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1 Introduction

The theory of Teichmüller space is studied in various fields of mathematics but
the complex-analytic approach has one advantage in a sense that it can deal
with Teichmüller spaces of finite and infinite type Riemann surfaces in parallel
and simultaneously. However that may be, Teichmüller spaces of analytically
infinite Riemann surfaces are infinite dimensional and they have several aspects
and phenomena different from the finite-dimensional cases, and some results
involve much more difficult and complicated arguments for their proofs. On the
other hand, through these generalization and unification of theories, arguments
given for finite-dimensional cases become clearer and more transparent in some
occasions.

One of the recent development of the infinite-dimensional Teichmüller the-
ory is brought by the fact that the biholomorphic automorphism group of the
Teichmüller space is completely determined. Namely, it is proved that every
biholomorphic automorphism is induced by a quasiconformal mapping class
of the base Riemann surface, which is called a Teichmüller modular transfor-
mation. This result was first proved by Royden [43] for Teichmüller spaces
of compact Riemann surfaces, and through succeeding researches due to Kra,
Earle, Gardiner and Lakic (see [3] and [9]), it has been proved in full generality
by Markovic [30]. See the report in Volume II of this Handbook [12]. After
this, it should be natural that we investigate the moduli space of an infinite
type Riemann surface, which is the quotient space of the Teichmüller space
by the Teichmüller modular group (now known to be the biholomorphic au-
tomorphism group). In fact, compared with the finite-dimensional theory, the
study of moduli spaces has not been developed yet in the infinite-dimensional
theory.

In this chapter, we survey recent results concerning the dynamics of modu-
lar groups of infinite-dimensional Teichmüller spaces and their quotient spaces.
As we have mentioned above, the Teichmüller modular group is the automor-
phism group of the Teichmüller space caused geometrically by the quasicon-
formal mapping class group. Although they can be identified with each other
in almost all cases, we prefer to use “Teichmüller modular group” since we
consider its dynamics on the Teichmüller space. Occasionally “mapping class
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group” is still used when its property as a surface automorphism is a matter
in question.

Unlike the finite-dimensional cases, the action of the Teichmüller modular
group is not necessarily discontinuous in our case. In general, we say that a
group Γ acts on a Hausdorff space X discontinuously if, for every point x ∈ X,
there is a neighborhood U of x such that the number of elements γ ∈ Γ satisfy-
ing γ(U)∩U 6= ∅ is finite. If X is locally compact, this is equivalent to saying
that Γ acts on X properly discontinuously. However, since our Teichmül-
ler spaces are not locally compact, we use the term “discontinuous” instead
of “properly discontinuous”. Because of such non-discontinuous action, the
topological moduli space obtained simply by taking the quotient of the Teich-
müller space by the modular group does not have a nice geometric structure,
which might be a reason why this subject matter has not been so attractive.
However, assuming these facts in a positive way conversely, we can specify
the set of points where the Teichmüller modular group does not act discon-
tinuously, and observe some properties of this limit set. As is well known, the
limit set has played an important role in the theory of Kleinian groups and the
iteration of rational maps. We import this concept for the study of dynamics
of Teichmüller modular groups. Then, the non-homogeneity of Teichmüller
space appears to be tangible and in particular it provides an interesting re-
search subject, which is to understand the interaction between the hyperbolic
structure of an infinite type Riemann surface and the behavior of the orbit of
the corresponding point in the infinite-dimensional Teichmüller space.

The region of discontinuity is the complement of the limit set and the
quotient restricted to this set inherits a geometric structure from the Teich-
müller space. However, another problem is caused by the fact that this region
is not always dense in the Teichmüller space. To overcome this difficulty, we
introduce the concept of region of stability, which is the set of points where
the Teichmüller modular group acts in a stable way. Stability is defined by
closedness of the orbit. Then the region of stability sits in the Teichmüller
space as an open dense subset and the metric completion of the quotient of
the region of stability defines the stable moduli space. As a generalization of
the moduli space for finite type Riemann surfaces, we expect that the stable
moduli space should be an object we have to work with.

In the actual arguments developed in this theory, a comparison between
countability and uncountability, such as the Baire category theorem, appears
at several places. Uncountability is represented by the non-separability of the
Teichmüller space of an infinite type Riemann surface and by the cardinality of
its Teichmüller modular group. In various situations, ideas of our arguments
lie in how to pick out countability in the face of these uncountable circum-
stances and how to use it in each specific case. Typically, countability comes
from σ-compactness of Riemann surfaces and from compactness of a family of
normalized quasiconformal homeomorphisms with bounded dilatation in the
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compact-open topology. Further, by considering a fiber of the projection of
the Teichmüller space onto the asymptotic Teichmüller space, we are able to
extract countability in an implicit manner.

The asymptotic Teichmüller space is a new concept for infinite-dimensional
Teichmüller spaces introduced by Earle, Gardiner and Lakic [4], [5], [6]. It
parametrizes the deformation of complex structures on arbitrarily small neigh-
borhoods of the topological ends of an infinite type Riemann surface. There-
fore, the projection from the Teichmüller space means ignoring the deformation
of the complex structures on any compact regions, and hence, in each fiber of
this projection, all these ignored deformations constitute a separable closed
subspace in the Teichmüller space. The Teichmüller modular group acts pre-
serving the fiber structure on the Teichmüller space and it induces a group of
biholomorphic automorphisms of the asymptotic Teichmüller space, which is
called the asymptotic Teichmüller modular group. In this way, we can divide
the action of the Teichmüller modular group into that on the fibers and that
on the asymptotic Teichmüller space. Between these actions, a study of the
action of a stabilizer subgroup of a fiber, which is called an asymptotically
elliptic subgroup, has already been developed to some extent. We review the
dynamics of asymptotically elliptic subgroups in this chapter. Dynamics of the
asymptotic Teichmüller modular group will be an interesting future research
project.

In the next section (Section 2), we survey fundamental results on the dy-
namics of the Teichmüller modular group, without considering asymptotic
Teichmüller spaces. We summarize results contained in a series of papers by
Fujikawa [13], [14] and [15], in particular the concept of limit set of Teichmüller
modular groups and the bounded geometry condition on hyperbolic Riemann
surfaces. Concerning the stability of Teichmüller modular groups and several
criteria for stable actions of particular subgroups, especially those for closed
subgroups in the compact-open topology, we extract the arguments from [41]
and [40] and edit them in a new way.

Then, in Section 3, we add the consideration of asymptotic Teichmüller
spaces. In particular, the action on a fiber over the asymptotic Teichmül-
ler space is discussed in detail. We survey several results on asymptotically
elliptic subgroups obtained in [35], [36], [37], [38] and [39]. The topological
characterization of a quasiconformal mapping class that acts trivially on the
asymptotic Teichmüller space is excerpted from [16] and [19]. As an application
of this result, we explain a version of the Nielsen realization theorem for the
asymptotic Teichmüller modular group, which is obtained in [20].

Finally in Section 4, we construct moduli spaces and several quotient spaces
by subgroups of Teichmüller modular groups. The stable moduli space is
introduced here, which is one of the main results proved in [41]. As a quotient
space by the subgroup consisting of all mapping classes acting trivially on the
asymptotic Teichmüller space, we obtain an intermediate Teichmüller space.
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When R satisfies the bounded geometry condition, this coincides with the
enlarged moduli space, which is the quotient by the stable quasiconformal
mapping class group. This is a subgroup of the mapping class group given
by the exhaustion of mapping class groups of topologically finite subsurfaces.
Then the asymptotic Teichmüller modular group is canonically realized as the
automorphism group of the intermediate Teichmüller space. These arguments
are demonstrated in [19].

Throughout this chapter, our original work [19] and [41] is frequently cited
as basic references. The research announcement of [41] appeared in [32].

2 Dynamics of Teichmüller modular groups

In this section, we develop the theory of dynamics of Teichmüller modular
groups acting on infinite-dimensional Teichmüller spaces. For an analytically
finite Riemann surface, which is a Riemann surface obtained from a compact
Riemann surface by removing at most a finite number of points, the mapping
class group and its action on the Teichmüller space are well known and broadly
studied. For an analytically infinite Riemann surface whose Teichmüller space
is infinite dimensional, we also consider mapping classes in the quasiconformal
category. Their action on the infinite-dimensional Teichmüller space induces
Teichmüller modular transformations just like in the finite-dimensional cases.
Especially in this case, non-homogeneity of the Teichmüller space indicates an
interesting interaction between the dynamics of orbits and hyperbolic struc-
tures on the base Riemann surface. In the first part of this section, we give
basic concepts on the dynamics of Teichmüller modular groups. Then we dis-
cuss fundamental techniques for treating various kinds of subgroups of these
groups. We also show some application of these theories to infinite-dimensional
Teichmüller spaces.

2.1 Teichmüller spaces and modular groups

Throughout this chapter, we assume that a Riemann surface R is hyperbolic,
that is, it is represented as a quotient space D/H of the unit disk D endowed
with the hyperbolic metric by a torsion-free Fuchsian group H. Without men-
tioning specifically, we always regard R to have the hyperbolic structure, but
when a hyperbolic geometrical aspect of R is a matter in question, we some-
times call R a hyperbolic surface. If the limit set Λ(H) of the Fuchsian group
H is a proper subset of the unit circle ∂D, then H acts properly discontinuously
on D−Λ(H) and a bordered Riemann surface (D−Λ(H))/H is obtained, which
contains R as its interior. In this case, (∂D−Λ(H))/H is called the boundary
at infinity of R and denoted by ∂∞R. We are mainly interested in the case



6 Katsuhiko Matsuzaki

where the fundamental group π1(R) ∼= H is infinitely generated, namely, R is
of infinite topological type. (Conversely, if π1(R) is finitely generated, then R
is said to be of finite topological type.) We now define the Teichmüller space
for R and its Teichmüller modular group.

Teichmüller spaces in general

The Teichmüller space T (R) of an arbitrary Riemann surface R is the set of
all equivalence classes of quasiconformal homeomorphisms f of R onto another
Riemann surface. Two quasiconformal homeomorphisms f1 and f2 are defined
to be equivalent if there is a conformal homeomorphism h : f1(R) → f2(R)
such that f−1

2 ◦ h ◦ f1 is homotopic to the identity on R. Here the homotopy
is considered to be relative to the boundary at infinity ∂∞R when ∂∞R is
not empty. It is proved in Earle and McMullen [10] that the existence of
a homotopy is equivalent to saying that there is an isotopy to the identity
of R through uniformly quasiconformal automorphisms (relative to ∂∞R if
∂∞R 6= ∅). The equivalence class of f is called its Teichmüller class and
denoted by [f ].

The Teichmüller space T (R) has a complex Banach manifold structure.
When R is analytically finite, T (R) is finite dimensional, and otherwise T (R)
is infinite dimensional. A distance between p1 = [f1] and p2 = [f2] in T (R)
is defined by dT (p1, p2) = 1

2 log K(f), where f is an extremal quasiconformal
homeomorphism in the sense that its maximal dilatation K(f) is minimal in
the homotopy class of f2 ◦ f−1

1 (relative to the boundary at infinity if it is not
empty). This is called the Teichmüller distance. In virtue of a compactness
property of quasiconformal maps, the Teichmüller distance dT is complete on
T (R). This coincides with the Kobayashi distance on T (R) with respect to
the complex Banach manifold structure. Consult [12], [23], [24], [27], [29] and
[42] for the theory of Teichmüller space.

Quasiconformal mapping class groups

For an arbitrary Riemann surface R, the quasiconformal mapping class
group MCG(R) is the group of all homotopy classes [g] of quasiconformal
automorphisms g of R (relative to ∂∞R if ∂∞R 6= ∅). Each element [g] is
called a mapping class and it acts on T (R) from the left in such a way that
[g]∗ : [f ] 7→ [f ◦ g−1]. It is evident from the definition that MCG(R) acts
on T (R) isometrically with respect to the Teichmüller distance. It also acts
biholomorphically on T (R).

Definition 2.1. Let ι : MCG(R) → Aut(T (R)) be the homomorphism defined
by [g] 7→ [g]∗, where Aut(T (R)) denotes the group of all isometric biholomor-
phic automorphisms of T (R). The image Im ι ⊂ Aut(T (R)) is called the
Teichmüller modular group and is denoted by Mod(R).
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Except for a few low-dimensional cases, ι is injective. In particular, if R is
analytically infinite, then ι is always injective. This was first proved by Earle,
Gardiner and Lakic [4] and another proof was given by Epstein [11]. We will
discuss again this proof in Section 2.4 later. The map ι is also surjective except
in the one-dimensional case. This was finally proved by Markovic [30] after a
series of pioneering works. We refer to the account [12] in Volume II of this
Handbook. Hence, when there is no fear of confusion, we sometimes identify
MCG(R) with Mod(R).

Bounded geometry condition

We often put some moderate assumptions concerning the geometry of hy-
perbolic Riemann surfaces which make the analysis of Teichmüller modular
groups easier.

Definition 2.2. We say that a hyperbolic surface R satisfies the lower bound-
edness condition if the injectivity radius at every point of R is uniformly
bounded away from zero except in horocyclic cusp neighborhoods of area 1.
We say that R satisfies the upper boundedness condition if the injectivity ra-
dius at every point of R∗ is uniformly bounded from above, where R∗ is some
connected subsurface of R such that the inclusion map R∗ → R induces the
surjective homomorphism π1(R∗) → π1(R). Then R satisfies the bounded
geometry condition if both the lower and upper boundedness conditions are
satisfied and if the boundary at infinity ∂∞R is empty.

These conditions are quasiconformally invariant and hence we may regard
them as conditions for the Teichmüller space T (R). For example, an arbitrary
non-universal normal cover of an analytically finite Riemann surface satisfies
the bounded geometry condition (see [13]).

A pair of pants is a hyperbolic surface with three geodesic boundary compo-
nents and zero genus, where geodesic boundaries can degenerate to punctures.
When a hyperbolic surface R can be decomposed into the union of pairs of
pants, we say that R has a pants decomposition. If R has a pants decomposi-
tion such that all the lengths of boundary geodesics of the pairs of pants are
uniformly bounded from above and from below, then R satisfies the bounded
geometry condition. However, the converse is not true. Counter-examples can
be easily obtained by considering a planar non-universal normal cover of an
analytically finite Riemann surface with a puncture (see [17]).

2.2 Orbits of Teichmüller modular groups

Except for the universal Teichmüller space T (D), which is the Teichmüller
space of the unit disk D, and for the Teichmüller spaces T (R) of the punctured
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disk or the three-punctured sphere R, no Teichmüller space T (R) is homoge-
neous in a sense that the Teichmüller modular group Mod(R) acts transitively
on T (R). Actually, these are the only hyperbolic Riemann surfaces of no mod-
uli. In the non-homogeneous case, the aspects of the dynamics of Mod(R) are
different depending on the points p ∈ T (R), and the geometric structure of
the Riemann surface corresponding to p reflects the action of Mod(R) at p.

Limit sets

For an analytically finite Riemann surface R, the Teichmüller modular
group Mod(R) acts on T (R) properly discontinuously. Although Mod(R) has
fixed points on T (R), each orbit is discrete and each stabilizer subgroup is
finite. Hence an orbifold structure on the moduli space M(R) is induced from
T (R) as the quotient space by Mod(R). However, this is not always satisfied
for analytically infinite Riemann surfaces. Hence, we introduce the concept of
limit set for the Teichmüller modular group Mod(R).

For a subgroup Γ ⊂ Mod(R), the orbit of p ∈ T (R) under Γ is denoted by
Γ(p) and the stabilizer subgroup of p in Γ is denoted by StabΓ(p). In the case
where Γ = Mod(R), StabΓ(p) is denoted by Stab(p). For an element γ ∈ Γ,
the set of all fixed points of γ is denoted by Fix(γ). The set of all common
fixed points of the elements of Γ is denoted by Fix(Γ).

Definition 2.3. For a subgroup Γ ⊂ Mod(R) and for a point p ∈ T (R), we
say that q ∈ T (R) is a limit point of p if there exists a sequence {γn} of distinct
elements of Γ such that γn(p) converge to q. The set of all limit points of p is
denoted by Λ(Γ, p). The limit set for Γ is defined by Λ(Γ) =

⋃
p∈T (R) Λ(Γ, p)

and the elements of Λ(Γ) are called the limit points of Γ. A point p ∈ T (R) is
a recurrent point of Γ if p ∈ Λ(Γ, p) and the set of all recurrent points of Γ is
denoted by Rec(Γ).

It follows from the definition that Rec(Γ) ⊂ Λ(Γ) and these sets are Γ-
invariant. In fact, we have the following fact.

Proposition 2.4 ([13], [18]). For a subgroup Γ ⊂ Mod(R), the limit set Λ(Γ)
coincides with Rec(Γ) and it is a closed set. Moreover, p ∈ T (R) is a limit
point of Γ if and only if either the orbit Γ(p) is not a discrete set or the
stabilizer subgroup StabΓ(p) consists of infinitely many elements.

The limit set is originally defined for a Kleinian group and it is also defined
for the iteration of a holomorphic function as the Julia set. Some properties
of our limit set are common to the original settings but some are not. For
instance, the limit set is the smallest invariant closed subset in the original
setting, but this is not true for the case of Teichmüller modular groups.
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Discontinuity and stability

The complement of the limit set should be defined as the region of discon-
tinuity. Hence we define discontinuity of the action at a point p ∈ T (R) as the
complementary condition for p to be a limit point. By weakening the property
of discreteness of the orbit, we also introduce another concept of manageable
action, stability, which will be important for our arguments later.

Definition 2.5. Let Γ be a subgroup of Mod(R). We say that Γ acts at
p ∈ T (R)

• discontinuously if Γ(p) is discrete and StabΓ(p) is finite;

• weakly discontinuously if Γ(p) is discrete;

• stably if Γ(p) is closed and StabΓ(p) is finite;

• weakly stably if Γ(p) is closed.

If Γ acts at every point p in T (R) (weakly) discontinuously or stably, then we
say that Γ acts on T (R) (weakly) discontinuously or stably, respectively. The
set of points p ∈ T (R) where Γ acts discontinuously is denoted by Ω(Γ) and
called the region of discontinuity for Γ. The set of points p ∈ T (R) where Γ
acts stably is denoted by Φ(Γ) and called the region of stability for Γ.

Note that Γ ⊂ Mod(R) acts at p ∈ T (R) discontinuously if and only if
there exists a neighborhood U of p such that the number of elements γ ∈ Γ
satisfying γ(U) ∩ U 6= ∅ is finite. When T (R) is locally compact (i.e., finite
dimensional), this condition is the same as proper discontinuity.

The discontinuity and stability criteria mentioned above have obvious in-
clusion relations that immediately follow from their definitions. The following
theorem says that the converse assertion holds under a certain countability
assumption. This fact is based on the Baire category theorem and the un-
countability of perfect closed sets in a complete metric space.

Lemma 2.6 ([41]). Assume that Γ ⊂ Mod(R) contains a subgroup Γ0 of
countable index (that is, the cardinality of the cosets Γ/Γ0 is countable) such
that Γ0 acts at p ∈ T (R) weakly discontinuously. If Γ acts at p (weakly) stably,
then Γ acts at p (weakly, resp.) discontinuously.

The region of discontinuity Ω(Γ) is always an open set because it is the
complement of the limit set Λ(Γ) as it follows from Proposition 2.4. However,
we only see that the region of stability Φ(Γ) becomes an open set under a
certain condition upon Γ. This is also obtained by an argument based on the
Baire category theorem.

Lemma 2.7 ([41]). If Γ ⊂ Mod(R) contains a subgroup Γ0 of countable index
such that Γ0 acts on T (R) stably, then the region of stability Φ(Γ) is open.
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We regard these two lemmata as fundamental principles of our arguments
on the dynamics of Teichmüller modular groups and we utilize them in later
discussion.

If Γ acts discontinuously, then every subgroup of Γ acts discontinuously.
However, this property is not necessarily satisfied for stability. This is because
any subset of a discrete set is always discrete whereas any subset of a closed
set is not always closed. By this evidence, we have the following claim.

Proposition 2.8. Let {Γi}i∈I be a family of subgroups of Mod(R) such that
each Γi acts stably at p ∈ T (R). Then the intersection Γ =

⋂
i∈I Γi acts stably

at p ∈ T (R).

Boundedness and divergence

Now we consider another aspect of the dynamics of Mod(R). We classify
the action of subgroups of Mod(R) according to the global behavior of their
orbits.

Definition 2.9. Let Γ be a subgroup of Mod(R). If the orbit Γ(p) of some
p ∈ T (R) is a bounded set in T (R), we say that Γ is of bounded type. On the
other hand, if the orbit Γ(p) is divergent to the infinity of T (R), meaning that
Γ(p) is infinite and each bounded subset of T (R) contains only finitely many
of Γ(p), we say that Γ is of divergent type.

Note that the notions of bounded type and of divergent type are well-
defined for Γ since these properties of the orbit are independent from the
choice of p ∈ T (R).

When R is analytically finite, T (R) is locally compact and Mod(R) acts
properly discontinuously on T (R). Hence every infinite subgroup of Mod(R) is
of divergent type and of course every finite subgroup of Mod(R) is of bounded
type. However, for a general R, there are subgroups of Mod(R) neither of
bounded type nor of divergent type even for infinite cyclic subgroups. See
[35], where we have tried to give a classification of the Teichmüller modular
transformations. If we restrict subgroups of Mod(R) to certain classes, then
they have the dichotomy of boundedness and divergence. We will discuss later
these classes having a nature similar to the finite-dimensional cases.

Example 2.10. Here we give an example of a Teichmüller modular trans-
formation γ ∈ Mod(R) such that 〈γ〉 acts discontinuously on T (R) and it is
neither of bounded type nor of divergent type.

Let S be a closed hyperbolic surface of genus 3 and we take 3 mutually
disjoint non-dividing simple closed geodesics a, b and c on S. Cut S along
a and b to make a totally geodesic surface S′ of genus 1 with 4 boundary
components, and give a pants decomposition for S′ having c and the copies
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of a and b as boundary geodesics. We prepare copies of S′ and paste them
to make an abelian covering surface R0 of S with the covering transformation
group isomorphic to Z2. Then we index all the lifts of c to R0 in such a way
that cnk is the image of some fixed lift c00 under the covering transformation
corresponding to (n, k) ∈ Z2. We extend the pants decomposition of S′ to
R0 so that the action of the covering transformation group Z2 preserves this
decomposition.

By assigning the geodesic lengths `(cnk) to each cnk and keeping the lengths
of the other boundary curves of the pants decomposition invariant, we can
obtain various hyperbolic Riemann surfaces R. This is performed by a locally
quasiconformal deformation but it is not necessarily globally quasiconformal.
A suitable choice of {`(cnk)} gives an interesting example of a mapping class
[g] corresponding to the element of the covering transformation n 7→ n + 1,
k 7→ k in Z2. In our purpose, we define

`(ckn) = exp
{
−2|k| h(2−|k|(|k|+1)/2n)

}
,

where h is a periodic function of period one defined on R such that h(x) = x for
0 ≤ x ≤ 1/2 and h(x) = 1−x for 1/2 ≤ x ≤ 1. Then, we see that the mapping
class [g] gives a Teichmüller modular transformation γ ∈ Mod(R) such that
〈γ〉 acts discontinuously on T (R). Furthermore, we can find subsequences
{ni} and {nj} such that {γni(p)} is bounded and {γnj (p)} is divergent for
any p ∈ T (R).

The classification by divergence and boundedness is more restrictive than
that by discontinuity and instability.

Proposition 2.11. If a subgroup Γ ⊂ Mod(R) is of divergent type, then Γ
acts discontinuously on T (R). On the contrary, if an infinite subgroup Γ is of
bounded type, then Γ does not act stably on T (R).

Proof. The first statement is obvious from the definition. The second state-
ment will be seen later on by the arguments on elliptic subgroups (Theorem
2.34).

2.3 Subgroups of Teichmüller modular groups

In this subsection, we list up several subgroups of the Teichmüller modular
group, which have special properties with respect to their action on Teichmül-
ler space. We intend to summarize a glossary of basic facts on their dynamics.

Countable index subgroups

The following subgroup of countable index in Mod(R) plays an important
role in our arguments for the application of Lemmata 2.6 and 2.7.
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Definition 2.12. For a homotopically non-trivial simple closed curve c, we
define MCGc(R) to be a subgroup of MCG(R) consisting of all mapping classes
that preserve c:

MCGc(R) = {[g] ∈ MCG(R) | g(c) ∼ c},

where ∼ means free homotopy equivalence. We denote the image of MCGc(R)
under the representation ι : MCG(R) → Mod(R) by Modc(R).

Proposition 2.13. For any non-trivial simple closed curve c in R, the sub-
group MCGc(R) is of countable index in MCG(R). For an arbitrary subgroup
G ⊂ MCG(R), there is a subgroup G′ ⊂ MCGc(R) of countable index in G.

Proof. The countability of the indices comes from the fact that the number
of the free homotopy classes of non-trivial simple closed curves on R is count-
able. The latter statement is obtained by taking the intersection of G with
MCGc(R).

As this proposition shows, we can say that σ-compactness of Riemann
surfaces is at the basis of the countability involved in the dynamics of Teich-
müller modular groups.

Countable subgroups

It is well known that the mapping class group of an analytically finite
Riemann surface is finitely generated and in particular countable. However, for
almost all analytically infinite Riemann surfaces, the quasiconformal mapping
class groups are uncountable.

We consider countable subgroups of Mod(R). The fundamental lemma 2.6
includes the following claims in particular if Γ ⊂ Mod(R) itself is countable.

Theorem 2.14. Let Γ be a countable subgroup of Mod(R). Then Γ acts
(weakly) discontinuously at p ∈ T (R) if and only if Γ acts (weakly, resp.)
stably at p. In particular Ω(Γ) = Φ(Γ).

The following subgroup of MCG(R) can be regarded as the exhaustion of
mapping class groups of topologically finite subsurfaces of R.

Definition 2.15. A mapping class [g] ∈ MCG(R) is called trivial near infinity
(or essentially trivial) if some representative g : R → R is the identity outside
some topologically finite bordered subsurface V ⊂ R possibly having punctures
such that V is closed in R∪∂∞R. Let MCG∞(R) be the subgroup of MCG(R)
consisting of all mapping classes trivial near infinity. Then we call it the
stable mapping class group. The image of MCG∞(R) under the representation
ι : MCG(R) → Mod(R) is denoted by Mod∞(R).
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Since MCG∞(R) admits an exhaustion by countable groups, it is countable.
Moreover, MCG∞(R) is a normal subgroup of MCG(R). This group plays an
important role when we consider the action of MCG(R) on the asymptotic
Teichmüller space later on.

Under the assumption that R satisfies the bounded geometry condition, we
see that MCG∞(R) acts nicely on T (R) as the following theorem asserts.

Theorem 2.16 ([16]). If R satisfies the bounded geometry condition, then
Mod∞(R) acts discontinuously on T (R). Moreover, whenever R is of infinite
topological type, this action is fixed-point free.

If MCG(R) itself is countable for a hyperbolic Riemann surface R of infi-
nite topological type, then the geometry of R is much more restricted (in the
opposite direction to the boundedness) by this assumption and we have the
following stronger result. Note that the existence of such a Riemann surface
R is also known. To all appearances, this theorem is a generalization of the
case where R is analytically finite.

Theorem 2.17 ([34]). If Mod(R) is countable, then it acts discontinuously
on T (R).

An example of a Riemann surface R of infinite topological type satisfying
MCG∞(R) = MCG(R) is given in [36].

Closed subgroups

The compact-open topology on the space of all homeomorphic automor-
phisms of R induces a topology on the quasiconformal mapping class group
MCG(R). More precisely, we say that a sequence of mapping classes [gn] ∈
MCG(R) converges to a mapping class [g] ∈ MCG(R) in the compact-open
topology if we can choose representatives gn ∈ [gn] and g ∈ [g] such that gn

converge to g locally uniformly on R. When R has the boundary at infinity
∂∞R, assuming that the quasiconformal automorphisms gn and g extend to
∂∞R, we further require that these extensions converge locally uniformly on
R∪ ∂∞R. If [gn] converge to [g] in the compact-open topology, then there are
quasisymmetric automorphisms g̃n and g̃ of the unit circle ∂D corresponding
to [gn] and [g] respectively such that g̃n converge uniformly to g̃.

Definition 2.18. We say that a subgroup G of MCG(R) is discrete if it is
discrete in the compact-open topology on MCG(R), and closed if it is closed.
For a subgroup G, we denote by G the closure of G in MCG(R). We also use
the same terminology for the corresponding subgroup Γ = ι(G) of Mod(R)
and define the closure Γ by ι(G).

It is clear that the intersection
⋂

i∈I Gi of closed subgroups Gi of MCG(R)
is also closed.
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For a point p ∈ T (R) such that the stabilizer Stab(p) in Mod(R) is trivial
(see Theorem 2.37 in Section 2.4), the orbit of p defines a topology on Mod(R)
by using the Teichmüller distance on T (R). However, this topology does not
coincide with the compact-open topology introduced above. In fact, the orbit
Γ(p) for p ∈ T (R) does not necessarily coincide with the closure of the orbit
Γ(p) in the topology on T (R).

Closed subgroups have preferable properties. The following theorem pro-
vides an algebraic condition on G for being closed.

Theorem 2.19 ([40]). Assume that ∂∞R = ∅. If G ⊂ MCG(R) is a finitely
generated abelian group, then G is discrete, and in particular closed.

This result is no more valid for a countable group in general. The stable
mapping class group MCG∞(R), which is countable, is not closed in almost all
cases. In what follows, we will give a closed subgroup that contains MCG∞(R).

We consider the end compactification R∗ of a Riemann surface R by adding
all the ends of R and by providing this union with the canonical topology. Here
an end means a topological end if the boundary at infinity ∂∞R is empty.
However, if ∂∞R 6= ∅, we first consider the double R̂ of R with respect to
∂∞R and then take the closure of R in the end compactification R̂∗ of R̂,
which we define to be R∗. This has been introduced in [21]. Every quasi-
conformal automorphism of R extends to a homeomorphic automorphism of
R∗. Furthermore this extension preserves the cuspidal ends. The extension
restricted to the ideal boundary R∗−R is determined by the mapping class of
the quasiconformal automorphism. Clearly, every mapping class trivial near
infinity fixes all the ends except cuspidal ends.

Definition 2.20. The subgroup of MCG(R) consisting of all mapping classes
that fix all the ends except the cuspidal ends is called the pure mapping class
group and denoted by MCG∂(R).

Proposition 2.21. The pure mapping class group MCG∂(R) is a closed nor-
mal subgroup of MCG(G) which contains MCG∞(R).

Proof. The property of fixing the ends is preserved under convergence in the
compact-open topology.

Stationary subgroups I: with closedness

To generalize certain properties shared by the mapping class group of an
analytically finite Riemann surface, we will consider a subgroup of MCG(R)
that keeps the images of some compact bordered subsurface bounded.

Definition 2.22. We call a subgroup G of MCG(R) stationary if there exists a
compact bordered subsurface V of R such that every representative g of every
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mapping class [g] ∈ G satisfies g(V ) ∩ V 6= ∅. The corresponding subgroup
Γ = ι(G) of Mod(R) is also called stationary.

It is clear from the definition that, if G is stationary, then so is the closure
G in the compact-open topology.

A basic feature of stationary subgroups in connection with their closedness
and discreteness can be summarized as the following theorem.

Theorem 2.23. Let Γ be a stationary subgroup of Mod(R). If Γ is closed
then it acts stably on T (R). If Γ is infinite and discrete then it is of divergent
type, and in particular it acts discontinuously on T (R).

Proof. Compactness of a family of stationary quasiconformal automorphisms
with uniformly bounded dilatations yields that, if there is a sequence [gn] in
MCG(R) such that γn(p) is bounded in T (R) for γn = [gn]∗ and for p ∈ T (R),
then a subsequence of [gn] converges to some [g] ∈ MCG(R) in the compact-
open topology.

Suppose that a stationary subgroup Γ is closed. If γn(p) converges to
q ∈ T (R) for some sequence γn ∈ Γ and for p ∈ T (R), then we see that
γ = [g]∗ belongs to Γ and γ(p) = q. This implies that the orbit Γ(p) is closed
for every p ∈ T (R). Since the stabilizer is finite for any stationary subgroup,
Γ acts stably on T (R). Suppose that Γ is infinite and discrete. In this case, we
see that there is no subsequence γn ∈ Γ such that γn(p) is bounded in T (R).
This implies that Γ is of divergent type.

Corollary 2.24. If a subgroup Γ of Mod(R) is stationary, then Γ acts stably
on T (R) and Γ(p) = Γ(p) for every p ∈ T (R).

Proof. Since Γ is stationary and closed, it acts stably on T (R) by Theorem
2.23. Then Γ(p) is closed for every p ∈ T (R), which gives Γ(p) ⊂ Γ(p). To
prove the converse inclusion, we take an arbitrary point q ∈ Γ(p) and consider
a sequence γn ∈ Γ such that γn(p) → q as n → ∞. As in the proof of Theorem
2.23, since Γ is stationary, we have γ ∈ Γ such that γ(p) = q. This implies
q ∈ Γ(p).

By imposing an algebraic condition on Γ as before, we have another corol-
lary obtained from Theorems 2.19 and 2.23.

Corollary 2.25. Assume that ∂∞R = ∅. If a finitely generated infinite abelian
group Γ ⊂ Mod(R) is stationary, then Γ is of divergent type.

Note that, for an infinite cyclic group Γ, this has been proved in [35] with-
out imposing the condition ∂∞R = ∅. We expect that the statement of the
corollary is always valid without this assumption.
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As an example of a stationary subgroup, we have the pure mapping class
group MCG∂(R) in many cases as the following proposition states. See [16]
for details. Recall that MCG∂(R) is also closed by Proposition 2.21.

Proposition 2.26. Assume that R has at least 3 non-cuspidal topological
ends. Then the pure mapping class group MCG∂(R) is stationary. In this
case, Mod∂(R) = ι(MCG∂(R)) acts stably on T (R).

Proof. This is because a pair of pants that divides 3 non-cuspidal topolog-
ical ends has nonempty intersection with its image under every element of
MCG∂(R). The latter statement is a consequence of Theorem 2.23.

The subgroup Modc(R) defined before is closed and stationary. Hence
Modc(R) acts stably on T (R) by Theorem 2.23. More generally, we have the
following.

Lemma 2.27. Each subgroup Γ of Mod(R) contains a stationary subgroup Γ′

of countable index in Γ. In addition, if Γ is closed, then Γ′ can be taken to be
closed and hence acting stably on T (R).

Proof. Set Γ′ = Γ∩Modc(R). Then this is stationary since so is Modc(R), and
it is of countable index in Γ by Proposition 2.13. Furthermore if Γ is closed,
then Γ′ is closed since Modc(R) is closed.

We have mentioned that the region of stability Φ(Γ) for a subgroup Γ ⊂
Mod(R) is not necessarily open. However, by applying Lemmata 2.7 and 2.27,
we can now recognize a sufficient condition for the region of stability to be
open.

Theorem 2.28. For a closed subgroup Γ of Mod(R), the region of stability
Φ(Γ) is an open subset of T (R). In particular, Φ(Mod(R)) is open.

Stationary subgroups II: with bounded geometry

Another feature of a stationary subgroup is that, under the bounded geom-
etry condition, it acts discontinuously on T (R). Note that we cannot drop any
of the three assumptions in the bounded geometry condition (lower bounded-
ness, upper boundedness and ∂∞R = ∅) for the validity of this claim.

Theorem 2.29 ([22], [14]). Let Γ be a stationary subgroup of Mod(R). If R
satisfies the bounded geometry condition, then Γ acts discontinuously on T (R).

We apply this theorem to Γ = Modc(R). Then Lemma 2.6 implies the
following result.
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Theorem 2.30. Assume that R satisfies the bounded geometry condition.
Then Γ acts (weakly) discontinuously at p ∈ T (R) if and only if Γ acts (weakly,
resp.) stably at p. In particular Ω(Γ) = Φ(Γ).

We also see in the following theorem that Φ(Γ) = Ω(Γ) is non-empty in this
case, which has been proved in [13]. Later we will see a stronger assertion that
Φ(Mod(R)) is always dense in T (R) without any assumption on the geometry
of R.

Theorem 2.31. If R satisfies the bounded geometry condition, then, for any
subgroup Γ of Mod(R), Ω(Γ) is non-empty.

Proof. We only have to show the statement for Γ = Mod(R). Since R satisfies
the lower boundedness condition, we choose an arbitrary simple closed geodesic
c on R and give a deformation of the hyperbolic structure by pinching c so
that it becomes the unique shortest simple closed geodesic with respect to the
new hyperbolic structure. Let p be the corresponding point on T (R).

For a neighborhood U of p, we consider the smallest subgroup Γ0 of Mod(R)
that contains {γ ∈ Mod(R) | γ(p) ∈ U}. If U is sufficiently small, Γ0 is con-
tained in Modc(R). Since Modc(R) acts discontinuously on T (R) by Theorem
2.29, so does Γ0 and hence Mod(R) acts discontinuously at p.

If we do not assume a geometric condition on R, this result is not satisfied
any more. For instance, if R does not satisfy the lower boundedness condition
or if the boundary at infinity ∂∞R is not empty, then Ω(Mod(R)) = ∅. As a
conjecture, we expect that the converse of this claim is also true.

Conjecture 2.32. The region of discontinuity Ω(Mod(R)) is not empty if and
only if R satisfies the lower boundedness condition together with ∂∞R = ∅.

Elliptic subgroups

If a Teichmüller modular transformations [g]∗ ∈ Mod(R) has a fixed point
on T (R), then it is called elliptic according to Bers [1]. This is equivalent to
a condition that the mapping class [g] ∈ MCG(R) is realized as a conformal
automorphism of the Riemann surface f(R) corresponding to p = [f ], that
is, fgf−1 is homotopic to a conformal automorphism of f(R) (relative to the
boundary at infinity if it is not empty). Such a mapping class [g] is called a
conformal mapping class. When R is an analytically finite Riemann surface,
[g]∗ ∈ Mod(R) is elliptic if and only if it is periodic (of finite order). We extend
the concept of ellipticity to the case where R is not necessarily analytically
finite. In this case, elliptic modular transformations can be of infinite order.

Definition 2.33. A subgroup Γ of Mod(R) is called elliptic if it has a common
fixed point on T (R).
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If Γ = ι(G) is an elliptic subgroup of Mod(R) fixing p = [f ] ∈ T (R), then
the subgroup G of MCG(R) is realized as a group of conformal automorphisms
of f(R). Hence G is a countable group. Furthermore G is discrete in the
compact-open topology, and if G is an infinite group, then it is not stationary.

We characterize elliptic subgroups by their orbits. It is clear that any orbit
Γ(q) of an elliptic subgroup Γ is bounded since dT (γ(q), p) = dT (q, p) for a
common fixed point p and for all γ ∈ Γ. The following theorem says that the
converse is also true.

Theorem 2.34. A subgroup Γ of Mod(R) is elliptic if and only if Γ is of
bounded type, that is, the orbit Γ(p) for some p ∈ T (R) is bounded.

In the case where R is analytically finite, the Nielsen realization theorem,
which was finally proved by Kerckhoff [28], is equivalent to saying that ev-
ery finite subgroup of Mod(R) is elliptic. The realization theorem says that
every finite subgroup of MCG(R) is realized as a group of conformal automor-
phisms of a Riemann surface corresponding to the fixed point. Since a finite
subgroup has a bounded orbit, Theorem 2.34 can be regarded as a generaliza-
tion of the realization theorem. The proof is essentially based on a theorem
due to Markovic [31], which asserts that a uniformly quasisymmetric group
on the unit circle ∂D is conjugate to a Fuchsian group by a quasisymmetric
homeomorphism.

Next, we see that most infinite elliptic subgroups Γ have an indiscrete orbit
in T (R). Since Γ is countable, Theorem 2.14 implies that this is equivalent to
the statement that the orbit is not closed.

Theorem 2.35. Assume that an elliptic subgroup Γ ⊂ Mod(R) has an infinite
descending sequence {Γn}∞n=1 of proper subgroups Γ % Γ1 % Γ2 % · · · . Then
the union X =

⋃
n≥1 Fix(Γn) is not closed in T (R) and, at each p ∈ X − X,

Γ does not act weakly discontinuously, in other words, the orbit Γ(p) is not
a discrete set. In particular, if an elliptic subgroup Γ contains an element of
infinite order, the above assumption is always satisfied and the conclusion is
valid.

Proof. The strict inclusion relation Γn % Γn+1 gives the strict inclusion rela-
tion Fix(Γn) $ Fix(Γn+1) for every n by passing to a subsequence if necessary.
This has been proved in [33]. Then the Baire category theorem implies that X
is not closed and X−X is dense in X. Take any point p ∈ X−X and consider
a sequence {γn(p)}∞n=1 for γn ∈ Γn − Γn+1. Then we see that γn(p) 6= p and
limn→∞ γn(p) = p. This shows that the orbit Γ(p) is not a discrete set.

Note that an arbitrary countable group can be realized as a group of con-
formal automorphisms of some Riemann surface (cf. [26]). Hence there is an
example of an infinite elliptic subgroup Γ that does not contain an infinite
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descending sequence of proper subgroups. For these groups, we do not know
whether their orbits are discrete or not.

Finally, we show that each element of the countable group Mod∞(R), which
comes from a mapping class trivial near infinity, can be represented by the
composition of elliptic modular transformations of infinite order if they exist.

Theorem 2.36. Assume that Mod(R) contains an elliptic modular transfor-
mation of infinite order. Then any element of the countable subgroup Mod∞(R)
can be written as a composition of some elliptic elements of Mod(R).

Proof. For an elliptic modular transformation γ ∈ Mod(R) of infinite order,
we may assume that it fixes the base point o ∈ T (R) and hence the corre-
sponding mapping class is realized as a conformal automorphism g of R. Take
an arbitrary simple closed geodesic c in R. Since 〈g〉 acts on R properly dis-
continuously, there is an integer k 6= 0 such that gkn(c)∩c = ∅ for every integer
n 6= 0. Then, for ĝ = gk, a family of simple closed geodesics {ĝn(c)}n∈Z are
mutually disjoint. Moreover in this case, there is a collar neighborhood Ac of
c such that {ĝn(Ac)}n∈Z are mutually disjoint. We rename ĝ as g and reset
γ = [g]∗.

For each n ∈ Z, let tgn(c) be a quasiconformal automorphism of R that is
obtained by a Dehn twist supported on gn(Ac) = Agn(c). We set gc = g ◦ tc
and define γc = [gc]∗. Since g−1 ◦ tc ◦ g = tg−1(c), we have

gn
c = gn ◦ tg−(n−1)(c) ◦ · · · ◦ tg−1(c) ◦ tc

for every integer n ≥ 1. From this expression, we see that the maximal di-
latation of gn

c is equal to that of tc because the support of the quasiconformal
automorphisms tg−i(c) (0 ≤ i ≤ n−1) are mutually disjoint. This implies that
the orbit {γn

c (o)}n∈Z is bounded. Hence, by Theorem 2.34, γc is also an elliptic
modular transformation. It is easy to see that the order of γc is infinite.

Since tc = g−1 ◦ gc, the corresponding modular transformation τc = [tc]∗
is written as a composition of elliptic elements. Every element of MCG∞(R)
can be written as a composition of mapping classes obtained by Dehn twists
along simple closed geodesics because this is true for the mapping class group
of any compact bordered surface. Since every modular transformation τc cor-
responding to a Dehn twist is the composition of elliptic elements of infinite
order, we see that every element of Mod∞(R) is also written as a composition
of such elements.

Remark that no non-trivial elliptic modular transformations belong to
Mod∞(R).
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2.4 Application to the infinite-dimensional
Teichmüller theory

We have given basic concepts in the dynamics of the Teichmüller modular
group. They have a general theoretical nature and will be developed by finding
interesting applications to Teichmüller theory. Here we review some of such
applications.

Fixed point loci of Teichmüller modular groups

For a finite-dimensional Teichmüller space T (R), it is well known that the
union of the fixed point loci of all non-trivial elements of the mapping class
group MCG(R) is nowhere dense in T (R) except in a few cases of low dimen-
sions. For instance, if R is a closed Riemann surface of genus 2, there exists an
involution [g] in MCG(R) that fixes all the points of T (R). A Riemann surface
having such a symmetry is called an exceptional surface. The representation
ι : MCG(R) → Aut(T (R)) is injective for a non-exceptional Riemann surface
R.

For an infinite-dimensional Teichmüller space, a claim analogous to the
above statement says that the union of the fixed point loci of MCG(R) is con-
tained in a countable union of nowhere dense subsets. This has been proved
by Epstein [11]. The complement of this countable union is called a resid-
ual set which is dense in T (R). The existence of a point in the residual set
where the isotropy subgroup of MCG(R) is trivial in particular shows that the
representation ι : MCG(R) → Aut(T (R)) is injective.

On the other hand, from a viewpoint of dynamical systems, we can consider
a problem of whether the set of points p ∈ T (R) such that Stab(p) has an
element of infinite order is dense in the limit set of Mod(R), in analogy with
the same question in the dynamics of Kleinian groups. However, it is proved in
[41] that this is not true for the dynamics of Teichmüller modular groups. This
means that the fixed point loci of Mod(R) is a thinner set even in the limit
set and similar arguments for proving this fact give the following extension of
the aforementioned result.

Theorem 2.37 ([41]). The interior of the set of points p ∈ T (R) for which
Stab(p) is trivial is dense in T (R).

Biholomorphic automorphisms of Teichmüller spaces

Now it is known that every biholomorphic automorphism of the Teichmüller
space of dimension greater than one is a Teichmüller modular transformation.
For finite-dimensional Teichmüller spaces, this result was first proved by Roy-
den [43]. In the general case, the proof is carried out by the combination
of two theorems. Earle and Gardiner [3] proved the automorphism theorem,
which asserts that the above claim is true if a Riemann surface satisfies a
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so-called isometry property. Then Markovic [30] finally proved that every
non-exceptional Riemann surface satisfies the isometry property. See the ex-
position in Volume II of this Handbook [12]. See also [9] for an adoption of
this idea to the proof in the finite-dimensional case.

If we assume the isometry property against chronological order, then we
can state an essential part of the automorphism theorem as follows.

Theorem 2.38. Assume that the Teichmüller space T (R) has dimension
greater than one. Then, for every biholomorphic automorphism φ of T (R)
and for every point p ∈ T (R), there exists an element γp ∈ Mod(R) such that
φ(p) = γp(p).

For an analytically finite Riemann surface, once this theorem is proved
(actually Royden’s arguments imply this statement), then it is easy to obtain
the result that any biholomorphic automorphism is a Teichmüller modular
transformation. This is due to the fact that the Teichmüller modular group
acts properly discontinuously in this case. However, in the general case, we still
need an extra argument to reach the desired result. This step was included
in the proof of the automorphism theorem in [3]. Fujikawa [15] found that
there is a certain case where the original argument of Royden can be applied
without change. The assumption for this case is described by using the region
of discontinuity of the Teichmüller modular group.

Theorem 2.39. For a biholomorphic automorphism φ of T (R), assume that
there exists a subgroup Γ of Mod(R) with Ω(Γ) 6= ∅ such that, for every point
p ∈ Ω(Γ), there is an element γp ∈ Γ satisfying φ(p) = γp(p). Then φ coincides
with an element of Γ.

Proof. Choose a point p ∈ Ω(Γ). The stabilizer of p is a finite group in general
and this does not make a trouble in the proof as is shown in [15], but here
we assume that the stabilizer is trivial for the sake of simplicity. Actually, the
choice of such p is always possible because the set of all such p is dense in
T (R) as is seen before.

Take a disk Up(r) with center at p and radius r > 0 such that γ(Up(r)) ∩
Up(r) = ∅ for every non-trivial γ ∈ Γ. Then consider a smaller disk Up(r/2)
of radius r/2 and choose an arbitrary point q ∈ Up(r/2). It is clear that
dT (γ(q), q) > r for every non-trivial γ ∈ Γ. We consider γ−1

p ◦ γq ∈ Γ and,
from the fact that the biholomorphic automorphism φ preserves the Kobayashi
distance on T (R), we have

dT (γ−1
p ◦ γq(q), q) = dT (γq(q), γp(q))

≤ dT (γq(q), γp(p)) + dT (γp(p), γp(q))
= dT (φ(q), φ(p)) + dT (p, q) < r.
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This estimate implies that γ−1
p ◦ γq should be trivial and hence γq = γp

for every q ∈ Up(r/2). Therefore φ = γp restricted to Up(r/2). Then, by
the rigidity of holomorphic functions, we conclude that φ coincides with γp on
T (R).

In order to apply this theorem, it is necessary to find geometric or algebraic
conditions under which Ω(Γ) is not empty. Theorem 2.31 says that this is true
if R satisfies the bounded geometry condition. Here we give the following
condition on Γ to guarantee Ω(Γ) 6= ∅. The assumption Ω(Γ) = Φ(Γ) is
satisfied, for example, when Γ is countable by Theorem 2.14.

Lemma 2.40. Assume that the fundamental group π1(R) is not cyclic. If
Γ ⊂ Mod(R) is a closed subgroup such that Ω(Γ) = Φ(Γ), then Ω(Γ) 6= ∅.

Proof. As in the proof of Theorem 2.31, we can choose a neighborhood U
of some p ∈ T (R) and a simple closed geodesic c on R so that the smallest
subgroup Γ0 that contains {γ ∈ Γ | γ(p) ∈ U} is contained in Modc(R). Note
that this is possible even if R does not satisfy the bounded geometry condition.
See [41].

Take the closure Γ0 of Γ0. Since Modc(R) and Γ are closed, Γ0 is contained
in both of them. Since Modc(R) is stationary, so is Γ0. Hence Γ0 is stationary
and closed, and by Theorem 2.23, Γ0 acts stably on T (R). This implies that
Γ acts stably at p and thus Φ(Γ) 6= ∅.

3 The action on the asymptotic Teichmüller space

We regard the Teichmüller space as a fiber space over a certain base space
called the asymptotic Teichmüller space. An asymptotically conformal home-
omorphism of a Riemann surface is a quasiconformal map that is close to a
conformal map as we go to the infinity of the surface. The asymptotic Teich-
müller space is defined by replacing the roles of conformal homeomorphisms
with asymptotically conformal ones in the definition of the Teichmüller space.
Since the quasiconformal mapping class group acts on the Teichmüller space
preserving the fibers, its action can be divided into that on each fiber and that
on the asymptotic Teichmüller space. In this section, we are mainly concerned
with the former action, which is given by a group of asymptotically conformal
mapping classes. It acts on the Teichmüller space as an asymptotically ellip-
tic subgroup of the Teichmüller modular group, having certain similarity to
Teichmüller modular groups of analytically finite Riemann surfaces.



Infinite dimensional Teichmüller spaces and modular groups 23

3.1 Asymptotic Teichmüller spaces and modular groups

We introduce the asymptotic Teichmüller space and define the action of the
quasiconformal mapping class group on this space.

Asymptotic Teichmüller spaces

The asymptotic Teichmüller space has been introduced by Gardiner and
Sullivan [25] for the the unit disk and by Earle, Gardiner and Lakic [4], [5], [6]
for an arbitrary Riemann surface.

Definition 3.1. We say that a quasiconformal homeomorphism f of a Rie-
mann surface R is asymptotically conformal if, for every ε > 0, there ex-
ists a compact bordered subsurface V of R such that the maximal dilatation
K(f |R−V ) of the restriction of f to R− V is less than 1 + ε. We say that two
quasiconformal homeomorphisms f1 and f2 of R are asymptotically equivalent
if there exists an asymptotically conformal homeomorphism h : f1(R) → f2(R)
such that f−1

2 ◦h◦f1 is homotopic to the identity (relative to ∂∞R if ∂∞R 6= ∅).
The asymptotic Teichmüller space AT (R) of R is the set of all asymptotic
equivalence classes [[f ]] of quasiconformal homeomorphisms f of R.

Since a conformal homeomorphism is asymptotically conformal, there is a
natural projection α : T (R) → AT (R) that maps each Teichmüller equiva-
lence class [f ] ∈ T (R) to the asymptotic equivalence class [[f ]] ∈ AT (R). The
asymptotic Teichmüller space AT (R) has a complex manifold structure such
that α is holomorphic. Each fiber of the projection α is a separable closed
subspace of T (R). Moreover α induces a quotient distance dAT on AT (R)
from the Teichmüller distance, which is called the asymptotic Teichmüller dis-
tance. We do not know yet whether this distance coincides with the Kobayashi
distance on AT (R) or not. See [5], [6] and [8].

The asymptotic Teichmüller space AT (R) is of interest only when R is
analytically infinite. Otherwise AT (R) is trivial, that is, it consists of just one
point. Conversely, if R is analytically infinite, then AT (R) is not trivial. In
fact, it is infinite dimensional and non-separable.

Asymptotic Teichmüller modular groups

Like in the case of Teichmüller space, every mapping class [g] ∈ MCG(R)
induces a biholomorphic automorphism [g]∗∗ of AT (R) by [[f ]] 7→ [[f ◦ g−1]],
which is also isometric with respect to dAT . Note that, since the projection
α : T (R) → AT (R) is not known to be a holomorphic split submersion, the
fact that [g]∗∗ is holomorphic is not so trivial. See [6] and [7].

Definition 3.2. Let Aut(AT (R)) be the group of all biholomorphic isometric
automorphisms of AT (R). For a homomorphism

ιAT : MCG(R) → Aut(AT (R))
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given by [g] 7→ [g]∗∗, we define the asymptotic Teichmüller modular group
ModAT (R) of R to be the image ιAT (MCG(R)).

Unlike the representation ι : MCG(R) → Aut(T (R)), the homomorphism
ιAT is not injective, namely, Ker ιAT 6= {[id]} unless R is either the unit disc
or the once-punctured disc. See [4].

Definition 3.3. We call an element of Ker ιAT asymptotically trivial and
call Ker ιAT the asymptotically trivial mapping class group. We also call an
element of the corresponding subgroup ι(Ker ιAT ) of Mod(R) asymptotically
trivial.

The action of ModAT (R) on AT (R) has been studied by Fujikawa [17]. In
particular, the limit set of ModAT (R) in AT (R) is investigated.

3.2 Asymptotically elliptic subgroups

In order to investigate the action of the quasiconformal mapping class group
on a fiber over the asymptotic Teichmüller space, we consider the stabilizer
subgroup of the fiber in the Teichmüller modular group. The projection of this
subgroup to the asymptotic Teichmüller modular group fixes the base point of
the fiber on the asymptotic Teichmüller space.

Asymptotically elliptic modular transformations

Now we define asymptotic conformality for quasiconformal mapping classes
and asymptotic ellipticity for Teichmüller modular transformations.

Definition 3.4. A mapping class [g] ∈ MCG(R) is called asymptotically con-
formal if there is a quasiconformal homeomorphism f of R such that fgf−1

is homotopic to an asymptotically conformal automorphism of f(R) (relative
to the boundary at infinity if it is not empty). A Teichmüller modular trans-
formation [g]∗ ∈ Mod(R) is called asymptotically elliptic if [g]∗∗ ∈ ModAT (R)
has a fixed point [[f ]] on AT (R).

It is clear that a mapping class [g] ∈ MCG(R) is asymptotically con-
formal if and only if the corresponding Teichmüller modular transformation
[g]∗ ∈ Mod(R) is asymptotically elliptic. An elliptic modular transformation
is of course asymptotically elliptic. However the converse is not true. A trivial
example is a mapping class caused by a single Dehn twist. This is not a confor-
mal mapping class, but it acts trivially on AT (R). In particular, it has a fixed
point on AT (R). Petrovic [44] first dealt with an asymptotically conformal
mapping class that acts on AT (R) non-trivially (in fact non-periodically) and
that has no fixed point on T (R). See also [39] for another example.
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When R is analytically finite, every Teichmüller modular transformation is
asymptotically elliptic since AT (R) consists of a single point. Asymptotically
elliptic modular transformations are generalization of the Teichmüller modular
transformations of analytically finite Riemann surfaces in this sense.

Similarly, we define asymptotic ellipticity for subgroups of Mod(R).

Definition 3.5. A subgroup Γ = ι(G) of Mod(R) is called asymptotically
elliptic if ιAT (G) ⊂ ModAT (R) has a common fixed point on AT (R).

It is clear from the definition that a subgroup consisting of asymptotically
trivial modular transformations is asymptotically elliptic.

Elliptic subgroups are always countable. For asymptotically elliptic sub-
groups, this is not valid in general, but if we impose the bounded geometry
condition on R, this is true as is shown in [37].

Theorem 3.6. Assume that R satisfies the bounded geometry condition. Then
every asymptotically elliptic subgroup Γ of Mod(R) is countable.

Proof. By Lemma 2.27, we can take a stationary subgroup Γ′ of countable
index in Γ. If Γ is uncountable, then so is Γ′. On the other hand, Γ′ acts
discontinuously on T (R) by Theorem 2.29. In particular, the uncountable
group Γ′ acts discontinuously on the fiber over the fixed point on AT (R),
which is separable. However, this is impossible.

Like in the case where Mod(R) is countable, if the entire Mod(R) is asymp-
totically elliptic, this restrictive condition gives us a stronger consequence.

Theorem 3.7 ([37]). If Mod(R) itself is asymptotically elliptic, then Mod(R)
is countable and acts discontinuously on T (R).

There is an example of R such that Mod(R) is asymptotically elliptic.
Furthermore, the entire Mod(R) can be asymptotically trivial. See [34] and
[36] for these examples.

The action on the fiber

We consider the action of an asymptotically elliptic subgroup Γ ⊂ Mod(R)
restricted to the fiber over the fixed point on AT (R). For any point p ∈ T (R),
we denote the fiber of the projection α : T (R) → AT (R) containing p by Tp,
that is, Tp = α−1(α(p)).

If Γ ⊂ Mod(R) is asymptotically elliptic having a common fixed point
α(p) ∈ AT (R), then Γ preserves the fiber Tp. We investigate an abelian
action of such a subgroup and obtain the following.
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Theorem 3.8. Assume that ∂∞R = ∅. Let Γ be an asymptotically elliptic
subgroup of Mod(R) that is finitely generated infinite abelian. Then, for every
point p ∈ T (R) over the fixed point of Γ on AT (R), one of the following
alternative conditions is satisfied:

(1) Γ fixes p;

(2) Γ acts discontinuously at p and the orbit Γ(p) is bounded;

(3) Γ(p) is divergent, that is, Γ is of divergent type.
In any case, Γ(p) is a discrete set.

Before the proof of Theorem 3.8, we extend the definition of the stationary
property for a subgroup of MCG(R) to any sequence of mapping classes. A
sequence {[gi]}∞i=1 in MCG(R) is called stationary if there exists a compact
bordered subsurface V of R such that every representative gi of each mapping
class [gi] satisfies gi(V ) ∩ V 6= ∅. On the contrary, a sequence {[gi]}∞i=1 is
called escaping if, for every compact bordered subsurface V of R, there exists
some representative gi of each mapping class [gi] such that {gi(V )} diverges
to the infinity of R as i → ∞. Remark that a sequence {[gi]} ⊂ MCG(R) can
be neither stationary nor escaping, but we can always choose a subsequence
that is either stationary or escaping. A sequence {γi} in Mod(R) is also called
stationary or escaping if so is {[gi]} ⊂ MCG(R) for γi = [gi]∗.

Proof. If Γ is stationary, then Corollary 2.25 says that Γ is of divergent type.
This is also true for any stationary subsequence {γi} in Γ and we see that
{γi(p)} diverges to the infinity of T (R) for such a sequence.

Suppose that there is a subsequence {γi} in Γ such that {γi(p)} has an
accumulation point in Tp. By replacing the subsequence if necessary, we may
assume that {γi(p)} converges to p. Moreover, by the previous paragraph, we
see that this subsequence {γi} is escaping. Then we use Lemma 3.9 below
to show that the whole group Γ fixes the point p. This is the situation of
Condition (1).

Next, suppose that there is a subsequence {γi} in Γ such that {γi(p)} is
bounded in Tp. Then {γi} should be an escaping subsequence as before, and
in this case, we see by Lemma 3.9 that the whole orbit Γ(p) is bounded. This
is the situation of either Conditions (1) or (2). By excluding the case discussed
in the previous paragraph, we have Condition (2).

Finally, if there is no subsequence {γi} in Γ such that {γi(p)} is bounded,
then this means that the orbit Γ(p) is divergent. This is the situation of
Condition (3).

Lemma 3.9 ([35], [39]). Assume that the fundamental group π1(R) is not
cyclic. Let Γ be an asymptotically elliptic abelian subgroup of Mod(R). Let
{γi} be an escaping sequence of Γ. Then the following are satisfied for any
point p ∈ T (R) over the fixed point of Γ on AT (R).
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• If {γi(p)} converges to p, then Γ fixes p.

• If {γi(p)} is bounded, then Γ is of bounded type.
In both cases, Γ is elliptic.

By Theorem 2.34, we see that Conditions (1) or (2) of Theorem 3.8 occur if
and only if Γ is elliptic. Note that there is a case where Γ satisfies (2) but has
no fixed point in Tp, which is shown in [38]. Condition (3) occurs if and only if
Γ is asymptotically elliptic but not elliptic. In this case, Γ acts discontinuously
on T (R). This gives the following corollary.

Corollary 3.10. Assume that ∂∞R = ∅. Let Γ be an asymptotically elliptic
subgroup of Mod(R) that is finitely generated infinite abelian. Then either Γ
is elliptic or Γ acts discontinuously on T (R).

Remark that if R satisfies the bounded geometry condition in Theorem 3.8
and Corollary 3.10, then we can weaken the assumption on Γ for the same
claim. Namely, we have only to assume that Γ is an infinite abelian group.
This is based on Theorem 2.29.

As an application of the previous facts, we have the following result, which
has been obtained in [38] and [19]. We believe that this should be proved
without any assumption on R.

Proposition 3.11. Assume that R satisfies the bounded geometry condition.
Then no elliptic modular transformation of Mod(R) is asymptotically trivial.

Proof. Let γ be an elliptic modular transformation of Mod(R). If γ is of
infinite order, then by Theorem 2.35, there is an orbit of p ∈ T (R) under 〈γ〉
that is not a discrete set. On the other hand, if γ is asymptotically trivial,
then in particular 〈γ〉 preserves the fiber Tp, and the orbit should be a discrete
set by Theorem 3.8. This is a contradiction. In the case where γ is of finite
order, we see that γ cannot be asymptotically trivial by a certain geometric
argument.

3.3 The asymptotically trivial mapping class group

The asymptotically trivial mapping class group contains the stable mapping
class group. They do not necessarily coincide, but when R satisfies the bounded
geometry condition, they coincide. We explain the relationship between these
groups and then discuss certain results obtained from their coincidence.

Relation to the stable mapping class group

It is evident from the definition that the stable mapping class group is con-
tained in the asymptotically trivial mapping class group and the pure mapping
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class group. Moreover, there is an inclusion relation between the latter two
groups.

Theorem 3.12 ([16], [20]). The following inclusion relations are satisfied in
general:

MCG∞(R) ⊂ Ker ιAT ⊂ MCG∂(R).

We expect that the closure MCG∞(R) of the stable mapping class group
in the compact-open topology should contain Ker ιAT . Since MCG∂(R) is
closed, the inclusion MCG∞(R) ⊂ MCG∂(R) is clear.

If R has a sequence of mutually disjoint simple closed geodesics whose
lengths tend to zero, then a mapping class given by the simultaneous Dehn
twists along all these curves belongs to Ker ιAT but not to MCG∞(R). How-
ever, if R satisfies the bounded geometry condition, then there is no such
sequence of curves, and in fact there is no such mapping class.

Theorem 3.13 ([19], [20]). Assume that R satisfies the bounded geometry
condition. Then MCG∞(R) = Ker ιAT is satisfied.

An application of this theorem will be given in the next section.

Finite subgroups in the asymptotic Teichmüller modular group

We deal with periodic elements, and more generally, finite subgroups of the
asymptotic Teichmüller modular group. Recall that every finite subgroup of
the Teichmüller modular group has a fixed point on the Teichmüller space,
which is a special case of Theorem 2.34. We consider a similar property on
the asymptotic Teichmüller space.

We assume that R satisfies the bounded geometry condition. Let [g] ∈
MCG(R) be a mapping class such that [g]∗∗ ∈ ModAT (R) is periodic of or-
der n. This means that [gn] ∈ Ker ιAT , and since Ker ιAT = MCG∞(R) by
Theorem 3.13, we have [gn] ∈ MCG∞(R). Then we see that, outside some
topologically finite bordered subsurface, [g] is a periodic mapping class. By
standard arguments, we can find a complex structure such that [g] can be
realized as a conformal automorphism off the subsurface, that is, [g] is asymp-
totically conformal. This is equivalent to saying that this complex structure
gives a fixed point of [g]∗∗ on AT (R). Therefore, every periodic element of
ModAT (R) has a fixed point on AT (R). This has been proved in [19].

The Nielsen realization theorem for the mapping class group MCG(R) is
solved by finding a fixed point on T (R). Analogously, we formulate the fol-
lowing fixed point theorem for ModAT (R), the asymptotic version of the real-
ization theorem. The proof is also carried out by a similar argument as above
relying on the fact that Ker ιAT = MCG∞(R).
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Theorem 3.14 ([20]). Assume that R satisfies the bounded geometry condi-
tion. Then every finite subgroup of ModAT (R) has a common fixed point on
AT (R).

In the light of Theorem 2.34, we further propose the following.

Problem 3.15. Find a common fixed point on AT (R) when the orbit of a
subgroup of ModAT (R) is bounded.

Realization in asymptotic Teichmüller modular groups

Every countable group can be realized as a group of conformal automor-
phisms of some Riemann surface. Actually, a stronger result has been period-
ically proved since the first proof was given by Greenberg [26], which asserts
that we can find a Riemann surface R whose conformal automorphism group
is precisely isomorphic to the given countable group.

This fact says that every countable group can be obtained as the stabilizer
of some point in some Teichmüller modular group. Then we may ask the same
question for the asymptotic Teichmüller modular group. If we see that the
kernel of the representation ιAT : MCG(R) → Aut(AT (R)) contains no con-
formal mapping classes, then every countable group can also be realized as the
stabilizer subgroup of ModAT (R). In fact, Proposition 3.11 gives the following
theorem. Note that it is easy to make a hyperbolic Riemann surface R to sat-
isfy the bounded geometry condition as well as to avoid extra asymptotically
conformal automorphisms of R other than the conformal ones.

Theorem 3.16. For any countable group H, there exists a hyperbolic Riemann
surface R satisfying the bounded geometry condition such that the stabilizer
subgroup for some point of AT (R) in ModAT (R) is isomorphic to H.

Here we will give a concrete construction of a Riemann surface R such that
the Thompson group is realized in some stabilizer subgroup of ModAT (R),
according to de Faria, Gardiner and Harvey [2].

Let E be the middle-third Cantor set in the unit interval and set R = C−E,
which has one puncture at ∞. Given a hyperbolic metric, R satisfies the
bounded geometry condition. Indeed, each step for the construction of the
Cantor set by removing the middle-third interval defines a pair of pants, and
this procedure induces a canonical pants decomposition of R such that all the
lengths of boundary geodesics of the pairs of pants are uniformly bounded from
above and from below. Then there is a quasiconformal homeomorphism f of
R = C − E preserving the upper and lower half-planes respectively such that
for any non-cuspidal topological ends e and e′ of f(R), there are neighborhoods
U and U ′ of e and e′ respectively such that a conformal homeomorphism maps
U onto U ′ preserving the upper and lower halves. Set p = [f ] ∈ T (R).
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Let G be the subgroup of MCG(R) consisting of all mapping classes that
have representatives preserving the upper and lower half-planes. Then, by the
choice of p, we see that each mapping class of G is realized as an asymptotically
conformal automorphism of the Riemann surface f(R) corresponding to p.
This means that Γ = ι(G) is an asymptotically elliptic subgroup of Mod(R).
Since R satisfies the bounded geometry condition, Theorem 3.6 tells us that Γ
is a countable group. Remark also that MCG(R) itself is stationary because
every representative of each mapping class maps any neighborhood of the
puncture so that it has non-empty intersection with its image. Hence by
Theorem 2.29, Γ acts discontinuously on T (R).

The Thompson group F is a group of all piecewise-linear automorphisms of
the unit interval [0, 1] fixing 0 and 1 having the following property. For some
integer n ≥ 0, the domain and the range are divided into n + 1 subintervals.
These subintervals are obtained by n time half-division of intervals such that
at each step we choose one of the intervals made by the previous steps and
divide the one into two half intervals. Then such a division of the domain
and the range intervals gives a unique piecewise-linear homeomorphism by
the correspondence of the subintervals in order. The Thompson group F is
an infinitely generated group without torsion. It has been proved in [2] that
ιAT (G) is isomorphic to F . This means that F can be realized as a subgroup
of the stabilizer for α(p) ∈ AT (R) in ModAT (R).

4 Quotient spaces by Teichmüller modular groups

If a Riemann surface R is analytically finite, the moduli space M(R) of all
complex structures on R is obtained as a quotient space of the Teichmüller
space T (R) by the Teichmüller modular group Mod(R). In this case, Mod(R)
acts properly discontinuously on T (R) and hence M(R) inherits complex and
geometric structures from T (R). However, this is not always the case where
R is a general Riemann surface. We have to consider other quotients to which
inherit certain structures of T (R). Especially, we introduce the stable moduli
space and the enlarged moduli space. The former is obtained by the completion
of the quotient of the region of stability by Mod(R) whereas the latter is the
quotient of T (R) by the stable mapping class group.

4.1 Geometric moduli spaces

We introduce a new moduli space, which has a complete distance induced from
the Teichmüller distance. We give two different ways for its construction and
show that the resulting spaces coincide.
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The moduli space of stable points

No matter how the action of Mod(R) is far from discontinuity, we can define
the moduli space M(R) = T (R)/ Mod(R) which is a topological space for the
quotient topology. We call this M(R) the topological moduli space. Moreover
a pseudo-distance dM on M(R) is induced from the Teichmüller distance dT

on T (R). Namely, letting π : T (R) → M(R) the projection, we define the
pseudo-distance by

dM (σ, τ) = inf{dT (p, q) | π(p) = σ, π(q) = τ}

for any σ and τ in M(R). However, this is not always a distance because the
infimum is not necessarily attained. Hence we want to consider the following
smaller subset in M(R).

Definition 4.1. The moduli space of stable points is defined by MΦ(R) =
Φ(Mod(R))/ Mod(R), where Φ(Mod(R)) is the region of stability for Mod(R).

For the region of discontinuity Ω(Mod(R)), the quotient space MΩ(R) =
Ω(Mod(R))/ Mod(R) inherits complex and geometric structures from T (R). In
particular, MΩ(R) is a complex Banach orbifold. On the other hand, MΦ(R) is
an open subset of M(R) including MΩ(R) where the restriction of the pseudo-
distance dM becomes a distance. If R satisfies the bounded geometry condi-
tion, then MΦ(R) = MΩ(R) by Theorem 2.30.

The distance dM on MΦ(R) defines the length of a path in MΦ(R). For
any two points in MΦ(R), consider all paths in MΦ(R) connecting these points
and take the infimum over their lengths. This defines an intrinsic distance di

M

on MΦ(R), which is called the inner distance with respect to dM . Clearly
di

M ≥ dM .

Definition 4.2. The metric completion of MΦ(R) with respect to the inner
distance di

M is denoted by MΦ(R)
i
and called the stable moduli space.

Closure equivalence

We use a stronger equivalence relation than the usual orbit equivalence
under Mod(R). This makes the quotient space a metric space.

Definition 4.3. For a subgroup Γ of Mod(R), we define two points p and q
in T (R) to be equivalent if q ∈ Γ(p). This gives an equivalence relation and
the equivalence class containing p is Γ(p). This is called closure equivalence.
The quotient space by the closure equivalence is denoted by T (R)//Γ.

Let π̄ : T (R)/Γ → T (R)//Γ be the canonical projection. The inverse image
π̄−1(s) for s ∈ T (R)//Γ coincides with the closure {σ} of a single point set
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{σ} in T (R)/Γ, where σ is an arbitrary point in π̄−1(s). This corresponds to
the fact that the equivalence classes containing p ∈ T (R) are Γ(p) and Γ(p)
for the orbit equivalence and for the closure equivalence, respectively. Clearly,
{σ} = {σ} if and only if the corresponding orbit Γ(p) is closed, namely, Γ acts
at p weakly stably. The Teichmüller distance dT induces a quotient distance
d∗ on T (R)//Γ; it satisfies a property that d∗(s, s′) = 0 implies s = s′. This
is because the equivalence classes are closed in T (R). Hence T (R)//Γ is a
complete metric space.

Now, by setting Γ = Mod(R), we have our definition of the moduli space.

Definition 4.4. The complete metric space T (R)//Mod(R) with the distance
d∗ is called the geometric moduli space and denoted by M∗(R).

If Mod(R) acts on T (R) weakly stably, then the geometric moduli space
M∗(R) is nothing but the topological moduli space M(R) and the pseudo-
distance dM coincides with the distance d∗. However, if it does not act weakly
stably, the projection π̄ : M(R) → M∗(R) is not injective and dM is not a
distance on M(R). In fact, M(R) does not satisfy the first separability axiom
(T1-axiom) in this case.

Proposition 4.5 ([41]). The following conditions are equivalent:
(1) the Teichmüller modular group Mod(R) acts weakly stably on T (R);
(2) the projection π̄ : M(R) → M∗(R) is injective;
(3) the topological moduli space M(R) is a T1-space, in other words, every

single point constitutes a closed set;
(4) the pseudo-distance dM on M(R) is a distance.

A sufficient condition for R and Mod(R) not to satisfy the conditions in
Proposition 4.5 is also given in [41] as follows.

Theorem 4.6. Assume that R satisfies the bounded geometry condition and
Mod(R) contains an elliptic element of infinite order. Then the topological
moduli space M(R) is not a T1-space. In particular, for an infinite cyclic
cover R of an analytically finite Riemann surface, M(R) is not a T1-space.

Proof. Since Mod(R) contains an elliptic element of infinite order, it does not
act weakly discontinuously by Theorem 2.35. Since R satisfies the bounded
geometry condition, this implies that Mod(R) does not act weakly stably by
Theorem 2.30. Then Proposition 4.5 asserts that M(R) is not a T1-space.

Genericity of stable points

We give several properties of the stable points which show that they are
generic in T (R) in the following sense. We apply these properties to the
investigation of the structure of moduli spaces.
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Theorem 4.7 ([41]). The region of stability Φ(Mod(R)) is open, connected
and dense in T (R).

Note that we have seen that Φ(Mod(R)) is open by Theorem 2.28. The
following corollary is an easy consequence from the density of Φ(Mod(R)).

Corollary 4.8. The geometric moduli space M∗(R) is isometric to the comple-
tion MΦ(R) of the moduli space of the stable points with respect to the distance
dM .

Concerning the connectivity, Φ(Mod(R)) has a stronger property than just
a topological one. Namely, the distance between two points in Φ(Mod(R))
measured by dM is comparable in some sense, with the length of a path con-
necting them in Φ(Mod(R)), which approximates the distance measured by
di

M . This in particular gives the following.

Theorem 4.9 ([41]). The geometric moduli space M∗(R) is locally bi-Lipschitz
equivalent to the stable moduli space MΦ(R)

i
.

If R satisfies the bounded geometry condition, Φ(Mod(R)) = Ω(Mod(R)).
This implies that our moduli space M∗(R) has an open dense connected sub-
region Ω(Mod(R))/Mod(R) which has the complex Banach orbifold structure
induced from T (R).

One of the problems we are interested in is to give a characterization of
each point in M∗(R) explaining this equivalence class geometrically.

4.2 Several Teichmüller spaces

In general, we can define the quotient T (R)/Γ by a subgroup Γ of Mod(R)
as a certain reduction of the Teichmüller space or a certain extension of the
moduli space in some appropriate sense.

An example: the reduced Teichmüller space

As an example, we present a familiar Teichmüller space, which can be
defined as the quotient of the following subgroup of the Teichmüller modular
group. Let MCG#(R) be the subgroup of MCG(R) consisting of all elements
[g] such that g is freely homotopic to the identity of R, where R is assumed
to have the boundary at infinity ∂∞R but the homotopy is not assumed to be
relative to ∂∞R. It is clear that MCG#(R) is normal in MCG(R). As usual,
we set Mod#(R) = ι(MCG#(R)).

Proposition 4.10. The subgroup Mod#(R) is the intersection of the sub-
groups Modc(R) taken over all non-trivial simple closed curves c on R. Hence
Mod#(R) acts stably on T (R).
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Proof. The first statement is well-known. See for instance [11]. The second
statement is a consequence of Proposition 2.8.

The space T (R)/Mod#(R) = T (R)//Mod#(R) is called the reduced Teich-
müller space T#(R) with the quotient distance d#, and Mod(R)/Mod#(R) is
the reduced Teichmüller modular group Mod#(R). It acts on (T#(R), d#)
isometrically.

Relative Teichmüller spaces

We have already seen the important roles of the subgroup Modc(R). Here
we consider the quotient space of T (R) by this group. In Proposition 2.13, we
have seen that Modc(R) is of countable index in Mod(R). And, since Modc(R)
is stationary and closed, it acts stably on T (R) by Theorem 2.23. Moreover,
if R satisfies the bounded geometry condition, then it acts discontinuously on
T (R).

Definition 4.11. The quotient space T c(R) = T (R)/Modc(R) is called the
relative Teichmüller space with respect to c.

Since Modc(R) acts stably on T (R), the relative Teichmüller space T c(R) is
a complete metric space with the quotient distance d̂. This divides the action
of Mod(R) on T (R) into the stable part under Modc(R) on T (R) and the
countable part under Mod(R)/Modc(R) on T c(R). More precisely, let P ⊂
T (R) be the orbit of p under Mod(R) and P̂ ⊂ T c(R) the image of P under
the projection T (R) → T c(R). Assume that Modc(R) acts discontinuously
on T (R). In this case, if P̂ is closed in T c(R), then P̂ is discrete and, as a
consequence, we see that Mod(R) acts discontinuously on T (R). This yields
a similar result to Lemma 2.6.

Another feature of T c(R) is a fact that T c(R) is not separable if R is of
infinite topological type, which is obtained in [41]. If we impose an extra
assumption that R satisfies the bounded geometry condition, this fact can be
easily seen as is shown below. From the non-separability of T c(R), we can
prove that the topological moduli space M(R) is not separable either. In fact,
every countable subset is nowhere dense in M(R), and this is also true for the
geometric moduli space M∗(R).

Theorem 4.12. Assume that R satisfies the bounded geometry condition.
Then the geometric moduli space M∗(R) is not separable if R is of infinite
topological type.

Proof. If R satisfies the bounded geometry condition, then Modc(R) acts dis-
continuously on T (R) by Theorem 2.29. On the other hand, T (R) is not sep-
arable when R is of infinite topological type. Then T c(R) = T (R)/Modc(R)
is not separable. Since Modc(R) is of countable index in Mod(R), M(R) =
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T (R)/ Mod(R) is not separable either. By considering the moduli space of sta-
ble points MΦ(R), which is open and dense in M(R), we also see that M∗(R)
is not separable by Corollary 4.8.

The intermediate Teichmüller space

We consider quotient spaces of T (R) by the stable mapping class group and
the asymptotically trivial mapping class group. When R satisfies the bounded
geometry condition, they coincide by Theorem 3.13.

Definition 4.13. For the subgroup Mod∞(R) of Mod(R) corresponding to
the stable mapping class group, the quotient space M̃(R) = T (R)/Mod∞(R)
is called the enlarged moduli space.

If R is of infinite topological type and satisfies the bounded geometry condi-
tion, then Mod∞(R) acts on T (R) discontinuously and freely by Theorem 2.16.
Then the enlarged moduli space M̃(R) is a complex Banach manifold which has
complex and metric structures induced from T (R). Since Mod∞(R) is a nor-
mal subgroup of Mod(R), the quotient group Mod∞(R) = Mod(R)/Mod∞(R)
acts on M̃(R) as a biholomorphic and isometric automorphism group that in-
duces a quotient map onto the topological moduli space M(R). This will be a
way of considering a geometric structure on M(R).

Definition 4.14. For the subgroup ι(Ker ιAT ) of Mod(R) corresponding to
the asymptotically trivial mapping class group, the quotient space IT (R) =
T (R)/ι(Ker ιAT ) is called the intermediate Teichmüller space .

Since Ker ιAT acts on AT (R) trivially, the definition of IT (R) immediately
gives the following.

Proposition 4.15 ([19]). The projection T (R) → IT (R) factorizes the pro-
jection α : T (R) → AT (R). Hence there are natural projections from IT (R)
onto both AT (R) and M(R). In fact, IT (R) is the smallest quotient space of
T (R) by a subgroup of Mod(R) having this property.

Since Mod∞(R) ⊂ Ker ιAT by Theorem 3.12, the enlarged moduli space
M̃(R) lies always between T (R) and IT (R). If R is analytically finite, then
M̃(R) = IT (R) = M(R), and the asymptotic Teichmüller space AT (R) is
just one point. On the other hand, if R is the unit disk D, then T (D) =
M̃(D) = IT (D). Indeed, Ker ιAT is trivial for the unit disk D, and thus
IT (D) = T (D)/ι(Ker ιAT ) = T (D).

Now we assume that R satisfies the bounded geometry condition. Then
MCG∞(R) = Ker ιAT by Theorem 3.13 and hence M̃(R) = IT (R). In this
case, we have the relationship between Mod∞(R) and ModAT (R).
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Theorem 4.16 ([19]). Assume that R is of infinite topological type and sat-
isfies the bounded geometry condition. Then the asymptotic Teichmüller mod-
ular group ModAT (R) is geometrically isomorphic to the automorphism group
Mod∞(R) of M̃(R) = IT (R).

For the representation of the quasiconformal mapping class group MCG(R)
in the automorphism group Aut(T (R)) of the Teichmüller space, it has been
proved that the kernel is trivial and the image is the entire group in almost all
cases. In contrast to these facts, for the representation of MCG(R) in the auto-
morphism group Aut(AT (R)) of the asymptotic Teichmüller space, we obtain
that the kernel is characterized topologically as the stable mapping class group
MCG∞(R) and the image can be represented as the automorphism group of
the intermediate Teichmüller space IT (R) in the case where R satisfies the
bounded geometry condition.
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