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Abstract. For a Riemann surface of analytically infinite type, the action of

the Teichmüller modular group is not discontinuous in general and the action
of the asymptotic Teichmüller modular group on the asymptotic Teichmüller
space is also not discontinuous. In this paper, we study the dynamics of these
actions and prove that every point in the limit set of the Teichmüller modular

group is projected to the limit set on the asymptotic Teichmüller modular
group.

1. Introduction

1.1. Teichmüller and asymptotic Teichmüller spaces. Throughout this pa-
per, we assume that a Riemann surface R admits a hyperbolic structure. The
Teichmüller space T (R) of R is the set of all equivalence classes [f ] of quasicon-
formal homeomorphisms f of R. Here we say that two quasiconformal homeomor-
phisms f1 and f2 of R are equivalent if there exists a conformal homeomorphism
h : f1(R) → f2(R) such that f−1

2 ◦h◦f1 is homotopic to the identity. The homotopy
is considered to be relative to the ideal boundary at infinity. A distance between
two points [f1] and [f2] in T (R) is defined by dT ([f1], [f2]) = (1/2) log K(f), where
f is an extremal quasiconformal homeomorphism in the sense that its maximal di-
latation K(f) is minimal in the homotopy class of f2 ◦ f−1

1 . Then dT is a complete
distance on T (R) which is called the Teichmüller distance. The Teichmüller space
T (R) can be embedded in the complex Banach space of all bounded holomorphic
quadratic differentials on R′, where R′ is the complex conjugate of R. In this way,
T (R) is endowed with the complex structure. For details, see [18] and [23].

The asymptotic Teichmüller space has been introduced in [17] when R is the
hyperbolic plane and in [3], [4] and [16] when R is an arbitrary hyperbolic Rie-
mann surface. We say that a quasiconformal homeomorphism f of R is asymp-
totically conformal if, for every ε > 0, there exists a compact subset V of R such
that the maximal dilatation K(f |R−V ) of the restriction of f to R − V is less
than 1 + ε. We say that two quasiconformal homeomorphisms f1 and f2 of R
are asymptotically equivalent if there exists an asymptotically conformal homeo-
morphism h : f1(R) → f2(R) such that f−1

2 ◦ h ◦ f1 is homotopic to the identity.
The asymptotic Teichmüller space AT (R) of a Riemann surface R is the set of all
asymptotic equivalence classes [[f ]] of quasiconformal homeomorphisms f on R.
The asymptotic Teichmüller space AT (R) is of interest only when R is analytically
infinite. Otherwise AT (R) is trivial, that is, it consists of just one point. Con-
versely, if R is analytically infinite, then AT (R) is not trivial. In fact, it is infinite
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dimensional. Since a conformal homeomorphism is asymptotically conformal, there
is a natural projection π : T (R) → AT (R) that maps each Teichmüller equivalence
class [f ] ∈ T (R) to the asymptotic Teichmüller equivalence class [[f ]] ∈ AT (R).
The asymptotic Teichmüller space AT (R) has a complex manifold structure such
that π is holomorphic. See also [3] and [5].

For a quasiconformal homeomorphism f of R, the boundary dilatation of f is
defined by H∗(f) = inf K(f |R−E), where the infimum is taken over all compact
subsets E of R. Furthermore, for a Teichmüller equivalence class [f ] ∈ T (R), the
boundary dilatation of [f ] is defined by H([f ]) = inf H∗(f ′), where the infimum is
taken over all elements f ′ ∈ [f ]. A distance between two points [[f1]] and [[f2]] in
AT (R) is defined by dAT ([[f1]], [[f2]]) = (1/2) log H([f2 ◦ f−1

1 ]), where [f2 ◦ f−1
1 ] is

a Teichmüller equivalence class of f2 ◦ f−1
1 in T (f1(R)). Then dAT is a complete

distance on AT (R), which is called the asymptotic Teichmüller distance. For every
point [[f ]] ∈ AT (R), there exists an asymptotically extremal element f0 ∈ [[f ]] in
the sense that H([f ]) = H∗(f0).

1.2. Teichmüller and asymptotic Teichmüller modular groups. A quasi-
conformal mapping class is the homotopy equivalence class [g] of quasiconformal
automorphisms g of a Riemann surface, and the quasiconformal mapping class
group MCG(R) of R is the group of all quasiconformal mapping classes of R. Here
the homotopy is considered to be relative to the ideal boundary at infinity. Every
element [g] ∈ MCG(R) induces a biholomorphic automorphism [g]∗ of T (R) by
[f ] 7→ [f ◦ g−1], which is also isometric with respect to dT . Let Aut(T (R)) be the
group of all biholomorphic automorphisms of T (R). Then we have a homomorphism

ιT : MCG(R) → Aut(T (R))

given by [g] 7→ [g]∗, and we define the Teichmüller modular group of R by

Mod(R) = ιT (MCG(R)).

It is proved in [2], [6] and [20] that the homomorphism ιT is injective (faithful) for all
Riemann surfaces R of non-exceptional type. Here we say that a Riemann surface
R is of exceptional type if R has finite hyperbolic area and satisfies 2g+n ≤ 4, where
g is the genus of R and n is the number of punctures of R. The homomorphism
ιT is also surjective for every Riemann surface R of non-exceptional type. In this
case, Mod(R) = Aut(T (R)). The proof is a combination of the results of [1] and
[19]. See [9] for a survey of the proof.

The action of MCG(R) preserves the fibers of the projection π : T (R) → AT (R).
Then every element [g] ∈ MCG(R) also induces a biholomorphic automorphism
[g]∗∗ of AT (R) by [[f ]] 7→ [[f ◦ g−1]], which is also isometric with respect to dAT .
See [4]. Let Aut(AT (R)) be the group of all biholomorphic automorphisms of
AT (R). Then we have a homomorphism

ιAT : MCG(R) → Aut(AT (R))

given by [g] 7→ [g]∗∗, and we define the asymptotic Teichmüller modular group (the
geometric automorphism group) of R by

ModAT (R) = ιAT (MCG(R)).

A surjective homomorphism A : Mod(R) → ModAT (R) is well-defined by ιAT ◦ ι−1
T ,

which sends [g]∗ ∈ Mod(R) to [g]∗∗ = A([g]∗) ∈ ModAT (R). In other words, we
have [g]∗∗ ◦ π(p) = π ◦ [g]∗(p) for every p ∈ T (R) and for every [g]∗ ∈ Mod(R).
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It is different from the case of the representation ιT that the homomorphism ιAT

is not injective, namely, Ker ιAT 6= {[id]} unless R is either the unit disc or the
once-punctured disc ([2]). We call an element of Ker ιAT asymptotically trivial and
call Ker ιAT the asymptotically trivial mapping class group.

1.3. Limit sets and regions of discontinuity. For a subgroup G ⊂ MCG(R),
it is said that q ∈ T (R) is a limit point of p ∈ T (R) for G if there exists a sequence
{[gn]∗}∞n=1 of distinct elements of ιT (G) such that dT ([gn]∗(p), q) → 0 as n → ∞.
The set of all limit points of p for G is denoted by ΛT (G, p), and the limit set for
G is defined by ΛT (G) =

∪
p∈T (R) ΛT (G, p). It is said that p ∈ T (R) is a recurrent

point for G if p ∈ ΛT (G, p), and the set of all recurrent points for G is called the
recurrent set for G and is denoted by RecT (G). It is evident from the definition
that RecT (G) ⊂ ΛT (G) and these sets are G-invariant. Moreover, we have proved
in [12, Proposition 2.2] that ΛT (G) = RecT (G) and that they are closed.

We say that a subgroup G ⊂ MCG(R) acts at a point p ∈ T (R) discontinuously
if there exists a neighborhood U of p such that the number of elements [g]∗ ∈ ιT (G)
satisfying [g]∗(U) ∩ U 6= ∅ is finite. This is equivalent to saying that the orbit
ιT (G)(p) is discrete and the stabilizer subgroup StabιT (G)(p) is finite. We define
ΩT (G) as the set of all points p ∈ T (R) where G acts discontinuously, and call
ΩT (G) the region of discontinuity for G. It is easy to see that ΩT (G) = T (R) −
ΛT (G). See also [7] and [12].

Similarly, for a subgroup G ⊂ MCG(R), it is said that q̂ ∈ AT (R) is a limit point
of p̂ ∈ AT (R) for G if there exists a sequence {[gn]∗∗}∞n=1 of distinct elements of
ιAT (G) such that dAT ([gn]∗∗(p̂), q̂) → 0 as n → ∞. The set of all limit points of
p̂ for G is denoted by ΛAT (G, p̂), and the limit set for G is defined by ΛAT (G) =∪

p̂∈AT (R) ΛAT (G, p̂).
We say that a subgroup G ⊂ MCG(R) acts at a point p̂ ∈ AT (R) discontinuously

if there exists a neighborhood Û of p̂ such that the number of elements [g]∗∗ ∈
ιAT (G) satisfying [g]∗∗(Û) ∩ Û 6= ∅ is finite. We define the region of discontinuity
ΩAT (G) for G ⊂ MCG(R) as the open set of all points p̂ ∈ AT (R) where G acts
discontinuously. Then ΩAT (G) = AT (R) − ΛAT (G).

2. Statement of result

We investigate a relationship between the limit set on T (R) and its projection to
AT (R). In [8], we have observed that a point in the region of discontinuity on T (R)
can be mapped into the limit set on AT (R) by the projection π : T (R) → AT (R).
On the other hand, we propose a problem whether π(ΛT (G)) ⊂ ΛAT (G) for all
subgroups G ⊂ MCG(R) and for all Riemann surfaces R. In [11], we have proved
a partial solution of this problem.

Proposition 2.1. Let R be a Riemann surface that admits a conformal automor-
phism g of infinite order. For the cyclic group G = 〈[g]〉 generated by [g] ∈ MCG(R),
we have π(ΛT (G)) ⊂ ΛAT (G).

Note that the mapping class [g] ∈ MCG(R) induced by a conformal automor-
phism g of infinite order is not asymptotically trivial (see [22]), and the proof of
Proposition 2.1 follows from this fact.

In this paper, we have another partial solution of the above problem under a
certain geometric condition of Riemann surfaces.
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Definition 2.2. We say that a Riemann surface R satisfies the bounded geometry
condition if R satisfies the following two conditions:

(i) lower bound condition: there exists a constant m > 0 such that, for every
point x ∈ Ṙ, every homotopically non-trivial curve that starts from x and
terminates at x has length greater than or equal to m. Here Ṙ is the non-
cuspidal part of R obtained by removing all horocyclic cusp neighborhoods
whose areas are 1:

(ii) upper bound condition: there exists a constant M > 0 such that, for every
point x ∈ R, there exists a homotopically non-trivial simple closed curve
that starts from x and terminates at x and whose length is less than or
equal to M .

Every normal cover of a compact Riemann surface that is not the universal cover
satisfies the bounded geometry condition. Moreover, if a Riemann surface admits
such pants decomposition that the diameter of each pair of pants is uniformly
bounded, then it satisfies the bounded geometry condition.

Then our result is the following, which was already announced in [11].

Theorem 2.3. Let R be a Riemann surface satisfying the bounded geometry con-
dition. Then π(ΛT (G)) ⊂ ΛAT (G) for any subgroup G of MCG(R).

We prove Theorem 2.3 in the next section.

Remark 2.4. We expect that the statement in Theorem 2.3 is true for all Riemann
surfaces that does not necessarily satisfy the bounded geometry condition. In fact,
it has proved in [8, Theorem 4.1] that ΛT (MCG(R)) = T (R) and ΛAT (MCG(R)) =
AT (R) for all Riemann surfaces R that do not satisfy the lower bound condition.

We closely observe the inclusion in Theorem 2.3 in the following three examples.
Note that if R satisfies the bounded geometry condition, then Ω(MCG(R)) 6= ∅.
See [7, Theorem 3].

Example 2.5. Let R be a normal cover of a compact Riemann surface whose
covering transformation group is a cyclic group 〈g〉 generated by a conformal au-
tomorphism of R of infinite order, and G = 〈[g]〉 the cyclic group generated by
[g] ∈ MCG(R). Then ΛT (G) 6= ∅. By the proof of [8, Proposition 4.3], we see that
π(ΛT (G)) is a proper subset of ΛAT (G). Moreover, [11, Theorem 4.6] states that
ΩAT (G) 6= ∅.

Example 2.6. Let R be a Riemann surface in Example 2.5 and set R′ = R−{p} for
a point p ∈ R. It is different from Example 2.5 that ΛT (MCG(R′)) = ∅, which was
proved by using the fact that MCG(R′) is stationary (see [15, Theorem 2]). On the
other hand, on the asymptotic Teichmüller space, we also have ΛAT (MCG(R′)) 6=
∅ and ΩAT (MCG(R′)) 6= ∅. Indeed, the asymptotic Teichmüller spaces AT (R)
and AT (R′) are biholomorphic, and the subgroups Mod(R) of Aut(AT (R)) and
ModAT (R′) of Aut(AT (R′)) can be identified. For details, see the proof of [8,
Theorem 4.2].

We also have another kind of example.

Example 2.7. Let R be a Riemann surface constructed in [14, Section 3], which
is not a normal cover of a compact Riemann surface and does not satisfy the lower
bound condition. By modifying the construction slightly as in Remark 3.4 of that
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paper, we see that R admits an asymptotically conformal automorphism g of infinite
order such that it is not asymptotically trivial. Then ΛAT (G) 6= ∅ for G = 〈[g]〉.
We have proved that G acts on T (R) discontinuously, namely ΛT (G) = ∅. Note
that this implies that [g] ∈ MCG(R) does not have a conformal representative on
any Riemann surface quasiconformally equivalent to R. See [21, Theorem 3].

In the last of this section, we announce the following result, which follows from
a similar argument in the proof of Proposition 3.2 below and will be proved in the
forthcoming paper by authors.

Theorem 2.8. Let R be a Riemann surface satisfying the bounded geometry con-
dition, and G a subgroup of MCG(R) such that all the elements of ιAT (G) other
than the identity are of infinite order. Then ΩAT (G) 6= ∅.

3. proof of theorem

For a proof of Theorem 2.3, a topological characterization of Ker ιAT is crucial.
To state the characterization, we define the following subgroup of the quasiconfor-
mal mapping class group.

Definition 3.1. The stable quasiconformal mapping class group G∞(R) is the
group of all essentially trivial mapping classes. Here [g] ∈ MCG(R) is said to be
essentially trivial if there exists a compact subsurface Vg of R such that, for each
connected component W of R−Vg that is not a cusp neighborhood, the restriction
g|W : W → R is homotopic to the inclusion map id|W : W ↪→ R.

Then we have the following.

Proposition 3.2 ([14]). Let R be a Riemann surface satisfying the bounded geom-
etry condition. Then G∞(R) = Ker ιAT .

We also use the following observation on the action of G∞(R) on T (R).

Proposition 3.3 ([10]). Let R be a topologically infinite Riemann surface satisfying
the bounded geometry condition. Then the stable quasiconformal mapping class
group G∞(R) acts on T (R) discontinuously.

We are ready to prove our theorem.

Proof of Theorem 2.3. We take a limit point p ∈ ΛT (G) arbitrarily. Then there
exists a sequence [gn]∗ of distinct elements of ιT (G) such that dT ([gn]∗(p), p) → 0
as n → ∞. This implies that dAT ([gn]∗∗(p̂), p̂) → 0 for the projection p̂ = π(p). We
will show that {[gn]∗∗}n∈N ⊂ ιAT (G) contains infinitely many elements, from which
we conclude that p̂ ∈ ΛAT (G). Suppose to the contrary that {[gn]∗∗}n∈N is a finite
set {[h1]∗∗, . . . , [hk]∗∗} for some k ≥ 1. Then there exists an integer i (1 ≤ i ≤ k),
say 1, such that [gn]∗∗ = [h1]∗∗ for infinitely many n. Set γn := gn ◦ h−1

1 . Then
[γn] ∈ Ker ιAT and dT ([γn]∗([h1]∗(p)), p) = dT ([gn]∗(p), p) → 0. This means that
the point p ∈ T (R) is a limit point for the subgroup Ker ιAT . On the other hand,
by Propositions 3.2 and 3.3, the asymptotically trivial mapping class group Ker ιAT

acts on T (R) discontinuously. This contradiction shows that {[gn]∗∗}n∈N contains
infinitely many elements. ¤
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