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Indecomposable continua and
the limit sets of Kleinian groups

Katsuhiko Matsuzaki

Abstract. A plane continuum is said to be decomposable if it is written as
the union of two of its proper subcontinua. We investigate the structure of the
limit set of a Kleinian group from a viewpoint of its decomposability.

§1. Introduction

An indecomposable continuum often appears as a singular set of a dynamical
system. Its definition itself is very simple, however, the analysis of this concept
sometimes makes a crucial step for understanding the dynamics.

Definition. A continuum (a compact connected set) Λ is decomposable if
there exist proper subcontinua Λ1 and Λ2 such that Λ = Λ1 ∪ Λ2, and otherwise
indecomposable.

We are concerned with the decomposability of singular sets for complex dy-
namics on the Riemann sphere. In this direction, Rogers [15], [16] studied the
boundaries of local Siegel disks and obtained a dichotomy that either they are in-
decomposable or they have certain properties of Jorda n curves. Mayer and Rogers
[10] also dealt with the Julia sets of polynomials. In this paper, we consider decom-
posability of limit sets of Kleinian groups, which may be regarded as a counterpart
of their works. A Kleinian group is a discrete subgroup of Möbius transformations
and its limit set is defined in the same way as the Julia set is defined for iteration
of a rational map on the Riemann sphere.

Any simply connected hyperbolic domain D admits the canonical compacti-
fication through the Riemann mapping and an element on its boundary is called
a prime end. Each prime end determines a corresponding subcontinuum of ∂D
called the impression. The decomposability of the boundary of a simply connected
domain D is closely related to the structure of the impressions of prime ends of D,
which is a classical result by Rutt [18]. Moreover, if D is invariant under a Kleinian
group, then distribution of the impressions has group invariance. In Section 3 of
this paper, we investigate the structure of the impressions of prime ends of invariant
domains.
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One of open problems in the theory of Kleinian groups is local connectivity of
the limit set of a finitely generated Kleinian group. It is known that difficulty in
solving this problem lies only in the case where Γ is a degenerate group, which is
a Kleinian group with the connected and simply connected region of discontinuity.
In general, if a non-degenerate continuum Λ on S2 is locally connected, then Λ is
decomposable. In Section 4, we survey several results on local connectivity and
decomposability of limit sets of finitely generated Kleinian groups. Then in Section
5, we study the limit set of a degenerate group, not necessarily finitely generated,
from a viewpoint of its decomposability.

In the last section, according to an argument due to Tukia [20] on continuous
extendability of the Riemann map to a certain subset of the limit set, we try to
refine our results obtained in the previous sections.

Acknowledgment. The author would like to thank Professor Rogers for pro-
viding valuable comments on the previous version of this manuscript and useful
references. He also thank Professor Tukia for introducing his work [20], and the
referee for careful reading of the manuscript and useful comments.

§2. Preliminaries

A Kleinian group is a discrete subgroup of Möbius transformations of the Rie-
mann sphere S2. A Möbius transformation γ is said to be loxodromic if it is
conjugate to z 7→ cz (c 6= 0, |c| 6= 1). Its attracting fixed point is denoted by aγ

and its repelling fixed point by aγ−1 . The set of the fixed points of γ is denoted
by Fix(γ). If a Kleinian group Γ contains non-commuting loxodromic elements, we
say that Γ is non-elementary. For a non-elementary Kleinian group Γ, the limit set
Λ(Γ) is the set of points where the orbit Γ(z) of a point z ∈ S2 accumulates. It is
alternatively defined to be the smallest, non-empty, Γ-invariant, compact set on S2,
or the closure of the set of all fixed points of loxodromic elements. The complement
Ω(Γ) of the limit set is called the region of discontinuity. It is the largest open set
where Γ acts properly discontinuously. If a connected component D of Ω(Γ) is itself
invariant under the action of Γ, then Λ(Γ) = ∂D. Indeed, Λ(Γ) ⊃ ∂D follows from
the facts that D is an open set and that Λ(Γ) is the complement of Ω( Gamma),
and Λ(Γ) ⊂ ∂D follows from the facts that Γ acts properly discontinuously on D
and that Λ(Γ) is the set of accumulation points of the orbit Γ(z) for z ∈ D. See [9]
for fundamental facts on Kleinian groups.

A continuum is a compact connected subset of S2. For a Kleinian group Γ,
a continuum Λ is said to be Γ-invariant if γ(Λ) = Λ for every γ ∈ Γ. If Γ is
non-elementary, then every Γ-invariant continuum contains the limit set Λ(Γ).

We investigate decomposability of continua. The following proposition tells us
a simple characterization for it. See Hocking and Young [5, p.139].

Proposition 1. A continuum Λ ⊂ S2 is decomposable if and only if Λ contains
a proper subcontinuum λ having non-empty interior with respect to the relative
topology on Λ.

Next we introduce a concept of composant in a continuum. See Hocking and
Young [5, pp.139-140].

Definition. Let Λ be a non-degenerate continuum, that is, a continuum with
more than one point. For a point x ∈ Λ, the composant µ is the union of all proper
subcontinua of Λ containing x.
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Proposition 2. Let µ be a composant in a non-degenerate continuum Λ on
S2. Then the closure µ̄ is coincident with Λ. Moreover, if Λ is indecomposable,
then Λ consists of uncountably many composants which are mutually disjoint.

We consider the boundary ∂D of a simply connected domain D. When ∂D
is a non-degenerate continuum, we call D hyperbolic. In this case, there exists a
biholomorphic map (the Riemann map) ϕ : ∆ → D from the unit disk ∆ to the
domain D. The Carathéodory theorem says that the Riemann map ϕ extends to
a homeomorphism ϕ̄ of the Euclidean closure ∆ onto the compactification of D
with the Carathéodory boundary ∂̄D. Each point e in ∂̄D is called a prime end.
For a prime end e, there corresponds a continuum I(e) ⊂ ∂D, which is called the
impression of e. It can be defined as the cluster set of ϕ(ζ) as ζ ∈ ∆ tends to the
boundary point ξ = ϕ̄−1(e):

I(e) = {x ∈ ∂D | ϕ(ζn) → x (∃ ζn → ξ) }.

See Collingwood and Lohwater [4, Chap.9] for the above facts concerning prime
ends.

As necessary and sufficient conditions for indecomposability of the Euclidean
boundary ∂D, the following result due to Rutt [18, Th.1, Th.2] is of its final form.
See also Rogers [17, Th.2.2, Th.3.1].

Proposition 3. Let D be a simply connected hyperbolic domain. If ∂D is
indecomposable, then there exists a prime end e ∈ ∂̄D such that I(e) = ∂D. Con-
versely, if there exists a prime end e ∈ ∂̄D such that I(e) = ∂D, then ∂D is an
indecomposable continuum or the union of two indecomposable continua.

In this proposition, if ∂D coincides with the limit set of some Kleinian group,
then the converse part of its statement becomes simpler: ∂D is indecomposable
if and only if I(e) = ∂D for some e ∈ ∂̄D. This can be seen from the following
lemma.

Lemma 4. The limit set Λ(Γ) of a non-elementary Kleinian group Γ is not the
union of two of its indecomposable proper subcontinua.

Proof. Suppose that Λ(Γ) is written as the union of two indecomposable
proper subcontinua Λ1 and Λ2 of Λ(Γ). Then there exists an element γ ∈ Γ such
that {Λ1,Λ2} 6= {γ(Λ1), γ(Λ2)}. Indeed, if there exist no such elements, then γ2

preserves both Λ1 and Λ2 for every γ ∈ Γ. In this case, consider a subgroup H of
Γ generated by all the elements of the form γ2. It is a non-trivial normal subgroup
of Γ, and thus the limit set Λ(H) is coincident with Λ(Γ) (See [9, Lemma 2.22]).
On the other hand, Λ1 contains Λ(H) because Λ1 is an H-invariant compact set.
This contradicts the assumption that Λ1 is a proper subset of Λ(Γ).

Consider the pairs of subcontinua {Λ1,Λ2} and {γ(Λ1), γ(Λ2)} for the element
γ, which provide distinct decompositions of Λ. Then at least one of the four in-
decomposable continua, say Λ1, intersects both γ(Λ1) and γ(Λ2) in such a way
that Λ1 ∩ γ(Λ1) and Λ1 ∩ γ(Λ2) are properly contained in Λ1. Since Λ1 − γ(Λ2) is
a non-empty open set with respect to the relative topology on Λ1, the closed set
Λ1 ∩ γ(Λ1) has an interior point x. Then the connected component of Λ1 ∩ γ(Λ1)
containing x is a proper subcontinuum of Λ1 with non-empty interior. Hence Λ1 is
decomposable by Proposition 1. This contradiction proves the assertion. ¤
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Remark. If we do not require invariance under a Kleinian group, there are a
lot of examples of simply connected hyperbolic domains D such that the impression
I(e) coincides with ∂D for some prime end e ∈ ∂̄D. More strongly, there exists
even such a domain D that I(e) = ∂D for every prime end e. In Kuester [6], this
is given in the case where ∂D is a pseudo-circle, and in Lewis [7] and Smith [19],
in the case where ∂D is a pseudo-arc.

§3. Boundaries of invariant domains

Rogers [15], [16] investigated impressions of prime ends for local Siegel disks.
In this section, we will follow his arguments and apply them to the case of simply
connected invariant domains D for Kleinian groups.

Recall that we denote the extension of the Riemann map by ϕ̄ : ∂∆ → ∂̄D and
the topology on the Carathéodory boundary ∂̄D is coincident with the topology
induced by ϕ̄. Intervals in ∂̄D are defined in this sense. The pull-back g = ϕ∗γ of
any biholomorphic automorphism γ of D is a Möbius transformation preserving ∆.
The action of γ on D extends to ∂̄D and defines γ̄ in such a way that

γ̄ ◦ ϕ̄(ξ) = ϕ̄ ◦ g(ξ)

for every ξ ∈ ∂∆.
When a Kleinian group Γ acts on D, the pull-back G = ϕ∗Γ is also a Kleinian

group acting on ∆, which is called the Fuchsian model of the pair (Γ, D). We say
that the Fuchsian model G is of the first kind if the limit set of G is coincident with
∂∆. We only consider the case where D is a connected component of the region of
discontinuity Ω(Γ). Even in this case, the Fuchsian model G is not necessarily of
the first kind (cf. [8]). If Γ is finitely generated, then G is of the first kind by the
Ahlfors finiteness theorem.

We prove several results on the structure of impressions of prime ends of in-
variant domains for Kleinian groups.

Definition. For a subset E of the Carathéodory boundary ∂̄D of a simply
connected hyperbolic domain D, we define the impression of E as

I(E) =
∪
e∈E

I(e).

First we formulate certain continuity of the correspondence of prime ends to
their impressions. The following proposition is easily seen once we define the im-
pression of a prime end as the cluster set of the Riemann map.

Proposition 5. The impression I(e) for a prime end e ∈ ∂̄D is coincident
with the intersection

∩∞
n=1 I(Un) of the impressions {I(Un)}, where {Un}∞n=1 is an

arbitrary sequence of open intervals in ∂̄D satisfying

U1 ⊃ U2 ⊃ · · · ⊃
∞∩

n=1

Un = {e}.

Our first two results provide sufficient conditions for I(E) not to be the whole
∂D, which correspond to the results by Rogers [16, §2] for boundaries of local Siegel
disks and by Mayer and Rogers [10, §3] for Julia sets of polynomials.
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Theorem 6. Let D be a simply connected invariant component of the region of
discontinuity Ω(Γ) for a non-elementary Kleinian group Γ. Assume that ∂D = Λ(Γ)
is decomposable. Then the impression I(E) of every countable set E ⊂ ∂̄D does not
have non-empty interior with respect to the relative topology on ∂D. In particular,
I(E) $ ∂D.

Proof. Suppose that I(E) has non-empty interior in ∂D. Then the Baire
category theorem implies that there exists a prime end e ∈ E such that the interior
I(e)◦ of the impression I(e) ⊂ ∂D is not empty. Since loxodromic fixed points are
dense in Λ(Γ), there exists a loxodromic element γ ∈ Γ such that aγ−1 ∈ I(e)◦.
By the group invariance, we see that I(γ̄n(e)) has the interior γn(I(e)◦). Then
the limit infimum of the sequence {I(γ̄n(e))}∞n=1 contains ∂D except the attracting
fixed point aγ : ∪

n0∈N

∩
n≥n0

I(γ̄n(e)) ⊃ ∂D − {aγ}.

On the other hand, γ̄n(e) converge to a prime end e′ ∈ ∂̄D. Let U be any
open interval containing e′. Then there exists an integer n0 such that γ̄n(e) ∈ U
for every n ≥ n0, which implies that I(U) ⊃

∪
n≥n0

I(γ̄n(e)). Since I(e′) =
∩

I(U)
by Proposition 5, it contains the limit supremum of the sequence:

I(e′) ⊃
∩

n0∈N

∪
n≥n0

I(γ̄n(e)).

Hence I(e′) contains ∂D − {aγ}. Since I(e′) is closed, it must coincide with ∂D.
However, Proposition 3 combined with Lemma 4 asserts that this is impossible
when ∂D = Λ(Γ) is decomposable. ¤

Theorem 7. Let D be a simply connected invariant component of the region of
discontinuity Ω(Γ) for a non-elementary Kleinian group Γ such that the Fuchsian
model of (Γ, D) is of the first kind. Assume that ∂D = Λ(Γ) is decomposable. Let E
be a subset of ∂̄D such that the complement Ec = ∂̄D −E has non-empty interior.
Then I(E) $ ∂D.

Proof. Let ϕ : ∆ → D be the Riemann map and G = ϕ∗(Γ) the Fuchsian
model. Suppose that I(E) = ∂D. Set X = ϕ̄−1(E) ⊂ ∂∆ and Xc = ∂∆ − X =
ϕ̄−1(Ec). The condition that Ec has non-empty interior is equivalent to that Xc

has non-empty interior. Since the loxodromic fixed points are dense in the limit
set, we can take a loxodromic element g ∈ G such that ag−1 ∈ Xc. Then gn(X)
converge to the attracting fixed point ag as n → ∞. By the group invariance, we
have

I(ϕ̄(gn(X)) = I(γ̄n(ϕ̄(X))) = γn(I(E)) = ∂D

where ϕ∗γ = g. Take an arbitrary open interval U containing the prime end ϕ̄(ag).
Then ϕ̄(gn(X)) ⊂ U for a sufficiently large n and hence I(ϕ̄(gn(X)) ⊂ I(U). Since
I(ϕ̄(ag)) =

∩
I(U) by Proposition 5, it must coincide with ∂D. Again by Proposi-

tion 3 and Lemma 4, this contradicts the assumption that ∂D is decomposable. ¤

Next, we prove the existence of arbitrarily close prime ends whose impressions
are disjoint. For a local Siegel disk, the Pommerenke-Rodin number is defined by
considering the intersection of impressions (cf. [15], [16]). However, the group
invariance does not allow to introduce such concept to the case of Kleinian groups.
Remark that we will state a stronger result in the last section.
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Theorem 8. Let D be a simply connected invariant component of the region of
discontinuity Ω(Γ) for a non-elementary Kleinian group Γ such that the Fuchsian
model of (Γ, D) is of the first kind. Assume that ∂D = Λ(Γ) is decomposable. In
every open interval U of ∂̄D, there exist distinct prime ends e1 and e2 such that
the impressions I(e1) and I(e2) (⊂ ∂D) are disjoint.

Proof. Let ϕ : ∆ → D be the Riemann map and G = ϕ∗(Γ) the Fuchsian
model. For a prime end e ∈ ∂̄D, the impression I(e) is a proper closed subset of
∂D because ∂D is decomposable. Hence we can choose a loxodromic element γ ∈ Γ
such that aγ /∈ I(e). Let g = ϕ∗γ be the corresponding element of G. Assume
that the prime end ϕ̄(ag) lies in the given interval U . Then γ̄n(e) belongs to U
for any sufficiently large n, and when m is larger enough than n, the impressions
I(γ̄n(e)) = γn(I(e)) and I(γ̄m(e)) = γm(I(e)) are disjoint. In case ϕ̄(ag) does not
lie in U , take an element δ ∈ Γ such that δ̄ϕ̄(ag) ∈ U , and replace γ and e with
δγδ−1 and δ̄(e). Then apply the same argument as above. ¤

On the contrary, if the boundary ∂D is indecomposable, then the impression
of every prime end is equal to ∂D as we can see from Theorem 10 below, and in
particular the conclusions of the above Theorems 7 and 8 are not satisfied. Hence
these theorems give characterizations of the decomposability of the boundary ∂D.

Lemma 9. Let D be a simply connected invariant component of the region of
discontinuity Ω(Γ) for a non-elementary Kleinian group Γ such that the Fuchsian
model of (Γ, D) is of the first kind. If I(e0) = ∂D for some prime end e0 ∈ ∂̄D,
then I(e) = ∂D for every prime end e ∈ ∂̄D.

Proof. By Proposition 5, if I(U) = ∂D for every open interval U in ∂̄D, then
I(e) = ∂D for every prime end e. By I(e0) = ∂D, any open interval U0 ⊂ ∂̄D
containing e0 satisfies I(U0) = ∂D. For every interval U , there exists an element
γ ∈ Γ such that γ̄(U0) ⊂ U because the Fuchsian model is of the first kind. By the
group invariance, we have

I(U) ⊃ I(γ̄(U0)) = γ(I(U0)) = ∂D.

Hence I(U) = ∂D for every interval U . ¤

Lemma 9 applied to Proposition 3 concludes the following.

Theorem 10. Let D be a simply connected invariant component of the region
of discontinuity Ω(Γ) for a non-elementary Kleinian group Γ such that the Fuchsian
model of (Γ, D) is of the first kind. If ∂D = Λ(Γ) is indecomposable, then the
impression I(e) is coincident with ∂D for every prime end e ∈ ∂̄D (and the converse
is also true).

§4. Local connectivity and decomposability

In this section, we give a short expository concerning local connectivity and
decomposability of the limit sets, mainly for finitely generated Kleinian groups. A
continuum Λ is locally connected if, for every neighborhood V of each point x ∈ Λ,
there exists a neighborhood W ⊂ V of x such that Λ∩W is connected. First we note
that decomposability of a continuum is a weaker condition than local connectivity
in general (cf. [21, p.23]).
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Proposition 11. Let Λ be a non-degenerate continuum on S2. Then it is
locally connected if and only if, for every ε > 0, there exist a finite number of
subcontinua Λi (i = 1, . . . , n) such that Λ = Λ1 ∪ · · · ∪ Λn and the spherical di-
ameter of each Λi is less than ε. In particular, if Λ is locally connected, then it is
decomposable.

Let G be a finitely generated Kleinian group with the connected limit set
Λ(G) 6= S2. Then by Anderson and Maskit [3], Λ(G) is locally connected if and
only if the limit set of the component subgroup Γ = StabG(D) for every connected
component D of Ω(G) is locally connected. By the Ahlfors finiteness theorem, the
component subgroup Γ is again finitely generated. Hence we can reduce the ques-
tion on the local connectivity of Λ(G) to the case when Γ is a finitely generated
Kleinian group with a simply connected invariant component of the region of dis-
continuity Ω(Γ). It is also proved in [3] that the problem is further reduced to the
case when such Γ is a degenerate group, in other words, Ω(Γ) is connected and
simply connected.

Local connectivity of the limit set Λ(Γ) for a finitely generated degenerate
group Γ has been an open problem for a long time (see Abikoff [1]), and its solution
is closely related to the ending lamination conjecture, which is one of the main
problems in the theory of Kleinian groups. Minsky [12] proved that, if the associated
hyperbolic 3-manifold to Γ has a lower bound on the injectivity radius, then it
satisfies the ending lamination conjecture as well as the limit set Λ(Γ) is locally
connected. Later, it was shown by Minsky [13] and McMullen [11] that these
results are always true for Γ such that Ω(Γ)/Γ is a once-punctured torus. Recently,
Brock, Canary and Minsky have announced the resolution of the ending lamination
conjecture in general. This may open a way to prove the local connectivity of
connected limit sets of finitely generated Kleinian groups. On the other hand,
there is very little known in general about the structure of the limit sets of infinitely
generated Kleinian groups, and the results in this paper will be likely to applied
mainly to infinitely generated groups.

Finally we remark the relationship between decomposability of Kleinian groups
via the Klein-Maskit combination theorem and decomposability of limit sets in our
sense. Let G be a finitely generated Kleinian group with the connected limit set
Λ(G) 6= S2. By Abikoff and Maskit [2], G can be decomposed into finitely many
quasifuchsian groups, degenerate groups and web groups until accidental parabolic
transformations disappear. If there exists an accidental parabolic transformation g
in G, the limit set Λ(G) is divided into two continua by the fixed point of g. Hence
the decomposability of the limit set in their sense implies the decomposability in
our sense. In other words, if a finitely generated degenerate group Γ contains an
accidental parabolic transformation, then Λ(Γ) is decomposable.

§5. Limit sets of degenerate groups

A degenerate group is, by definition within this section, a non-elementary
Kleinian group Γ, not necessarily finitely generated, whose region of discontinu-
ity Ω(Γ) 6= ∅ is connected and simply connected. Further we always assume that
the Fuchsian model of (Γ,Ω(Γ)) is of the first kind. This is automatically satisfied
for finitely generated degenerate groups.

First we prove the following theorem on the intersection of the impressions of
prime ends, which is related to the arguments by Rogers [15, §7] for boundaries of
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local Siegel disks. In case Λ(Γ) is locally connected, distinct impressions meet at a
cut point of Λ(Γ) and the following theorem implies density of such points.

Theorem 12. Let Γ be a degenerate Kleinian group. In every open interval
U of the Carathéodory boundary of Ω(Γ), there exist distinct prime ends e1 and e2

such that the impressions I(e1) and I(e2) (⊂ Λ(Γ)) have non-empty intersection.

Proof. Let ϕ : ∆ → Ω(Γ) be the Riemann map and G = ϕ∗(Γ) the Fuchsian
model. Suppose that the impressions I(e) are mutually disjoint for all e ∈ U . Let
X = ϕ̄−1(U) ⊂ ∂∆ be the interval corresponding to U . There exists a loxodromic
element g ∈ G such that Fix(g) ⊂ X. Then, by the group invariance, I(e) are
mutually disjoint for every e ∈ γ̄n(U) = ϕ̄(gn(X)) for each integer n. Since any
two points on ∂∆ are contained in gn(X) for some n, the impressions are mutually
disjoint for all prime ends e ∈ ∂̄Ω(Γ).

Then the inverse function ϕ−1 : Ω(Γ) → ∆ of the Riemann map has a contin-
uous extension to the closure of Ω(Γ), which is denoted by ϕ̂−1 : S2 → ∆. Take a
point z0 ∈ Ω(Γ) and a non-trivial closed curve ` in Ω(Γ)−{z0}. This is contractible
in S2 − {z0} and thus the continuous image ϕ̂−1(`) = ϕ−1(`) is also contractible
in ∆ − {ϕ−1(z0)}. However, ϕ−1(`) is a closed curve around ϕ−1(z0), which is a
contradiction. ¤

In general, a continuum Λ ⊂ S2 with empty interior is called tree-like if the
complement Ω = S2 − Λ is connected. The limit set Λ(Γ) of a degenerate group is
a tree-like continuum.

In the remainder of this section, we will try to formulate a fact that the limit set
of a degenerate group branches everywhere if it is decomposable. This will be done
by considering an irreducible subcontinuum: for any points x and y on a continuum
Λ, an irreducible subcontinuum λ about x and y is a continuum containing x and
y such that no proper subcontinuum of λ has this property. Note that, every
continuum has an irreducible subcontinuum about given points (cf. [5, p.44]).

Proposition 13. Let Λ be a tree-like continuum. Then, for any points x and
y on Λ, an irreducible subcontinuum λ about x and y is unique. The irreducible
subcontinuum λ is properly contained in Λ if and only if there exists a composant
µ of Λ containing x and y.

Proof. It is known that a tree-like continuum Λ is unicoherent, that is, the
intersection of any two subcontinua of Λ is connected (cf. [14, Th.1]). Let λ1 and
λ2 be irreducible subcontinua about x and y. Then the intersection λ1 ∩ λ2 is a
continuum containing x and y. By irreducibility, we have λ1 = λ1 ∩ λ2 = λ2.

If λ $ Λ, then there is a composant µ containing λ. Conversely, if there is a
composant µ with x and y, then there is a proper subcontinuum of Λ with x and
y, which contains λ. Hence λ $ Λ. ¤

Definition. Let Ω be a simply connected hyperbolic domain in S2. A point
x ∈ ∂Ω is accessible if there exists an arc in Ω ending at x. A crosscut is an arc in
Ω that has accessible points at both ends.

Let ϕ : ∆ → Ω be the Riemann map. It can be proved that, for an accessible
point x on ∂Ω by an arc ` in Ω, the arc ϕ−1(`) in ∆ has the end point ξ in ∂∆,
which is uniquely determined only by x. In this sense, we can identify an accessible
point x ∈ ∂Ω with the prime end e = ϕ̄(ξ) ∈ ∂̄Ω. The set of all accessible points
has full Lebesgue measure on ∂̄Ω ∼= ∂∆ as well as it is dense in ∂Ω. See [4, Chap.9].
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Proposition 14. Let Ω be a simply connected hyperbolic domain in S2 that
is invariant under a loxodromic Möbius transformation γ. Then the fixed points aγ

and aγ−1 are accessible.

Proof. Let ` be a closed arc in Ω whose end points are z and γ(z) for some
point z. A sequence of the arcs {γn(`)}n∈Z converges to aγ as n → +∞ and to
aγ−1 as n → −∞. Then the union

∪
n∈Z γn(`) is an arc ending at aγ and aγ−1 . ¤

Definition. Let Ω be a simply connected hyperbolic domain in S2. Let W
be a subdomain of Ω divided by a crosscut. We say that W has entire boundary if
W contains the whole ∂Ω and that W has inner boundary if (W )◦, the interior of
the closure of W , is strictly larger than W . We call an element of (W )◦ − W an
inner boundary point.

We state two elementary facts concerning the entire and inner boundary for
the case that Λ = S2 − Ω is a tree-like continuum.

Proposition 15. Let Ω be a simply connected hyperbolic domain in S2 such
that Λ = S2 − Ω is a tree-like continuum. Let W be a subdomain of Ω divided by
a crosscut c and let W ∗ = Ω − W . Then W ∗ does not have entire boundary if and
only if W has inner boundary.

Proof. Assume that W ∗ does not have entire boundary. Then there exists a
point z ∈ Λ such that z /∈ ∂W ∗. This implies that z is contained in S2−W ∗, which
is coincident with (W )◦ because Ω = S2. Hence z is an inner boundary point of
W .

For the opposite direction, we do not need the condition Ω = S2. Assume that
W has an inner boundary point z ∈ Λ. Then there exists a neighborhood U of z
such that U ⊂ W ∪ Λ. This implies that z /∈ ∂W ∗, and hence W ∗ does not have
entire boundary. ¤

Proposition 16. Let Ω be a simply connected hyperbolic domain in S2 such
that Λ = S2 −Ω is a tree-like continuum. Let c be a crosscut of Ω, W a subdomain
of Ω divided by c, and λ the irreducible subcontinuum of Λ about the end points of
c. Then λ = ∂W − c. Moreover, λ = Λ if and only if W has entire boundary but
not inner boundary.

Proof. Let W ′ be the component of the complement of λ ∪ c that contains
W . Since the difference between W and W ′ has no interior points, W ′ coincides
with W . Since λ is irreducible, ∂W ′ = ∂W ′. Hence ∂W = λ∪ c, which implies the
first assertion. If Λ = ∂W − c (= λ), then clearly W has entire boundary but not
inner boundary, and vice versa. ¤

Summing up these facts, we obtain the following result concerning the structure
of a tree-like continuum, in particular, the limit set of a degenerate group.

Theorem 17. Let Ω be a simply connected hyperbolic domain in S2 such that
Λ = S2 −Ω is a tree-like continuum. Then the following conditions are equivalent:

(1) For every prime end e ∈ ∂̄Ω, the impression I(e) coincides with Λ.
(2) Every subdomain W of Ω divided by a crosscut has entire boundary.
(3) Every subdomain W of Ω divided by a crosscut has no inner boundary.
(4) For any distinct two accessible points on Λ, the irreducible subcontinuum λ

about them coincides with Λ.
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(5) For any distinct two accessible points on Λ, there exists no composant µ
containing both of them.

Proof. For any prime end e ∈ ∂̄Ω, choose a sequence of crosscuts {cn} of Ω
with the end points en and e′n in ∂̄Ω such that the intervals (en, e′n) satisfy

(e1, e
′
1) ⊃ (e2, e

′
2) ⊃ · · · ⊃

∞∩
n=1

(en, e′n) = {e}.

Consider the subdomain of Ω divided by each cn. Then by Proposition 5, we can see
that (1) is equivalent to (2). The equivalence of (2) and (3) follows from Proposition
15. Then the combination of (2) and (3) is equivalent to (4) by Proposition 16.
Finally, (4) and (5) are equivalent by Proposition 13. ¤

Corollary 18. For a degenerate Kleinian group Γ, the limit set Λ(Γ) is in-
decomposable if and only if one (all) of the conditions in Theorem 17 are satisfied
for Ω = Ω(Γ) and Λ = Λ(Γ). In particular, if Λ(Γ) is indecomposable, then there
exist no distinct loxodromic fixed points on a composant µ of Λ(Γ).

Proof. By Theorem 10, Λ(Γ) is indecomposable if and only if I(e) = Λ(Γ)
for every prime end e ∈ ∂̄Ω(Γ). Then the first assertion follows from Theorem 17.
The second assertion can be seen from Proposition 14. ¤

§6. Continuous extension of the Riemann map

We compare decomposability and local connectivity of the boundary of a sim-
ply connected Γ-invariant component D of the region of discontinuity in terms of
continuous extendability of the Riemann map ϕ : ∆ → D. It is known that the
boundary ∂D is locally connected if and only if the impression I(e) is a singleton
for every prime end e ∈ ∂̄D. Since the impression can be represented by the cluster
set of the Riemann map ϕ, this is equivalent to saying that ϕ extends continuously
to the boundary ∂∆.

The following special kind of limit points of a Kleinian group were utilized in
Tukia [20] to consider a problem on continuous extendability of the Riemann map.

Definition. Let Γ be a Kleinian group acting on S2. (We regard a Fuchsian
group as a Kleinian group.) A limit point x ∈ Λ(Γ) is called a Myrberg point of
Γ if, for any distinct points a and b in Λ(Γ), there exists a sequence of elements
{γn}∞n=1 ⊂ Γ such that γn(x) → a and γn(y) → b as n → ∞ for all y ∈ S2 − {x}
uniformly on compact sets. We denote the set of all Myrberg points by M(Γ).

The following result by Tukia [20, Th. 3D] is closely related to our investigation
on impressions of prime ends. Remark that decomposability of Λ(G) implies the
assumption in the following theorem that the impression is a proper subset of Λ(G).

Theorem 19. Let D be a simply connected invariant component of the region
of discontinuity for a non-elementary Kleinian group Γ. Let ϕ : ∆ → D be the
Riemann map and G = ϕ∗(Γ) the Fuchsian model of (Γ, D). Assume that there
exists a limit point ζ ∈ Λ(G) such that the impression I(ϕ̄(ζ)) is a proper subset of
∂D = Λ(Γ). Then ϕ extends continuously to M(G) and defines a homeomorphism
of M(G) onto M(Γ). Moreover, for any Myrberg point ξ ∈ M(G) and any different
limit point ζ ∈ Λ(G), the impressions I(ϕ̄(ξ)) and I(ϕ̄(ζ)) are disjoint.
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It is known that M(Γ) is dense in Λ(Γ) for every non-elementary Kleinian
group Γ. Therefore, this theorem in particular implies Theorem 8 in Section 3.
Moreover, it is able to combine and refine Theorems 6 and 7 in the following stronger
statement. In general, a set in a topological space said to be of the first category if
it is a countable union of nowhere dense closed subsets.

Theorem 20. Let D be a simply connected invariant component of the region
of discontinuity for a non-elementary Kleinian group Γ such that the Fuchsian model
of (Γ, D) is of the first kind. Assume that ∂D = Λ(Γ) is decomposable. Let E be a
subset of the first category on the Carathéodory boundary ∂̄D . Then the impression
I(E) does not have non-empty interior with respect to the relative topology on ∂D.
In particular, I(E) $ ∂D.

Proof. Let E =
∪∞

i=1 Ei, where each Ei is a nowhere dense closed set in ∂̄D.
Suppose that I(E) has non-empty interior in ∂D. Then the Baire category theorem
implies that there exists, say E1 ⊂ E such that the interior I(E1)◦ of the impression
I(E1) ⊂ ∂D is not empty.

Let ϕ : ∆ → D be the Riemann map and G = ϕ∗(Γ) the Fuchsian model. Since
Myrberg points are dense in the limit set, since X1 = ϕ̄−1(E1) is nowhere dense in
Λ(G) = ∂∆ and since the extension ϕ̂ : M(G) → M(Γ) of ϕ is a homeomorphism
by Theorem 19, we can find x ∈ M(Γ) and ξ ∈ M(G) such that x ∈ I(E1)◦, ξ /∈ X1

and ϕ̂(ξ) = x.
Take distinct points α and β in M(G). Since ξ is a Myrberg point of G, there

exists a sequence of elements {gn} in G such that gn(ξ) → α and gn(η) → β for
all η ∈ S2 − {ξ}. Set γn = ϕgnϕ−1 (gn = ϕ∗γn), and consider the sequence {γn}
in Γ. Set ϕ̂(α) = a and ϕ̂(β) = b, which are Myrberg points of Γ. Then, by the
continuity of ϕ̂ and the convergence property of Γ (see [20, Lemma 2A & Th. 3B]),
we can see that γn(x) → a and γn(y) → b as n → ∞ for all y ∈ S2 −{x} uniformly
on compact sets.

Consider the prime end e′ = ϕ̄(β), whose impression I(e′) is a singleton {b}.
Since gn(X1) converge to β, Proposition 5 yields

I(e′) ⊃
∩

n0∈N

∪
n≥n0

I(γ̄n(E1)) = lim sup
n→∞

I(γ̄n(E1)).

On the other hand, since I(γ̄n(E1)) has the interior γn(I(E1)◦),

lim inf
n→∞

I(γ̄n(E1)) =
∪

n0∈N

∩
n≥n0

I(γ̄n(E1)) ⊃ ∂D − {b}.

However this is a contradiction. ¤

When Γ is a finitely generated degenerate group, the Fuchsian model G is of
cofinite area, and in this case, the set of all Myrberg points of G has full Lebesgue
measure on ∂∆ (cf. [20, p.99]). Hence, as a corollary to Theorem 19, we obtain the
following.

Corollary 21. Let Γ be a finitely generated degenerate group. Assume that
the limit set Λ(Γ) is decomposable. Then the Riemann map ϕ : ∆ → Ω(Γ) extends
continuously to almost all points on ∂∆.

Therefore we might say that the difference between the local connectivity and
the decomposability of the limit set is of “null measure” in this sense.
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