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Abstract. The exponent of convergence of a non-elementary discrete group

of hyperbolic isometries measures the Hausdorff dimension of the conical limit
set. In passing to a non-trivial regular cover the resulting limit sets are point-
wise equal though the exponent of convergence of the cover uniformization
may be strictly less than the exponent of convergence of the base. We show in

this paper that, for closed hyperbolic surfaces, the previously established lower
bound of one half on the exponent of convergence of “small” regular covers is
sharp but is not attained. We also consider “large” (non-regular) covers. Here

large and small are descriptive of the size of the exponent of convergence. We
show that a Kleinian group that uniformizes a manifold homeomorphic to a
surface fibering over a circle contains a Schottky subgroup whose exponent of
convergence is arbitrarily close to two.
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1. Introduction

It is well known by now that the size of the exponent of convergence
δ(Γ) of the Poincaré series of a discrete group Γ acting on hyperbolic
(n + 1)-space Hn+1 contains important geometric, analytic and topo-
logical information. For instance, via work of Canary [8], Sullivan [38],
Tukia [41], and the solution of the tameness conjecture ([2], [12]) it is
now known that if Γ is a finitely generated Kleinian group with non-
empty regular set acting on H3 then Γ is geometrically finite if and
only if δ(Γ) < 2. The geometric and topological aspect of the Poincaré
series that will concern us most in this note issues from the following
theorem of Bishop and Jones [4].

Theorem 1.1. Let Γ be a non-elementary discrete group of isometries
of Hn+1. Then δ(Γ) is the Hausdorff dimension of the conical limit set
of Γ.
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The exponent of convergence records the size of the conical limit
set of a non-elementary discrete group of isometries. We are inter-
ested in passing to a subgroup Γ̂ of Γ: it is an elementary observa-
tion that δ(Γ̂) ≤ δ(Γ). In particular, if Γ̂ is a non-trivial normal sub-

group of Γ then the limit sets L(Γ) and L(Γ̂) on the sphere at infinity

∂∞(Hn+1) = Sn are equal, however it may still be the case that δ(Γ̂) is
strictly less than δ(Γ). An example of such phenomena was first given
by Patterson [33]. As another example, let S = H2/Γ be a closed hy-
perbolic surface, then the Schottky group defined by a retrosection of S
is non-amenable, and so by a result of Brooks [7] the regular set of this
Schottky group, regarded as a hyperbolic surface, has a uniformiza-
tion Γ̂ whose exponent of convergence is strictly less than 1 = δ(Γ).
The geometric point here is that in passing to a non-elementary sub-
group a conical limit point may no longer be conical with respect to
the subgroup.

But the size of the set of conical limit points that remain in passing
to regular non-universal cover can only be made so small. Based on
Theorem 3.1 which will be stated later, we now know the following
result given by Falk and Stratmann [17].

Theorem 1.2. Let Γ̂ be a non-trivial normal subgroup of a non-elemen-

tary discrete group Γ of isometries of Hn+1. Then δ(Γ̂) ≥ δ(Γ)

2
.

We remark that without the assumption of normality the result is
false. In fact, for each ε > 0 one can find a Schottky subgroup Ĝ of an
arbitrary non-elementary group G so that δ(Ĝ) < ε. (For an explicit
construction of an example of a Schottky group Γ where δ(Γ) < ε but
L(Γ) = Sn see [34].)

Our first result shows that for n = 1 the bound in Theorem 1.2
can not be improved for any Fuchsian group Γ uniformizing a closed
hyperbolic surface.

Theorem 1.3. Let Γ be a Fuchsian group uniformizing a closed hyper-
bolic surface. Then there exists a sequence {Γi} of normal subgroups

of Γ so that δ(Γi) →
1

2
.

Next we show that for convex co-compact groups the bound in The-
orem 1.2 is strict:
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Theorem 1.4. Let Γ be a non-elementary convex co-compact discrete
isometry group acting on Hn+1, and let Γ̂ be a non-trivial normal sub-
group of Γ. Then

δ(Γ̂) >
δ(Γ)

2
.

The proof is carried out by using the ergodicity of the geodesic flow
on Hn+1/Γ combined with a result on escaping geodesics due to Lundh
[22].

We note that the conclusion of Theorem 1.4 leads to the following
observation: If Γ uniformizes a closed hyperbolic manifold then every
non-trivial normal subgroup of Γ uniformizes a hyperbolic manifold
admitting a non-trivial L2 spectral theory (see [39]). Hyperbolic mani-
folds exhibit an intricate and illuminating intertwining of their ergodic,
conformal and geometric properties (see [32], [37], [38]). For instance,
the Hausdorff dimension of the limit set can be seen as a measure of
the geometric and topological complexity of a hyperbolic manifold (see
e.g. [11], [10] and [27]).

On the other hand, we can show that there are large (non-regular)
covers of a certain class of closed hyperbolic 3-manifolds.

Theorem 1.5. Let M = H3/Γ be a closed hyperbolic 3-manifold that
fibers over a circle. Then, for every ε > 0, there exists a Schottky
subgroup G of Γ such that the exponent of convergence of G is greater
than 2 − ε.

We note that this theorem implies the existence of non-classical
Schottky subgroups in groups fibering over circles (see the next section
for details). Unlike classical Schottky groups, non-classical Schottky
groups are relatively hard to both make explicit and to find (see [42]).
See the below in Section 2 for a further discussion.

2. Large Schottky Subgroups

In this section we prove Theorem 1.5. Recall that a Schottky group
G is a free, finitely generated, and purely loxodromic Kleinian group
having non-empty regular set Ω(G) ⊂ S2. (For the basics of Kleinian
group theory see [25] and [30].) It is well known that Schottky groups
are convex co-compact and as such the exponent of convergence of a
Schottky group is the Hausdorff dimension of its limit set. It is also not
hard to show that, since the Hausdorff dimension function is continuous
on Schottky space Sm (m ≥ 2 is the number of generators), then for
any constant k ∈ (0, 2) there exists a Schottky group G ∈ Sm so that
δ(G) = k. One says that a Schottky group G ∈ Sm is a classical
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Schottky group if there exists 2m round circles {C1, C
′
1, . . . , Cm, C ′

m}
on S2 and a generating set {g1, . . . , gm} so that the circles bound a
domain D in S2 so that gj(D) ∩ D = ∅ and so that gj(Cj) = C ′

j for
all 1 ≤ j ≤ m. If a Schottky group is not classical it is called a
non-classical Schottky group (see [24] and [42]).

In higher dimension, Schottky and classical Schottky groups are also
defined similarly. Doyle [15] has shown that, in terms of the exponent
of convergence, a classical Schottky group can be only so large: For
each dimension n ≥ 2 there exists a universal constant C(n) < n so
that for any classical Schottky group G acting on Hn+1 the exponent of
convergence δ(G) of G satisfies δ(G) < C(n).

In light of Doyle’s theorem, we have the following immediate corol-
lary of Theorem 1.5:

Corollary 2.1. If Γ uniformizes a closed hyperbolic 3-manifold that
fibers over the circle then Γ contains a non-classical Schottky subgroup.

We commence with the proof of Theorem 1.5.

Proof of Theorem 1.5. Let M = H3/Γ be a closed hyperbolic 3-manifold
that fibers over a circle. Then M is represented by a mapping torus so
that π1(M) ∼= π1(S)oπ1(S1), where S is a closed surface of genus ≥ 2.

“Unwrapping” the S1 factor we pass to a regular cover M̂ = H3/Γ̂ so

that Γ̂ ∼= π1(S); Γ̂ is a doubly degenerate group. Since Γ̂ is normal

in Γ we have that the limit set L(Γ) = S2 = L(Γ̂), and because Γ̂
is topologically tame (see Bonahon [5]) and geometrically infinite we

have by Canary [8] that δ(Γ̂) = 2. To obtain this, we may alternatively
use a result for a cyclic cover of a closed manifold by Rees [36] (for an
amenable cover of a manifold of finite topological type in general by
Brooks [7]).

We now find the desired covers of M via finding covers of M̂ ; we will
work group-theoretically to do so. As Γ̂ is isomorphic to the funda-
mental group of the closed surface S we work S as a model. On S we
can find a simple, homotopically non-trivial and non-separating curve
β. We cut S open along β to form a surface S̃0 with two boundary
components β+ and β− and form an infinite regular cyclic cover S̃ of S
by gluing β+ to β−. Then S̃0 also serves as the closure of a fundamental
domain for the action of the covering group on S̃ which is isomorphic
to π1(S)/π1(S̃) ∼= Z.

We take certain subgroups of π1(S̃) as follows. Note that π1(S̃) is a
free group (see Propositions 3.5 and 3.6 below). Let f be the cyclic gen-
erator of the covering group π1(S)/π1(S̃), and let S̃n =

⋃n
i=−n f i(S̃0).

Fixing base points of the fundamental groups, we assume π1(S̃n) ⊂
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π1(S̃) ⊂ π1(S). Recall that π1(S) ∼= Γ̂ and so we can find a sequence

{Γ̂n} of free subgroups of Γ̂ so that π1(S̃n) ∼= Γ̂n ⊂ π1(S̃) for each

index n. Note that, since S̃n ⊂ S̃n+1 we have that Γ̂n ⊂ Γ̂n+1, and so
let Γ̂∞ =

⋃∞
n=1 Γ̂n, which is isomorphic to π1(S̃). Hence Γ̂∞ is a normal

subgroup of Γ̂ such that Γ̂/Γ̂∞ ∼= Z.
We now need to verify two claims.

Claim 1: Γ̂n is a Schottky group for each index n.

Proof of Claim 1 : This is an application of the Canary Covering The-
orem. In particular we will show that any free purely loxodromic and
finitely generated subgroup of a doubly degenerate group is Schottky.
By construction we have that, for each index n, Γ̂n is purely loxodromic
and finitely generated, and we have observed that it is a free group.

To derive a contradiction, we assume that Γ̂n is not Schottky; thus
it is a free, purely loxodromic, and finitely generated subgroup of Γ̂
that must necessarily have empty regular set (Theorem X.H.5 [25]).

Let M̂n = H3/Γ̂n; thus M̂n is a topologically tame cover of the doubly

degenerate manifold M̂ = H3/Γ̂ (Agol [2], Calegari and Gabai [12]).

Since Γ̂n is finitely generated, free and purely loxodromic, M̂n is home-
omorphic to the interior of a handlebody and thus M̂n has only one
geometrically infinite end. By Canary’s Covering Theorem [9] we have

that the geometrically infinite end of M̂n covers an end of M̂ in a fi-
nite to one fashion. This would imply that Γ̂, which is isomorphic to
the group π1(S) where S is a closed surface, has a finite index free

subgroup. This is the desired contradiction: each Γ̂n is thus Schottky.

Claim 2: The group Γ̂∞ is the geometric limit of the sequence {Γ̂n},
and limn→∞ δ(Γ̂n) = δ(Γ̂∞)=2.

Proof of Claim 2 : Let Γ̂G be any geometric limit of a subsequence
of {Γ̂n}. Since {Γ̂n} is an increasing nested sequence we have that

Γ̂n ⊂ Γ̂G for each index n and so we can observe that Γ̂∞ ⊆ Γ̂G.
We need to show Γ̂G ⊆ Γ̂∞; this too is an easy observation from the
discreteness of Γ̂G, and from the fact that each element of Γ̂G is an
accumulation point of a sequence {γn ∈ Γ̂n}.

Since Γ̂∞ is the geometric limit of {Γ̂n} we have that lim inf δ(Γ̂n) ≥
δ(Γ̂∞) ([37], see also [26] and [40]). The inequality in the other direction

comes from the fact that Γ̂n ⊂ Γ̂∞ for all indices n.
Finally, we claim that δ(Γ̂∞) = 2. Since Γ̂∞ is a normal subgroup

of Γ̂ such that Γ̂/Γ̂∞ ∼= Z, the result by Brooks (Theorem 1 [7]) yields



6 PETRA BONFERT-TAYLOR, KATSUHIKO MATSUZAKI, AND EDWARD C. TAYLOR

that δ(Γ̂∞) = δ(Γ̂) = 2 (also by using well-known Theorem 3.4 below).

The result now follows immediately from claim 1 and claim 2. We
have found a nested sequence {Γ̂n} of Schottky subgroups of Γ̂∞ so that

{Γ̂n} converges geometrically to Γ̂∞. The resulting sequence {δ(Γ̂n)}
of exponents of convergence has the property that

lim
n→∞

δ(Γ̂n) = δ(Γ̂∞) = 2.

This completes the proof of Theorem 1.5. ¤

Remark 2.2. If Thurston’s virtual fiber question has a positive answer,
then the proof of Theorem 1.5 shows that all closed hyperbolic orbifolds
(by passing to a finite index torsion-free cover) contain a non-classical
Schottky group whose exponent is arbitrarily close to 2. Thurston’s
virtual fiber question does have a positive answer in many cases; see
[1] for an overview.

3. Small Regular Covers

This section is devoted to the discussion and proof of Theorem 1.3.
Recall that the conical limit set of a discrete group Γ of isometries of
Hn+1 is a set of limit points on Sn, each of which has the property that
there exists a sequence {γi ∈ Γ} and a cone region in Hn+1 based at the
limit point, so that the orbit {γi(0)} limits to this point within the fixed
cone region. Similarly, the (big) horospherical limit set of Γ is a set of
limit points, each of which has the property that there exists a sequence
{γi ∈ Γ} and a horoball in Hn+1 based at the limit point, so that the
orbit {γi(0)} limits to this point within the fixed horoball. Note that
the conical limit set is contained in the horospherical limit set and the
conical limit set of any non-elementary discrete group is non-empty.
Denote the conical limit set of Γ by Lc(Γ) and the horospherical limit
set by Lh(Γ). In the following the Hausdorff dimension of a limit set
A is represented by dim A. It is shown in [17] and [29] that

δ(Γ) ≥ dim Lh(Γ)

2
.

(A generalization of this fact is given in Proposition 4.2 later.)
Now we specialize further: let S be a fixed closed hyperbolic surface,

and let F be a Fuchsian group so that S = H2/F . It is well known

that L(F ) = Lc(F ) = S1 and δ(F ) = 1. Let Ŝ be any non-universal

regular cover of S, and let F̂ be a normal subgroup of F such that
Ŝ = H2/F̂ . It is also well known that L(F̂ ) = L(F ), however recall
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from the introduction that it may be the case that Lc(F̂ ) is properly
contained in L(F ) = S1. The geometric degeneration of the conical
limit set of F in passing to a regular cover is described by

Theorem 3.1 ([28] Theorem 6). Let Γ̂ be a non-trivial normal subgroup

of a discrete isometry group Γ acting on Hn+1. Then Lc(Γ) ⊆ Lh(Γ̂).

It follows from this theorem that any non-trivial normal subgroup
Γ̂ of a discrete isometry group Γ whose conical limit set Lc(Γ) is of
full Patterson-Sullivan measure µ for Γ has the property that the horo-
spherical limit set Lh(Γ̂) is of full measure with respect to µ ([28] Corol-
lary 7) and so in particular we have the following result. Note that this
is a special case of Theorem 1.2 in the introduction ([17]).

Corollary 3.2. If F̂ is any non-trivial normal subgroup of a Fuchsian

group F uniformizing a closed surface, then δ(F̂ ) ≥ 1

2
.

And so this is our definition of a small non-trivial regular cover of a
closed hyperbolic surface: such a cover has the property that its uni-
formizing group has exponent of convergence (equivalently the Haus-
dorff dimension of the conical limit set) that is close to 1

2
. We show

in this section that –for any closed surface– such small regular covers
exist.

Let λ0 denote the bottom of the discrete spectrum of the Laplacian
operator on a Riemannian manifold. Let p : Y → X be a regular
covering. We say that the covering (p, Y,X) is amenable by definition
if there is a linear functional m : L∞(π1(X)/π1(Y )) → R, invariant
under the left action of π1(X), so that inf(f) ≤ m(f) ≤ sup(f) for all
f ∈ L∞(π1(X)/π1(Y )). A result of Brooks states:

Theorem 3.3 ([6], [7]). If Y is a non-amenable regular cover of a
smooth closed Riemannian manifold X, then λ0(Y ) > λ0(X) = 0.

There exists a fundamental relationship between λ0(Hn+1/Γ) and
δ(Γ): in fact the magnitude of δ(Γ) determines λ0(Hn+1/Γ), which is
due to Elstrodt, Patterson and Sullivan.

Theorem 3.4 ([39]). For a hyperbolic manifold M = Hn+1/Γ, λ0(M) =
n2

4
if δ(Γ) ≤ n

2
and λ0(M) = δ(Γ)(n − δ(Γ)) if δ(Γ) ≥ n

2
.

The following two facts give the basic algebraic characteristics of
a non-amenable and non-universal regular cover. Recall that a finite
index regular covering of a closed surface is amenable, and thus any
non-amenable cover must necessarily be of infinite index.
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Proposition 3.5. Let S be a closed hyperbolic surface, and suppose
Ŝ 6= H2 is an infinite index regular covering. Then π1(Ŝ) is infinitely
generated.

Proof. Suppose not. Then if Ŝ = H2/F̂ we assume that F̂ is a finitely

generated Fuchsian group. Since Ŝ is a regular cover of the closed
surface S we have that L(F̂ ) = L(F ) = S1, where S = H2/F . A
finitely generated Fuchsian group whose limit set is all of S1 has co-
finite area. In particular, this implies that the index of F̂ in F is finite,
and so Ŝ is thus a finite cover of S. This is a contradiction. ¤

More is true: using the fact below we see that the fundamental group
of an infinite index regular covering of a closed hyperbolic surface is
free.

Proposition 3.6 ([35] Theorem 4). If F is an infinitely generated
torsion-free Fuchsian group then it is a free group.

See also [20] p.137 and [19] p.210.

Assume that p : Ŝ → S is a non-amenable regular covering of a closed
hyperbolic surface. Using Corollary 3.2 and Theorems 3.3 and 3.4 we
have:

Theorem 3.7. Let p : Ŝ → S be a non-universal non-amenable regular
covering. As before, let S = H2/F and let Ŝ = H2/F̂ . Then

1

2
≤ δ(F̂ ) < δ(F ) = 1.

This motivates the following definition. Let M be a hyperbolic mani-
fold. To simplify the notation, let δ(M) be the exponent of convergence
δ(Γ), where M = Hn+1/Γ. For S a closed hyperbolic surface, let

b(S) = inf{δ(Ŝ) : Ŝ is a non-universal regular cover}.
We note that, by the Retrosection Theorem (see e.g. [3]) and Theorem
3.7, we have that b(S) < 1. Similarly, we define

e(S) = sup{δ(Ŝ) : Ŝ is a non-amenable regular cover}.
Our main result in this section is the following theorem, which is

equivalent to Theorem 1.3 in the introduction.

Theorem 3.8. Let S be a closed hyperbolic surface. Then there exists
a sequence of regular covers Ŝi of S so that

δ(Ŝi) →
1

2
.

In particular, b(S) =
1

2
.
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Remark 3.9. We defined e(S) to ask the following question: Analogous
to b(S), is e(S) is equal to one?

The remainder of this section is devoted to a proof of Theorem 3.8.
We start by providing an explicit construction of the surfaces on which
we will demonstrate the proof this theorem.

Lemma 3.10. Let S be a closed hyperbolic surface. For an arbitrary
positive integer i, there exists a finite index regular cover Si of S such
that the lengths of all closed geodesics in Si are greater than i.

Proof. As S is closed it is well known that the length spectrum of S is
discrete, and thus for any number i ∈ Z+ there exist only finitely many
closed geodesics of length less than or equal to i. Let S = H2/F , and
let {a1, . . . , an(i)} be (hyperbolic) representatives in F that uniformize
this collection of short closed geodesics. Because F is residually finite
[23] there exists a finite index subgroup F̃i so that aj /∈ F̃i for all 1 ≤
j ≤ n(i). Let Fi be the finite index normal subgroup of F formed by
intersecting all conjugates in F of F̃i. We have thus found a subgroup
Fi of F with the property that all of its non-trivial elements have
translation length greater than i, and the surface Si = H2/Fi is the
desired cover. ¤

Fix a simple closed geodesic c in S and let γ be an element of F
representing c. For each i, since the index [F : Fi] is finite, there exists
an integer mi ≥ 1 dividing [F : Fi] ! such that γmi belongs to Fi. We

then consider the normal closure F̂i of γmi in F ; recall that this is the
smallest normal subgroup of F that contains γmi . Since Fi is normal in
F and also contains γmi , we have that F̂i ⊂ Fi. This implies that the
surface Ŝi = H2/F̂i covers Si = H2/Fi and hence that the lengths of

all closed geodesics in Ŝi are also greater than i. Applying Proposition
X.A.3 of Maskit [25], we see that Ŝi is planar, that is, all non-trivial

simple closed curves in Ŝi are dividing.
The sequence {Ŝi} is our candidate sequence of regular covers for

showing 1
2

is the best possible constant. That is, we will show that

δ(Ŝi) → 1
2
. To this end, we again use the relationship between the

bottom of the spectrum λ0(Ŝi) of the hyperbolic Laplacian and the

critical exponent δ(Ŝi) as detailed in Theorem 3.4. In particular we

see from this theorem that 0 ≤ λ0(Ŝi) ≤ 1
4

and if λ0(Ŝi) ↗ 1
4

then

δ(Ŝi) ↘ 1
2

as i → ∞.
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For a hyperbolic surface S, the isoperimetric constant (sometimes
called the Cheeger constant) is defined by

h(S) = sup
W

A(W )

`(∂W )
,

where the supremum is taken over all compact subsurfaces W ⊂ S
with smooth boundary. Here A(W ) is the hyperbolic area of W and
`(∂W ) is the hyperbolic length of the boundary ∂W . Note that the

isoperimetric constant always satisfies h(S) ≥ 1. An estimate of λ0(Ŝi)
from below is given by the following result due to Cheeger [14] (see also
[13]).

Theorem 3.11. The bottom of the spectrum of the Laplacian and the
isoperimetric constant for a hyperbolic surface S satisfy the inequality

(1/4 ≥) λ0(S) ≥ 1

4h(S)2
.

In the definition of the isoperimetric constant, if a subsurface W has
a boundary curve that bounds a topological disk in S, then by filling the
disk, the area becomes larger but the boundary length becomes smaller.
Hence W can be assumed to have no trivial boundary curves. For each
boundary curve c of W , there is a unique simple closed geodesic c∗

freely homotopic to c. Let W ∗ denote a compact subsurface of S where
each boundary curve c of W is replaced by the simple geodesic c∗ in
the homotopy class of c. When two boundary curves c1 and c2 of W
are freely homotopic, we assume that W ∗ has two geodesic boundaries
corresponding to c1 and c2 that are the same simple closed geodesic in
W . In general, a compact subsurface is called a geodesic subsurface
if its boundary consists of a finite number of simple closed geodesics.
By restricting W to geodesic subsurfaces W ∗ in the definition of the
isoperimetric constant, we have another isoperimetric constant

h∗(S) = sup
W ∗

A(W ∗)

`(∂W ∗)
,

which was introduced by Fernández and Rodŕıguez [18]. The inequality
h∗(S) ≤ h(S) is clearly true. Conversely, as the following proposition
shows, h(S) is almost bounded from above by h∗(S).

Theorem 3.12 ([29]). Let W be a compact subsurface with smooth
boundary in a hyperbolic surface S without cusp and assume that its
boundary curves are non-trivial. Then the geodesic subsurface W ∗ ho-
motopically equivalent to W in S satisfies

A(W )

`(∂W )
≤ A(W ∗)

`(∂W ∗)
+ 1.
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In particular (1 ≤) h(S) ≤ h∗(S) + 1.

We are now in a position to finish the proof of Theorem 3.8.

Proof of Theorem 3.8. Consider an arbitrary geodesic subsurface W ∗

in Ŝi. Since Ŝi is planar, W ∗ is an n-ply connected domain for some
n ≥ 3. The area of W ∗ is 2π(n − 2) by the Gauss-Bonnet formula.

Since lengths of simple closed geodesics on Ŝi are all greater than i, the
total length of the boundary geodesics of W ∗ is greater than ni. Hence

A(W ∗)

`(∂W ∗)
<

2π(n − 2)

ni
<

2π

i
,

and taking the supremum over all W ∗ we have h∗(Ŝi) ≤ 2π/i. This

implies that, as i → ∞, h∗(Ŝi) → 0 and so h(Ŝi) → 1 by Theorem 3.12.

Using the Theorem 3.11 we see that λ0(Ŝi) → 1
4
, and so by Theorem 3.4

we have δ(Ŝi) → 1
2
, as desired. ¤

4. b(S) Is Not Realized

In this section we will show that b(S) = 1
2

is not realized by any
regular cover of a closed surface S. This follows immediately from the
more general Theorem 1.4. See also the problem in Section 5 of [29].

Corollary 4.1. Let Γ be a Fuchsian group uniformizing a closed hy-
perbolic surface, and let Γ̂ be a non-trivial normal subgroup of Γ. Then

δ(Γ̂) >
1

2
.

We will give a proof of Theorem 1.4 in this section. The idea of the
proof is as follows. By Theorem 3.1, we see that every limit point of Γ̂

is a horospherical limit point, from which we see δ(Γ̂) ≥ δ(Γ)
2

. In order
to obtain the strict inequality, we will show that almost all limit points
of Γ̂ are in a certain class of limit points which are accumulated by the
orbits of better (i.e., closer to conical) approach than the horospherical
one.

First we introduce a continuous family of limit sets of a discrete
group by the approaching order of its orbits (Nicholls [31]). Fix k > 0
and α ∈ (0, 1]. For a point z ∈ Hn+1, an (k, α)-shadow is a disk in Sn

defined by

I(z : k, α) =

{
ξ ∈ Sn :

∣∣∣∣ξ − z

|z|

∣∣∣∣ < k(1 − |z|)α

}
.

For a discrete group Γ of isometries of Hn+1, consider the orbit Γ(z) =
{γ(z)}γ∈Γ of z ∈ Hn+1 and define Lk,α(Γ) to be a set of all points



12 PETRA BONFERT-TAYLOR, KATSUHIKO MATSUZAKI, AND EDWARD C. TAYLOR

ξ ∈ Sn such that ξ belongs to infinitely many I(γ(z) : k, α). This set
Lk,α(Γ) ⊆ L(Γ) depends on the choice of z, but the union

Lα(Γ) :=
⋃
k>0

Lk,α(Γ),

taken over all k > 0, is defined independently of z. When α = 1 the set
Lα(Γ) is (if nonempty) nothing more than the conical limit set Lc(Γ),
and when α = 1

2
, Lα(Γ) is coincident with the (big) horospherical limit

set Lh(Γ). By moving α between 1
2

and 1, we are interpolating between
the horospherical limit set and the conical limit set.

The Hausdorff dimension of the conical limit set Lc(Γ) = L1(Γ) is
bounded from above by the exponent of convergence δ(Γ) (Γ could be
elementary). This fact can be generalized to a bound on the Hausdorff
dimension dimLα(Γ) as follows. For α = 1

2
, this fact has been stated

at the beginning of Section 3. Note that essentially the same inequality
has appeared in p.575 of Falk and Stratmann [17]. Here we give a proof
for the readers’ convenience.

Proposition 4.2. Any discrete group Γ of isometries of Hn+1 satisfies

δ(Γ) ≥ α dimLα(Γ).

Proof. We can show that there is a constant A > 0 independent of
γ ∈ Γ such that the Euclidian radius of I(γ(z) : k, α) is bounded
by A(1 − |γ(z)|)α (e.g., see p.24 in Nicholls [31]). Since the Poincaré
series

∑
γ∈Γ(1 − |γ(z)|)s converges at the exponent s for every s >

δ(Γ), a standard argument (e.g., pp.76–77 in [31]) yields that (s/α)-
dimensional Hausdorff measure of Lk,α(Γ) is zero. Since Lα(Γ) can
be written as a countable union of such Lk,α(Γ), (s/α)-dimensional
Hausdorff measure of Lα(Γ) is also zero. This implies that dimLα(Γ) ≤
s
α
, and hence, by taking s → δ(Γ), dimLα(Γ) ≤ δ(Γ)

α
follows. ¤

The limit set Lα(Γ) can be interpreted geometrically via another
classification of limit points. We introduce certain subsets of limit
points according to Lundh [22], but one may notice that Falk and
Stratmann [17] also intended some arguments of a similar flavor. Let
g̃ξ,z(t) be a geodesic ray of unit speed starting from a given point z ∈
Hn+1 towards ξ ∈ Sn. The projection of g̃ξ,z(t) in M = Hn+1/Γ is
denoted by gξ,z(t) and we set

ϕξ(t) := d(gξ,z(t), gξ,z(0)),

which is the hyperbolic distance in the quotient manifold M between
gξ,z(t) and the initial point gξ,z(0). Alternatively, it is defined as the
distance of the orbit Γ(z) from g̃ξ,z(t) in Hn+1. It is clear that ϕξ(t) ≤ t.
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The ratio ϕξ(t)/t measures how rapidly or slowly the geodesic ray gξ,z(t)
escapes to infinity as t → ∞. For instance, gξ,z(t) is called a linearly
escaping geodesic if there exists a positive constant c > 0 such that
ϕξ(t)/t ≥ c for all t. However, what we investigate here are geodesic
rays that are escaping slowly or are non-escaping. For each r ∈ [0, 1]
we define the following set of end points of geodesic rays:

Λr(Γ) = {ξ ∈ Sn | lim inf
t→∞

ϕξ(t)

t
≤ r}.

The conical limit points correspond to non-escaping geodesic rays and
hence Lc(Γ) is contained in Λ0(Γ). When r = 1, Λ1(Γ) is coincident
with the entire sphere Sn since ϕξ(t)/t ≤ 1 for all ξ ∈ Sn and all t > 0.

Concerning the relationship between Lα(Γ) and Λr(Γ), Lundh [22]
obtained the following result.

Theorem 4.3. Let 1
2

< α < 1. If r = 1−α
α

then Lα(Γ) ⊂ Λr(Γ). On

the other hand, if r < 1−α
α

, then Λr(Γ) ⊂ Lα(Γ).

An essential step towards the proof of Theorem 1.4 is the following
claim, which is the core of our arguments.

Lemma 4.4. Let Γ be a non-elementary convex co-compact discrete
isometry group acting on Hn+1 and let Γ̂ be a non-trivial normal sub-
group of Γ. Then, for some positive constant ρ > 0, the Hausdorff
dimension of Λ1−ρ(Γ̂) is δ(Γ).

Assuming for the moment the proof of this lemma we assemble the
proof of Theorem 1.4.

Proof of Theorem 1.4. By Lemma 4.4, dimΛ1−ρ(Γ̂) = δ(Γ) for some

ρ > 0. Choose α > 1
2

such that 1−α
α

> 1 − ρ. Then Lα(Γ̂) contains

Λ1−ρ(Γ̂) by Theorem 4.3, and hence dimLα(Γ̂) ≥ dimΛ1−ρ(Γ̂) = δ(Γ).

Applying Proposition 4.2, we have δ(Γ̂) ≥ α dimLα(Γ̂) ≥ α δ(Γ). Since
α > 1

2
, this yields the assertion. ¤

The proof of Lemma 4.4 relies on the ergodicity of the geodesic
flow on the unit tangent bundle of M = Hn+1/Γ with respect to its
Patterson-Sullivan measure. Note that Falk [16] investigated the Myr-
berg limit points in a similar way. See Nicholls [31] for a general refer-
ence of the facts explained below.

Let µ be a Γ-invariant conformal measure of dimension δ(Γ) sup-
ported on the limit set L(Γ), which is the so called Patterson-Sullivan
measure for Γ. If Γ is convex co-compact this measure is coincident
up to multiplication by a positive constant with the δ(Γ)-dimensional
Hausdorff measure supported on L(Γ). The unit tangent space T 1

z Hn+1
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at z ∈ Hn+1 can be identified with Sn. A measure m̃ on the unit tan-
gent bundle T 1Hn+1 that is invariant under the geodesic flow is induced
by µ (Sullivan [37]). The quotient unit tangent bundle T 1M is nothing
but the quotient of T 1Hn+1 by the canonical action of Γ. Since µ is
invariant under Γ, so is m̃ and hence it descends to a measure m on
T 1M . When Γ is geometrically finite, it is known that the total volume
m(T 1M) is finite.

For a unit tangent vector v at p ∈ M ((v, p) ∈ T 1(M)), let gv,p(t)
denote the geodesic line such that gv,p(0) = p and g′

v,p(0) = v. The ge-

odesic flow φt : T 1M → T 1M is a map sending (v, p) to (g′
v,p(t), gv,p(t))

for each t ∈ R. If Γ is geometrically finite, then the geodesic flow on
T 1M is ergodic with respect to the measure m. This means that if E
is a measurable subset of T 1M that is invariant under φt for all t then
m(E) = 0 or m(T 1M \E) = 0. From this ergodicity, it follows that the
time mean coincides with the space mean, that is, for every measurable
subset A of T 1M ,

lim
T→∞

1

T

∫ T

0

1A(φt(v, p))dt =
m(A)

m(T 1M)

for almost every (v, p) ∈ T 1M with respect to m.
Let β be a geodesic segment in Hn+1 with end points b− and b+. For

ε > 0, take n-dimensional hyperbolic closed disks D̃− and D̃+ of radius
ε centered at b− and b+ respectively that are perpendicular to β. Then
the convex hull C̃ε(β) of D̃− and D̃+ is the closed convex cylindrical
region in Hn+1 that is the union of all geodesic segments β′ connecting
D̃− and D̃+. We define a flow tube Ñε(β) in the unit tangent bundle
T 1Hn+1 by

Ñε(β) = {(v, z) ∈ T 1Hn+1 | z ∈ C̃ε(β), v =
dβ′

dt
∈ T 1

z Hn+1},

where β′ is some oriented geodesic segment starting from a point in
D̃− and ending at a point in D̃+. We now have the objects required to
prove Lemma 4.4.

Proof of Lemma 4.4. Let π : Hn+1 → M = Hn+1/Γ and π̂ : Hn+1 →
M̂ = Hn+1/Γ̂ denote the covering projections. We may also use the
same notations π and π̂ for the projections of the unit tangent bundles
T 1Hn+1 → T 1M and T 1Hn+1 → T 1M̂ since the unit tangent vectors v
are naturally identified under these projections.

Since Γ̂ is a non-trivial normal subgroup of Γ, it is non-elementary
and hence it contains a loxodromic element γ. Consider the axis of γ in
Hn+1 and take a geodesic segment β on the axis that is a fundamental
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set for 〈γ〉; β has no equivalent pair under 〈γ〉 except its end points.

Then the projection π̂(β) on M̂ turns to be a closed geodesic. Let `
be the length of β and choose ε > 0 so small that ε ≤ `

6
. For these

β and ε, we take the flow tube Ñε(β) in T 1Hn+1 as above and denote
its projection π(Ñε(β)) on T 1M by Nε(β). For the canonical measure
m on T 1M , set 2ρ = m(Nε(β))/m(T 1M). Note that, since Nε(β)
has non-empty interior in T 1M and non-empty intersection with the
support of m, the measure of Nε(β) is positive and hence ρ > 0. By
the ergodicity of the geodesic flow, we have

lim
T→∞

1

T

∫ T

0

1Nε(β)(φt(v, p))dt = 2ρ

for almost every (v, p) ∈ T 1M . In particular, there is some p ∈ M such
that almost every v ∈ T 1

p M satisfies this property. We may assume

that p /∈ π(C̃ε(β)).
For each v ∈ T 1

p M , let t′1 be the first time when φt(v, p) starts the

first round in Nε(β) by departing from a tangent vector on D = π(D̃−),
and let t1 be the first time when φt(v, p) completes the first round in
Nε(β) by returning to a tangent vector on D = π(D̃+). Similarly we
define t′2, t

′
3, . . . and t2, t3, . . . one after another when φt(v, p) begins and

finishes each round in Nε(β) respectively. Choose p̂ ∈ M̂ lying above

the p ∈ M against the projection M̂ → M and consider the geodesic
ray ĝv,p̂(t) starting from p̂ that is a lift of gv,p(t) to M̂ .

We look at a subarc β̂n of ĝv,p̂(t) between t′n and tn for each integer

n ≥ 1. The length of β̂n is greater than or equal to ` and the distance
d(ĝv,p̂(t

′
n), ĝv,p̂(tn)) between the initial and the terminal points is less

than or equal to 2ε. Hence if ĝv,p̂(t) avoided this detour along β̂n, it
would have a short cut which reduces its itinerary at least ` − 2ε. Let
ϕ̂ξ(t) be the distance d(ĝv,p̂(t), ĝv,p̂(0)) in M̂ , where ξ ∈ Sn is corre-
sponding to the tangent vector v. By the consideration above, we see
that

ϕ̂ξ(tn) ≤ tn − n(` − 2ε)

for all integers n ≥ 1. On the other hand, we have seen

lim
n→∞

1

tn

∫ tn

0

1Nε(β)(φt(v, p))dt = 2ρ,

and this integral represents the total time spent in Nε(β) and thus
estimated from above by n(` + 2ε). Therefore

lim sup
n→∞

n(` + 2ε)

tn
≥ 2ρ.
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Using these estimates, we obtain

lim inf
t→∞

ϕ̂ξ(t)

t
≤ lim inf

n→∞

ϕ̂ξ(tn)

tn

≤ lim inf
n→∞

tn − n(` − 2ε)

tn

= 1 − lim sup
n→∞

n(` + 2ε)

tn
· ` − 2ε

` + 2ε

≤ 1 − 2ρ · 1

2
= 1 − ρ.

This implies that almost every ξ ∈ Sn belongs to Λ1−ρ(Γ̂) with re-

spect to the Patterson-Sullivan measure µ for Γ. Since Λ1−ρ(Γ̂) ⊆
L(Γ̂) = L(Γ) and µ is essentially the same as the δ(Γ)-dimensional
Hausdorff measure restricted to L(Γ), we see that the δ(Γ)-dimensional

Hausdorff measure of Λ1−ρ(Γ̂) is positive and finite, and in particular

dim Λ1−ρ(Γ̂) = δ(Γ). ¤
We can say a bit more about any sequence {Si} of regular covers

of a closed surface S having the property that δ(Si) → 1
2
, which has

been obtained in Theorem 3.8. We first need an elementary fact that
we include for completeness.

Proposition 4.5. A geometric limit of a sequence {Γi} of normal sub-
groups of a discrete group Γ of isometries of Hn+1 is itself a normal
subgroup of Γ.

Proof. Let Γ∞ be a geometric limit of {Γi}, and fix an element γ∞ ∈
Γ∞. By the definition of geometric limit there exists a sequence of
elements {γi ∈ Γi} so that lim γi = γ∞. But {γi} ⊂ Γ, and Γ is
discrete, so γ∞ ∈ Γ. Thus Γ∞ is a subgroup of Γ.

Once again fix an element γ∞ ∈ Γ∞, and let f ∈ Γ. We wish to show
that fγ∞f−1 ∈ Γ∞. Using the definition of geometric convergence we
again observe that there exists a sequence {γi ∈ Γi} converging to
γ∞ and we observe as well that {fγif

−1} converges to fγ∞f−1. Let
gi = fγif

−1; since Γi is normal in Γ then gi ∈ Γi. Using the definition
of geometric convergence we again observe that fγ∞f−1 is in Γ∞, since
Γ∞ contains all of the accumulation points of {Γi}. ¤

Thus in particular any geometric limit of a sequence of regular covers
of a hyperbolic manifold is a regular cover of the manifold.

As an immediate corollary of Theorem 1.4 we have the following.
Note that a normal subgroup of a non-elementary discrete group of
isometries of Hn+1 is either non-elementary or trivial.
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Corollary 4.6. Let {Mi} be a sequence of regular covers of an (n+1)-
dimensional closed hyperbolic manifold M so that δ(Mi) → n

2
. Then

{Mi} converges geometrically to Hn+1.

Proof. Let M∞ be a geometric limit of a subsequence of {Mi}. By
the above proposition we know that M∞ is a regular cover of M . Now
we recall that the exponent of convergence is lower semicontinuous
under geometric convergence. Thus we have that δ(M∞) ≤ n

2
. If

M∞ 6= Hn+1 then this contradicts the conclusion of Theorem 1.4, and
thus we conclude that M∞ = Hn+1. ¤

This in particular shows that our sequence {Si} of regular covers
of a closed surface S having the property that δ(Si) → 1

2
necessarily

converges geometrically to H2.

Remark 4.7. By converging geometrically to H2 it is necessary that the
geometry of the regular covers Si is becoming unbounded. In particular,
for any constant d > 0 there is a number i0 so that for all i > i0 there
exists an embedded hyperbolic ball of radius greater than d in Si. We
ask whether a stronger result is true: let d(Si) be the infimum of the
injectivity radius function on Si, then does d(Si) → ∞ as δ(Si) → 1

2
?
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