-space, where
B™!={xeR"!||x| <1} and

Let also IsoniB™", h) denote the group of all orientation-preserving isometrig®8t*, h).
As is well-known, the action of Iso(B”*l,h) on B™1 extends to the boundar§" and
gives the conformal action off’ with the standard conformal structure. In this way, we
can identify IsongB"+1, h) with the group ConfS") of all orientation-preserving conformal
transformations o8".

A Kleinian groupl™ is a discrete subgroup of Isgi**, h). Thelimit setA(I") of I is
defined as the set of all accumulation pointg ebrbit of any point inB™1. Sincel” acts
properly discontinuous oB™1, A(I") is contained irS". The complement of the limit set
is denoted byQ(I") and called thelomain of discontinuityf I". This is the largest open
subset 0fS' on whichl™ acts properly discontinuously.

For a Kleinian groui, the Poinca series of dimensioswith the base poirt € B"1
and the orbit pointv € B"! is defined by

Prizws) = y e %9,
ye

whered denotes the hyperbolic distance function®h 1. Using the Poincédr series, the
critical exponentd(I") of I' is defined by

o(F) =inf{s>0|Pr(zw,s) < o}, zwe B

Itis easy to see thal(I") is independent of the particular choicezoiv € B2, It is known
that 0< &(I') < n, andd(I") > 0 if " is non-elementarythat is,A(I") contains at least
three points.

We say that™ is of divergence typ& Pr(z,w, (")) = « andof convergence typ#
Pr(zw, (")) < co. It is known that ifl" is geometrically finite, theifr is of divergence
type. Herel™ is said to begeometrically finiteif the e-neighborhood of the convex core
Hull(I")/I" has finite volume for every > 0, where Hul{I" ) denotes the hyperbolic convex
hull of A(I"). In particular, if " is cofinite (namely, the hyperbolic volume Bf*1/I is
finite), thend(I") = nandr is of divergence type. It is known that the hyperbolic manifold
B"™1/I does not admit the Green function if and onhdif ) = n and /" is of divergence

type.



2.2 Patterson-Sullivan measures

An s-dimensionalconformal measuren S' is a family of positive finite Borel measures
{ Mz} egnir such thau, = |, [So, whereh, is an element of Cor§) sendingzto 0€ B™1
and|h,| is the linear stretch factor &f, with respect tay. Here we identified Cori§") with
Isom(B™*1, h). Using the Poisson kernel

1-122
k(z,x):ﬁ, zeB"! xe g,

the linear stretch factor df, € Conf(S") is represented d8,(x)| = k(z,x). For a Kleinian
groupl”, ans-dimensional conformal measufft, },.gn+1 is said to be™ -invariant if y* i, =
H,-1, for everyze B™1 and for every e I, wherey* 1, is the pull-back of the measure
by y. A T -invariant conformal measufg;},.gn1 of dimensiond (") is called a Patterson-
Sullivan measure if each;, has the support on the limit set, that is,

Definition 2.1 For a Kleinian groug™, a Patterson-Sullivan measure is a family of positive
finite Borel measure$i;},.gn1 0N S” satisfying the following properties:

(@) pz = k(z,-)°") g for everyz € B™1, wherek is the Poisson kernel and(I") is the
critical exponent of .

(b) y*pz = py-1, for everyze B! and everyy e I".

(c) Eachyy is supported on the limit set(I").

The Patterson-Sullivan measure was introduced by Patterson [5] Whefuchsian,
that is, for a discrete subgroup of Is¢B?, h), and was generalized by Sullivan [8] to general
Kleinian groups.

Theorem 2.2 (Patterson, Sullivan) For any Kleinian groupl”, there exists a Patterson-
Sullivan measure.

We now describe the construction of a Patterson-Sullivan measure by Patterson.
First, suppose thdt is of divergence type. We define Borel measure8ori = B™1u
S by

1 —sd(z,yw)
=AY © | 0
Hzws Pr(w,w, s) Vgr "

wherez,w € B! s> §(I"), andDy, denotes the Dirac measure supportegrat Then
{Hzws}egnia is T -invariant; fory € I, we have

) 1 —sdzyw) &+ D
VHaws = g s vgfe o

1 51,51
— e sdVzyw)p_
Pr(w.w,) y; Vi

= Hy1zws:

We also have
- Hzws(B(x,r)) s
lim ——=——" £ =Kk(z,X)>, 2.1
M tows(Bx,1) — & @5
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wherex € A(I") andB(x,r) denotes the intersection Bf+1 and the ball of Euclidean radius
r > 0 centered at. To see this, we recall that

= w2
- 2P - W?)’

sink? (d(z,w)/2) = zwe B (2.2)

It follows from (2.2) that

sint? (d(zw)/2)  |z—w]?
Sinhz(d(oyw)/Z) - (1—[Z?)|w2’ (2.3)

If w approaches ta € S, the right hand side of (2.3) tends kéz,x)~* and the left hand
side is asymptotic to%*W) /e4(OW) With the aid of the equation

1 efsd(z. yw)

meﬂd(o’m Dyw(B(x,1)),

B(x,r))=———
UZ.W’S( ( )) Pr (Wva S) yer :yweB(x,r)
we obtain (2.1).

We now let{s };-; be a sequence of real numbers satisfygng (") ands — ().
By Helly's theorem, renumbering a subsequence if necessary, we sefgighat};~ ; has
a weak limit, denoted by, which forms al” -invariant conformal measurgzw },.gn+1
of dimensiond(I"). The conformality is seen from (2.1). Sin€eis of divergence type,
eachy,w has the support ok (). In this way, we obtain a Patterson-Sullivan measure
{Hzw} jepnia-

In the case thaf is of convergence type, we need a certain modification of the P@ncar
series. See [6].

Lemma 2.3 Letl" be a Kleinian group with the critical exponed{/” ). Then there exists a
continuous and non-decreasing function®>o — R-¢ that has the following properties
(a) Forany zw e B"?,

Ze—sd(z,w)f (ed(z,yw)> {—007 s<o(r)

Ve <o, s>0().
(b) Foranye > 0, there existsg such that, if > rp and t> 1, then f(tr) <t®f(r).

We call a functionf : R>g — R as in Lemma 2.3 &atterson functionLet I be a
Kleinian group of convergence type with the critical expon(ft ). Fix a Patterson function
f : R0 — R.0. We define thenodified Poincak seriesof dimensions by

Pr(zw,s) = Z g Sdzw) £ (ed(”‘”)> , zwe B™L
Ve

Fix w € B*1 and consider Borel measurgBzws},cgn+1 ON Bn+1 defined by

Zgﬂmww(@@wng7

Hzws = =
P Ve

(W, W, S)
wheres > 6(I") andDyy, is the Dirac measure supportedyat. By an argument similar to
the case when is of divergence type, we can obtain a Patterson-Sullivan megsyras a
weak limit of { tizws }i-, for some sequencis } with s | 3(I7).

Concerning the uniqueness of the Patterson-Sullivan measure, it is known that



Theorem 2.4 Let I’ be a Kleinian group of divergence type with the critical exponent
o(I") > 0. Thenl" has a unique Patterson-Sullivan measure up to a constant multiple.

Remark 2.5There exists a Kleinian group of convergence type that has a unique Patterson-
Sullivan measure up to a constant multiple. This can be found in [1] and [9].

2.3 Nayatani metrics

Let I' be a Kleinian group with the domain of discontinui®(I") # 0 and the critical
exponentd (") > 0. Let {1} ,.gn11 be a Patterson-Sullivan measure for Nayatani [4]
constructed a conformally flat metric @(I" ) by deforming the standard sphere metyic

. 2 3(r) 2/8(r)
= — d , xe Q(I).
ON (/M) (IX—y\Z) uo(y)> 9o (r)

We callgy a Nayatani metridor I". By using the hyperbolic metrib, gy is naturally ex-
tended to a Riemannian metric 8At! as follows:

1—|Z‘2 o(r) 2/3(r)
= d h
ON /Am (|27y‘2) Lo (y)

= (A (F))Z 3, ze B™L (2.4)

Remark 2.61f we identify B! with a hemisphere ii8""* and extend the action df to
1 naturally, the extension of the Nayatani metri®5? is nothing but the restriction of
that onQ"+1(I"), whereQ"1(I") denotes the domain of discontinuity B6fon S

It is easy to see that a Nayatani metridignvariant onQ (") UB™1. Hence ifl" acts
freely and properly discontinuously @&(I" ) UB™1, gy projects to a metric, denoted by the
same symbagy, on the quotient manifol@Q (") UB™]/I . If I has the quotier8"* /I
of finite volume in the hyperbolic sense, thér/™ ) = 0 andgy is nothing but the hyperbolic
metric onB™? up to a constant multiple.

3 Proof of Theorem 3.5

Let I be a Kleinian group acting o8, n > 3, with Q(I") # 0. We suppose tha® is a

I -invariant subdomain of2(I") on whichl™ acts freely and properly discontinuously. Let
Co denote the standard flat conformal structure on the quotient manifgld. First we
recall a result of Nayatani [4] on the conformal transformation group @@nF,Cp) of
(Q/I,Co). Let N(I") denote the normalizer df in Conf(S"). Define a homomorphism
F :N(Ir)NnConf(Q) — Conf(Q/I",Cp) as follows:

F(a)(Fx) =T ax, a € N(I")nConf(Q),

wherex € Q andl"x is regarded as a point @ /I". Then we have th& is surjective and
the kernel ofF coincides with”. Namely, we have

Proposition 3.1 Letl", Q,Co and N(I" ) be as above. ThelN(I") NConf(Q)]/I" is isomor-
phic to the conformal transformation gro@onf(Q /I ,Cy).



Next we consider the pull-back of a Patterson-Sullivan measur€ for an element of
the normalizeN(I").

Lemma 3.2 Letl™ be a Kleinian group and i} ,.gn+1 @ Patterson-Sullivan measure for.
Then, fora € N(I"), {a* Haz},gni1 IS @lso a Patterson-Sullivan measure for

Proof We recall that

k(nw, ny) = k(n10,y)"*k(wy), n € Conf(s"). 3.1)
Using (3.1), we compute
5(/—)0*“0
_ -1 -1 o(r) —5(I) y*
- (k(a Oa) k(Z,)) k(aova') a” Uao
— (k(a%0,) %z )" (a0, (0,-))”

=k(z)°Ma* pgo.

a*Uaz=k(aza-)

o0 a” Hao

This shows tha{a* lgz} ,cgni1 is @d()-dimensional conformal measure. Lt I and
sety=aya~—! € . Then we have

Yo Uaz = 0"V oz = a*l-’lfflaz = a*“arlz'

This proves the -invariance of{a* Uqz},cgni1. Sincea € N(I") leavesA () invariant,
{0* Uaz},cpni1 is @ Patterson-Sullivan measure. O

Lemma 3.3 (Nayatani [4]) Let " be a Kleinian group withd(I") > 0, and gy a Nayatani
metric onQ (") UB"™L. Suppose that has a unique Patterson-Sullivan meas{g}, gni1
up to a constant multiple. Them e N(I") is a homothety with respect tq gthat is,

a*gn = COn
for some constant & 0.
Proof By Remark 2.6, we may assume tlgat is a metric onB™?1. By Lemma 3.2 and

the uniqueness of the Patterson-Sullivan measure, there exists a canst@nsuch that
a*Uqz = U, for anyz € B™1L. It follows from (2.4) and the\(I" )-invariance ofA (I") that

(@ gn)z = Haz(A ()20 (@ )z = [tz (A (D))]PP0 g = /00 ().
Puttingc = 62/°(") completes the proof. i

The following theorem is the key to our proof, which asserts thats in Lemma 3.3 is
actually an isometry.

Theorem 3.4 Let I' be a Kleinian group withd(I") > 0. Suppose thaf’ has a unique
Patterson-Sullivan measufgl,}, gni1 Up to a constant multiple. Theuz},gni1 is N(I")-
invariant, that is,

U*Hz = Hg-1; (32)
for a € N(I") and ze B™1.



Proof It follows from Lemma 3.2 and the uniqueness of the Patterson-Sullivan measure that
o* i, = Cl, -1, for some constart > 0. We now suppose that is of divergence type. It is
easy to see that the Poinéageries of dimensios> &(I") has the following properties:

(@) Pr(z,w,s) =Pr(w,zs), and

(b) Pr(az,aw,s) =Pr(z,ws)

for anyz,w € B™! and anya € N(I"). Define¢, (z) = (") for ze B™1. We then have
$u@ _ . Pr(zws)

u(Z) 5B Br(Z.w) (33)

for z Z,w € B"1. Indeed, by the uniqueness of the Patterson-Sullivan megsyi® ob-
tained as the weak limit of Borel measures

C

e sdzw)p
Pr(wws) £

yws
for some constar@ > 0 independent of and for any sequence | (I ). Hence

o~ Pr(zws)
Pl =C I B wwsy
which implies (3.3). In particular, we have

el THS) _ (S) 4@ (3.4)

B uaflz(s]) B “a*lz(sq) B ¢I~l(ailz)
for anyz € B, Similarly, sincea* gz = Cliz, we also have

¢¢LE£2) =ct ze B" (3.5)
u

Takez= w. Then it follows from (a), (b), (3.3), (3.4), and (3.5) that

Priwws) Pr(wws) Pr(wws)

C= e _ = _ =
s—o(M) Pr(a—ww,s)  s-5(m) Pr(W,aw,s) s-5(m) Pr(aw,w,s)

Thereforec must be 1, which implies that (3.2) holddifis of divergence type.

In the case wheh is of convergence type, properties (a), (b) and (3.3) are satisfied by
the modified Poincé@rseries-. Hence (3.2) follows from the same argument as in the case
of divergence type. ad

As a direct consequence of Theorem 3.4, we have

Theorem 3.5 Let Q/I' be a Kleinian manifold of dimensiona 3 with (1) > 0 and gy

a Nayatani metric or2/I". Suppose thaf has the unique Patterson-Sullivan measure up
to a constant multiple. Then the isometry groug@f/I",gn) coincides with the conformal
transformation group ofQ /I ,Cp).

Remark 3.6Theorem 3.4 can be also applied to a problem in Kleinian group theory, which
asks for us conditions for Kleinian groups to have no proper conjugation. Here we say that
a Kleinian groupG has proper conjugation if there existsc Isom(B"1, h) such that the
conjugaten Ga 1 is a proper subgroup @. Using Theorem 3.4, we can show that Kleinian
groups of divergence type have no proper conjugation (see [2]).
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