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Abstract. We investigate the dynamics of the Teichmüller modular group on the

Teichmüller space of a Riemann surface of infinite topological type. Since the modular

group does not necessarily act discontinuously, the quotient space cannot inherit a
rich geometric structure from the Teichmüller space. However, we introduce the set of

points where the action of the Teichmüller modular group is stable, and we prove that
this region of stability is generic in the Teichmüller space. By taking the quotient and

completion with respect to the Teichmüller distance, we obtain a geometric object

that we regard as an appropriate moduli space of the quasiconformally equivalent
complex structures admitted on a topologically infinite Riemann surface.
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§1. Introduction

The moduli space of an analytically finite Riemann surface (i.e., a compact
Riemann surface from which at most a finite number of points are removed) is a
complex analytic space whose singular points are normal. It has long been studied
in various fields of mathematics. However, once we extend our interest to analyti-
cally infinite surfaces, we recognize that their moduli spaces in the quasiconformal
category no longer have such a researchable structure. In fact, they have rarely
appeared in the literature. This is in contrast to the situation of a Teichmüller
space, i.e., the universal covering of a moduli space. The Teichmüller space T (R)
can also be defined for an analytically infinite Riemann surface R even though
it has an infinite-dimensional complex structure. From the viewpoint of complex
analysis, the complex structure of T (R) is considered via an infinite-dimensional
Banach space of Beltrami differentials on R, and we are able to develop their the-
ories in common for both finite and infinite Riemann surfaces. The moduli space
M(R) is the quotient space of the Teichmüller space T (R) by the Teichmüller mod-
ular group Mod(R), which is the covering transformation group for the projection
T (R) → M(R) and is induced by the action of the quasiconformal mapping class
group MCG(R). When introducing the moduli space for an analytically infinite
Riemann surface, a problem arises because Mod(R) does not necessarily act dis-
continuously, but it acts discontinuously on the Teichmüller space of an analytically
finite Riemann surface.

In the first part of this paper, we investigate the action of modular groups on
infinite-dimensional Teichmüller spaces for analytically infinite Riemann surfaces.
We generalize this analysis to a purely topological consideration of the dynamics
of isometries acting on a complete metric space. In this general situation, the com-
parison between countability and uncountability serves as a fundamental basis for
our arguments. This appears practically as the Baire category theorem and for-
mulates our fundamental principles (Theorems 4.4 and 4.5). When we apply these
facts to the Teichmüller modular group, the countable compactness of a Riemann
surface represents the countable side, whereas the cardinality of the mapping class
group represents the uncountable side. In general, we first show some consequences
deduced from this topological structure of Riemann surfaces. Then, we claim more
specific results based on the hyperbolic geometric structure on Riemann surfaces.
For instance, if we impose boundedness on the hyperbolic geometry of R, which
is roughly a condition that the injectivity radii are uniformly bounded from below
and above, the analysis of the dynamics of Mod(R) becomes simplified. In partic-
ular, we will see that the discontinuity of the action of Mod(R) is the same as its
stability explained below (Theorem 5.3).

As in the case of Kleinian groups, we consider the set Ω(Γ) of points in T (R),
where a subgroup Γ of Mod(R) acts discontinuously, and we call it the region of
discontinuity. Its complement is defined to be the limit set Λ(Γ). The action of Γ is
desirable on Ω(Γ) in the sense that the quotient space Ω(Γ)/Γ inherits the geometric
structure from T (R). On the other hand, to investigate the complicated action on
the complement, we first classify the limit points and examine their distribution.
In contrast to the case of Kleinian groups, the set Λ∞(Γ) of stabilized limit points,
which are fixed by infinitely many elements of Γ, is nowhere dense in the limit
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set Λ(Γ) unless Λ(Γ) coincides with a certain exceptional set (this result itself is
proved later on in Theorem 12.1.). Such limit points are due to infinite groups of
conformal automorphisms of some Riemann surfaces quasiconformally equivalent
to R. Around these limit points, unusual phenomena occur, such as the existence of
non-closed orbits. This makes the analysis of the dynamics difficult and the quotient
space exotic. Accordingly, the topological moduli space M(R) is not a T1-space in
many cases (Corollary 6.5). In addition, we consider the problem of determining
whether an isolated limit point exists or not. If it exists, we see that its isotropy
subgroup is a very special group in a group theoretical sense, which is related to the
Burnside problem (Theorem 7.1). We conjecture that an isolated limit point exists,
but we only present evidence for it. By excluding such exceptional limit points, we
can conclude that, as in the case of Kleinian groups, the accumulation points of
orbits Λ0(Γ) (called generic limit points) are dense in the limit set (Theorem 8.3).

It would be preferable if we could always make use of the region of discontinuity
Ω = Ω(Mod(R)) for providing a geometric structure with the topological moduli
spaceM(R). However, Ω may be empty. Instead, we introduce another criterion of
manageable action, i.e., stability. We say that a subgroup Γ of Mod(R) acts at p ∈
T (R) stably if the orbit Γ(p) is closed and the isotropy subgroup StabΓ(p) is finite.
Under this condition, the quotient space has separability at this point. The set Φ(Γ)
of points where Γ acts stably is called the region of stability. Although stability is
a weaker condition than discontinuity, we can prove that Φ = Φ(Mod(R)) is open
(Theorem 5.2), dense, and connected in T (R) for every Riemann surface R. This
genericity of Φ in T (R) ensures that the metric completion of the quotient space
MΦ(R) = Φ/Mod(R) captures all points in the moduli space. These properties
(except openness) are demonstrated in the second part of this paper (Corollaries
10.2 and 11.2). The main tool for their proofs is the length spectrum LS(p) at
p ∈ T (R), which is the closure of the set of lengths of all simple closed geodesics
on the hyperbolic Riemann surface corresponding to p ∈ T (R). The essential
spectrum LSess(p) is a subset of LS(p) consisting of all accumulation points of the
spectra. We see that, if there is a discrete point spectrum in LS(p)−LSess(p), then
Mod(R) acts at p stably (Theorem 9.2). Moreover, we consider the variation of
LSess(p) under a quasiconformal deformation and prove that it is invariant under
any quasiconformal homeomorphism having a compact support of the deformation
(Theorem 9.5). By using such a deformation, we produce a discrete point spectrum
to claim the stability.

The closure equivalence relation is stronger than the orbit equivalence relation,
and two points p and q in T (R) are related by the closure equivalence if they
are both contained in the closure of the same orbit under Mod(R). The quotient
space T (R)//Mod(R) by the closure equivalence is called the geometric moduli
space, and it is denoted by M∗(R). The quotient distance is induced on M∗(R)
from the Teichmüller distance of T (R). Since the closure equivalence and the orbit
equivalence are the same on the region of stability Φ, we see that the moduli
space of the stable points MΦ(R) is isometrically embedded in M∗(R). From the
above-mentioned properties of Φ, we prove that M∗(R) coincides with the metric
completion of MΦ(R) (Theorem 14.3). We can regard this space as an appropriate
moduli space for a topologically infinite Riemann surface R (in other words, R
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is of infinite topological type, which means that the fundamental group π1(R) is
infinitely generated). In fact, it is possible to introduce a certain structure of
a complex analytic space to M∗(R) by a general theory, and when we assume
that R satisfies the bounded geometry condition, M∗(R) is the completion of the
complex Banach orbifold Ω/Mod(R). Moreover, by construction, M∗(R) is a type
of universal space for the geometric invariants of the moduli. On the other hand,
M∗(R) is so large that it does not satisfy the second countability axiom. Actually,
we prove that the topological moduli space M(R) does not have a countable dense
subset in it (Theorem 13.1). Although the Teichmüller space T (R) is non-separable
in this sense, it is not straightforward to show this property for M(R).

The next two sections are devoted to introducing preliminaries for theories of
Teichmüller spaces and hyperbolic geometry on Riemann surfaces. A conformal
automorphism group G of a Riemann surface R defines an embedding of the Teich-
müller space of the orbifold R/G into the Teichmüller space of R, and we will see
that the embedded space T (R/G) is a proper subset of T (R) at many places in our
arguments. Lemma 2.1 will serve as a basic fact for this claim. By a quasiconformal
deformation of R, the geodesic length of each simple closed curve c changes. We
have to estimate this variation frequently in this paper, especially in the case where
the support of the quasiconformal deformation is far from c. Theorem 3.3 serves as
a powerful tool for this purpose.

This research has been developed over many years, and preprint versions have
been extended and revised several times. The current revision remains largely
unchanged since 2010. A primary announcement of this research appeared in [21].
A survey partially based on the results of this paper was presented in [25].

§2. Teichmüller spaces and modular groups

Throughout this paper, we assume that a Riemann surface R is hyperbolic, i.e.,
it is represented by a quotient space H/H of the hyperbolic plane H by a torsion-free
Fuchsian groupH. Moreover, we are mainly interested in the case whereH ∼= π1(R)
is infinitely generated, i.e., R is topologically infinite (R is of infinite topological
type).

The Teichmüller space T (R) of R is the set of all equivalence classes of a quasicon-
formal homeomorphism f of R onto another Riemann surface. Two quasiconformal
homeomorphisms f1 and f2 are defined to be equivalent if there is a conformal home-
omorphism g : f1(R) → f2(R) such that f−1

2 ◦ g ◦ f1 is homotopic to the identity
on R. Here, the homotopy is considered to be relative to the boundary at infinity
∂∞R = (∂∞H − Λ(H))/H of R = H/H when the limit set Λ(H) of the Fuchsian
group H is a proper subset of the circle at infinity ∂∞H of the hyperbolic plane.
Earle and McMullen [7] proved that the existence of the homotopy is equivalent to
the existence of an isotopy to the identity on R relative to ∂∞R through uniformly
quasiconformal automorphisms. The equivalence class of f is called the Teichmüller
class and denoted by [f ]. We often represent the Riemann surface f(R) as Rp for
p = [f ] ∈ T (R). In this case, a certain quasiconformal homeomorphism f in the
Teichmüller class p is assigned implicitly or the argument depends only on p.

The Teichmüller space T (R) has a complex Banach manifold structure, which is
shown below. Moreover, it has a metric structure such that the distance between
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p1 = [f1] and p2 = [f2] in T (R) is defined by dT (p1, p2) = logK(f), where f is an
extremal quasiconformal homeomorphism in the sense that its maximal dilatation
K(f) is minimal in the homotopy class of f2 ◦ f−1

1 relative to the boundary at
infinity. This is called the Teichmüller distance. By virtue of the compactness
property of quasiconformal maps, the Teichmüller distance dT is complete on T (R).
This coincides with the Kobayashi distance on T (R) with respect to the complex
Banach manifold structure. For further details on Teichmüller spaces, readers may
refer to monographs by Gardiner and Lakic [16] and Lehto [18].

The quasiconformal mapping class group MCG(R) is a group of all homotopy
classes [g] of quasiconformal automorphisms g of R, where the homotopy is again
relative to the boundary at infinity ∂∞R if it is not empty. Each element [g] is called
a mapping class and acts on T (R) from the left such that [g]∗ : [f ] 7→ [f ◦ g−1].
It is evident from the definition that MCG(R) acts on T (R) isometrically with
respect to the Teichmüller distance. It also acts biholomorphically on T (R). Let
ι : MCG(R) → Aut(T (R)) be the homomorphism defined by [g] 7→ γ = [g]∗, where
Aut(T (R)) denotes the group of all isometric and biholomorphic automorphisms
of T (R). The image Im ι ⊂ Aut(T (R)) is called the Teichmüller modular group
and denoted by Mod(R). Except for a few low-dimensional cases, ι is injective. In
particular, if R is topologically infinite, then ι is always injective. This was first
proved by Earle, Gardiner, and Lakic [6], and another proof was given by Epstein
[8]. Moreover, ι is surjective except for the case of dimT (R) = 1, which was finally
proved by Markovic [19] after a series of pioneering studies. Hence, when there is
no confusion, we identify MCG(R) with Mod(R) = Aut(T (R)) if R is topologically
infinite.

The group of all conformal automorphisms of R is denoted by Conf(R). Since
each element of Conf(R) determines a mapping class of R and each mapping class
contains at most one conformal automorphism, we can identify Conf(R) with a
subgroup of MCG(R). In general, for each p = [f ] ∈ T (R), the group of all
conformal automorphisms of Rp is denoted by Conf(Rp) and the mapping classes
in f−1 Conf(Rp)f determine a subgroup MCGp(R) of MCG(R). If [g] belongs to
MCGp(R) for some p ∈ T (R), we say that [g] is a conformal mapping class. Note
that the group MCGp(R) itself is determined by the Teichmüller class p, but the
correspondence between the elements in Conf(Rp) and MCGp(R) depends on the
homotopy class of f ; only the conjugacy class is well defined by the Teichmüller
class p. We denote the isomorphism defined by the inverse of this correspondence
by

ef : MCGp(R) → Conf(Rp).

Furthermore, under the identification ι : MCG(R) → Mod(R), the subgroup
MCGp(R) is identified with the isotropy (stabilizer) subgroup Stab(p) of Mod(R)
for p ∈ T (R). We remark that, since the action of Mod(R) on T (R) is not neces-
sarily transitive, isotropy subgroups are not conjugate to each other in general.

Teichmüller spaces can be realized in certain Banach spaces by the Bers embed-
ding. For an arbitrary hyperbolic Riemann surface R, take a torsion-free Fuchsian
group H acting on the upper half-plane model U of the hyperbolic plane such
that U/H = R. For an element p = [f ] of the Teichmüller space T (R), lift the
quasiconformal homeomorphism f to U such that it extends to a quasiconformal
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automorphism F of the Riemann sphere Ĉ mapping the lower half-plane L confor-
mally. Then, the Schwarzian derivative φ(z) = SF (z) of the restriction of F to L
is a holomorphic function satisfying the automorphic condition

(h∗φ)(z) := φ(h−1(z))(h−1)′(z)2 = φ(z)

for every h ∈ H and the norm condition

∥φ∥B := sup ρ−2(z)|φ(z)| ≤ 3

2

for the hyperbolic metric ρ(z)|dz| on L. Let B(H) be the Banach space of all
holomorphic functions φ on L satisfying the automorphic condition for H and
∥φ∥B < ∞. Then, the correspondence β : T (R) → B(H) by [f ] 7→ SF gives a
homeomorphism of T (R) onto a bounded contractible domain in B(H) containing
the origin, which is called the Bers embedding.

The Banach space B(H) is a subspace of the Banach space B(1) of all holo-
morphic functions φ on L with ∥φ∥B < ∞. For a conformal automorphism of

R = U/H, its lift to U is the restriction of a Möbius transformation g of Ĉ, which is
also regarded as a conformal automorphism of L. Then, g belongs to the normalizer
N(H) of H in Conf(L), and vice versa. Thus, we identify the group Conf(R) of
all conformal automorphisms of R with the quotient group N(H)/H. It is known
that N(H) is discrete if H is non-elementary. Consequently, we see that Conf(R) is
also discrete. For every g ∈ N(H), the linear isometry g∗ : B(1) → B(1) keeps the

subspace B(H) invariant. For any subgroup G of Conf(R), there is a subgroup Ĥ

of N(H) containing H such that Ĥ/H is isomorphic to G. Then, B(Ĥ) coincides
with a subspace consisting of all elements in B(H) that are fixed by g∗ for any lift
g ∈ N(H) of each conformal automorphism of R.

The Teichmüller space T = T (U) is called the universal Teichmüller space. It
is known (see [18]) that, for any Riemann surface R = U/H, the Bers embedding
β(T (R)) ⊂ B(H) coincides with β(T ) ∩ B(H), where β(T ) ⊂ B(1) is the Bers
embedding of the universal Teichmüller space T . The covering relation R2 → R1

of Riemann surfaces gives the inclusion relation H1 ⊃ H2 of their Fuchsian groups.
Hence, B(H1) ⊂ B(H2) induces the inclusion relation T (R1) ⊂ T (R2) of the Teich-
müller spaces via the Bers embedding. Moreover, for a subgroup G of Conf(R),
we can consider the Teichmüller space T (R/G) of the orbifold R/G. The image of

T (R/G) under the Bers embedding β : T (R) → B(H) coincides with β(T )∩B(Ĥ),

where Ĥ is the intermediate subgroup between H and N(H) satisfying Ĥ/H ∼= G.
If we identify G ⊂ Conf(R) with a subgroup of MCG(R) and define a subgroup
Γ = ι(G) of Mod(R), then the subspace T (R/G) coincides with a locus Fix(Γ) of
T (R) consisting of the points fixed by all γ ∈ Γ.

With regard to the properness of the inclusion relation stated above, we can
show the following lemma as a consequence of [22, Th.1].

Lemma 2.1. Let G1 and G2 be subgroups of Conf(R) for a Riemann surface R.
If G1 ⫌ G2 and if the orbifold R/G2 is of non-exceptional type, then T (R/G1) ⫋
T (R/G2). In particular, if dimT (R/G2) ≥ 4 or if the index [G1 : G2] is sufficiently
large, then T (R/G1) ⫋ T (R/G2) is satisfied.
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Proof. We can choose Fuchsian groups H1 and H2 such that U/H1 = R/G1,
U/H2 = R/G2 with H1 ⫌ H2 and [H1 : H2] = [G1 : G2]. If R/G2 is of non-
exceptional type, then H2 and hence H1 are non-exceptional. By [22, Th.1], we
have B(H1) ⫋ B(H2); thus, T (U/H1) ⫋ T (U/H2) follows. This proves the first
statement. Exceptional Fuchsian groups are listed ([22, Prop.1]); in particular,
we see that the orbifold R/G2 = U/H2 is of exceptional type only when 0 ≤
dimT (R/G2) ≤ 3. In this case, e.g., if [G1 : G2] > 84, then T (R/G1) ⫋ T (R/G2)
can be verified directly. □

§3. Geometry of hyperbolic surfaces

The hyperbolic geometrical aspects of Riemann surfaces reflect certain properties
of Teichmüller spaces and their modular groups. In this section, we prepare several
assertions concerning the geometry of topologically infinite Riemann surfaces, which
are utilized later. Let dh denote the hyperbolic distance on the hyperbolic plane H
as well as on a hyperbolic Riemann surface R = H/H.

Let c be a free homotopy class of non-trivial, non-cuspidal, simple closed curves
on R, and let S(R) the family of all such free homotopy classes. We always ignore
the orientation of c and identify c and c−1. In each class c in S(R), there is a
unique geodesic representative, which we denote by the same letter c. Let ℓ(c)
be the geodesic length of the free homotopy class c on R. By fixing an arbitrary
c ∈ S(R), we have a function ℓp(c) := ℓ(f(c)) on the Teichmüller space T (R),
where p = [f ] ∈ T (R) is the Teichmüller class of a quasiconformal homeomorphism
f and f(c) is the corresponding free homotopy class on Rp = f(R). This is called
the length function. We remark that, even though the free homotopy class f(c) is
determined by the homotopy class of f , its geodesic length is well defined by the
Teichmüller class p.

By taking the union over all c ∈ S(R), we have a family of the lengths of all
simple closed geodesics on Rp (counting multiplicity). Moreover, we define the
closure of the set of their logarithmic lengths as

LS(p) = Cl { log ℓp(c) | c ∈ S(R)} ⊂ R,

and we call it the length spectrum for p ∈ T (R). Actually, LS(p) is determined by
the underlying complex structure of p. If R is topologically finite (i.e., π1(R) is
finitely generated), then the lengths of all simple closed geodesics are known to be
discrete; hence, so is the length spectrum LS(p). In fact, the lengths of all closed
geodesics that are not necessarily simple are also discrete (see Buser [5]).

The length spectrum defines a new distance on T (R). For p, q ∈ T (R), set

dLS(p, q) := sup { | log ℓp(c)− log ℓq(c)| | c ∈ S(R)},

which is called the length spectrum distance. It is known that dLS(p, q) satisfies the
axiom of distance. Since LS(p) is determined by the underlying complex structure,
the distance dLS is invariant under the action of Mod(R). The following formula
attributed to Sorvali [30] and Wolpert [32] gives the inequality dLS(p, q) ≤ dT (p, q)
between the Teichmüller distance and the length spectrum distance.
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Proposition 3.1. Let f : R → R′ be a K-quasiconformal homeomorphism for
K ≥ 1. Then, for every simple closed geodesic c, the geodesic lengths satisfy

1

K
ℓ(c) ≤ ℓ(f(c)) ≤ Kℓ(c).

It follows that
e−dT (p,q)ℓp(c) ≤ ℓq(c) ≤ edT (p,q)ℓp(c)

for each c ∈ S(R) and for any p and q in T (R).

On the other hand, Basmajian [2] provided the following estimate for the distance
between two simple closed geodesics.

Proposition 3.2. Let f : R → R′ be a K-quasiconformal homeomorphism for
K ≥ 1. Then, for any simple closed geodesics c and c′, the distance between the
corresponding simple closed geodesics f(c) and f(c′) satisfies

1

K
dh(c, c

′)− b ≤ dh(f(c), f(c
′)) ≤ Kdh(c, c

′) + b,

where b ≥ 0 is a constant depending only on K continuously such that b → 0 as
K → 1 monotonously.

For a simple closed geodesic c on R, a subdomain {a ∈ R | dh(a, c) < ω} is called
a collar of c with width ω > 0 if it becomes an annular neighborhood of c. The
collar lemma asserts that a collar always exists for the width

ω = arcsinh
1

sinh(ℓ(c)/2)
,

which we call the canonical collar, denoted by A∗(c). Actually, the collar lemma
further claims that, if we take a family of mutually disjoint simple closed geodesics,
then their canonical collars are mutually disjoint (see [5]).

We may assume that the simple closed geodesic c corresponds to a hyperbolic
element h(z) = kz (k > 1) acting on the upper half-plane model U of the hyperbolic
plane. Let A(c) = U/⟨h⟩ be the annular cover of R = U/H, where H is the
Fuchsian group containing h. Let (l, θ) be the (logarithmic) polar coordinate of
U; the canonical coordinate (x, y) for y > 0 and the polar coordinate (l, θ) for
0 < θ < π are transformed by x + iy = exp(l + iθ). Since the polar coordinate is
conformal to the canonical coordinate, we have a conformal coordinate (l, θ) on A,
where l is taken modulo ℓ(c) = log k. Let

Aψ(c) =

{
(l, θ) ∈ A(c) | π

2
− ψ

2
< θ <

π

2
+
ψ

2

}
be a subdomain of A(c) with a positive angle ψ (≤ π). The collar lemma asserts
that Aψ(c) is conformally embedded in R by the covering projection A(c) → R for
any angle ψ ≤ 2 arctan(sinhω), where sinhω = 1/ sinh(ℓ(c)/2). Hence, every collar
in the canonical collar A∗(c) ⊂ R can be identified with Aψ(c) ⊂ A(c) for the angle
ψ = 2arctan(sinhω).
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For an annular domain A, the conformal modulus m(A) is defined to be log r if
A is conformally mapped onto {z ∈ C | 1 < |z| < r}. Then, the conformal modulus
m(Aψ(c)) of Aψ(c) is 2πψ/ℓ(c). In particular, m(A(c)) = 2π2/ℓ(c) and

m(A∗(c)) =
4π

ℓ(c)
arctan

1

sinh(ℓ(c)/2)
.

Let f : R → R′ be a K-quasiconformal homeomorphism. Since f lifts to a K-
quasiconformal homeomorphism f̃ : A(c) → A(f(c)) between the annular covers of
R and R′ and since any K-quasiconformal homeomorphism between annuli changes
their moduli at most by a factor of K, we have

K−1m(A(c)) ≤ m(A(f(c))) ≤ Km(A(c)).

This is equivalent to the estimate given in Proposition 3.1.
Let F be the family of all closed rectifiable curves in an annular domain A that

separate the two boundary components of A. Then, the extremal length for F is
defined by

L(F) = sup
ρ

(infβ∈F
∫
β
ρ(z)|dz|)2∫∫

A
ρ(z)2dxdy

,

where the supremum is taken over all measurable conformal metrics ρ(z)|dz| on
A. When ρ(z)|dz| attains the supremum, it is called an extremal metric. It is
known that the extremal length L(F) for the curve family F in A(c) is directly
proportional to the geodesic length ℓ(c) and hence inversely proportional to the
conformal modulus m(A(c)).

We refine Proposition 3.1 as follows. The argument originally presented in this
paper has been further developed in [11], [24], and [14].

Theorem 3.3. Let f̃ be a lift of a K-quasiconformal homeomorphism f of R to
its annular cover A(c) with respect to c ∈ S(R). If f̃ is conformal on Aψ(c), then

π

K(π − ψ) + ψ
ℓ(c) ≤ ℓ(f(c)) ≤ π

K−1(π − ψ) + ψ
ℓ(c)

is satisfied.

Proof. For the first inequality in the statement, since the geodesic length ℓ(c) is
proportional to the extremal length L(F) for the family F of all closed rectifiable
curves in A(c) that separate the two boundary components of A(c), we consider
L(F) instead. The extremal metric ρ0(z)|dz| on A(c) for this extremal length is
the Euclidean metric with respect to the polar coordinate (l, θ).

Set a conformal metric ρ′(ζ)|dζ| on A(f(c)) with respect to the canonical coor-
dinate ζ = ξ + iη on U by

ρ′(ζ) :=
ρ0(f̃

−1(ζ))

|∂f̃(f̃−1(ζ))| − |∂̄f̃(f̃−1(ζ))|
.
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Since |dζ| ≥ (|∂f̃(z)| − |∂̄f̃(z)|)|dz|, we have∫
f̃(β)

ρ′(ζ)|dζ| ≥
∫
β

ρ0(z)|dz|

for an arbitrary curve β ∈ F . On the other hand,∫∫
A(f(c))

ρ′(ζ)2dξdη =

∫∫
A(c)

ρ0(z)
2 |∂f̃(z)|+ |∂̄f̃(z)|
|∂f̃(z)| − |∂̄f̃(z)|

dxdy

≤
∫∫

Aψ(c)

ρ0(z)
2dxdy +K

∫∫
A(c)−Aψ(c)

ρ0(z)
2dxdy

=

(
ψ

π
+K

π − ψ

π

)∫∫
A(c)

ρ0(z)
2dxdy.

Thus, we have

L(f(F)) ≥ π

K(π − ψ) + ψ
L(F),

which yields the first inequality.
For the second inequality in the statement, we consider the modulus m(A(c))

instead, as it is inversely proportional to the geodesic length ℓ(c). By well-known
inequalities on modulus (see Vasil’ev [31]), we have

m(f̃(Aψ(c))) = m(Aψ(c)) =
ψ

π
m(A(c));

m(f̃(A(c)−Aψ(c))) ≥ K−1m(A(c)−Aψ(c)) =
K−1(π − ψ)

π
m(A(c));

m(A(f(c))) ≥ m(f̃(Aψ(c))) +m(f̃(A(c)−Aψ(c))).

Then,

m(A(f(c))) ≥ K−1(π − ψ) + ψ

π
m(A(c)),

which yields the second inequality. □
Corollary 3.4. Let ω = dh(c, E) be the hyperbolic distance between a simple closed
geodesic c and a compact subset E in R. If f is a K-quasiconformal homeomorphism
of R that is conformal on R− E, then

1

α
ℓ(c) ≤ ℓ(f(c)) ≤ α′ℓ(c)

is satisfied for constants

α = K + (1−K)
2

π
arctan(sinhω) ≥ 1;

α′ =

[
1

K
+ (1− 1

K
)
2

π
arctan(sinhω)

]−1

≥ 1
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depending only on K and ω. These constants tend to 1 as ω → ∞.

Proof. If the distance between c and E is ω, then no lift of E intersects the annulus
Aψ(c) in the annular cover A(c) of R, where ψ = 2arctan(sinhω). Then, Theorem
3.3 yields the assertion. □

Grafting by an amount ϕ > 0 (or ϕ-grafting in brief) with respect to c ∈ S(R)
is a procedure for inserting an annulus after cutting a hyperbolic surface R along a
simple closed geodesic c. Here, the inserted annulus occupies the portion R/ℓ(c)×
(−ϕ/2, ϕ/2) in the original polar coordinate (l, θ) on the canonical collar A∗(c).
The resulting Riemann surface is denoted by R(c, ϕ) and the extended collar in
R(c, ϕ) is defined by

A∗(c, ϕ) := R/ℓ(c)×
(
−ψ + ϕ

2
,
ψ + ϕ

2

)
, ψ = 2arctan

1

sinh(ℓ(c)/2)
.

A canonical quasiconformal homeomorphism χc,ϕ : R → R(c, ϕ) for this grafting,
which itself is called a grafting, is defined by linearly stretching A∗(c) to A∗(c, ϕ)
along the direction of θ and by leaving R−A∗(c) identical. The maximal dilatation
K(χc,ϕ) of χc,ϕ is (ψ + ϕ)/ψ.

We estimate the maximal dilatation K(f) of an extremal quasiconformal home-
omorphism f : R → R(c, ϕ) homotopic to χc,ϕ. A lower estimate is given by an
upper estimate of the geodesic length ℓ(f(c)). This has been proved by McMullen
[26] as follows.

Lemma 3.5. Let χc,ϕ : R → R(c, ϕ) be the ϕ-grafting with respect to c ∈ S(R).
Then, the geodesic length ℓp(c) for p = [χc,ϕ] ∈ T (R) satisfies

ℓp(c) ≤
π

π + ϕ
ℓ(c).

Hence, for an extremal quasiconformal homeomorphism f : R→ R(c, ϕ) homotopic
to χc,ϕ, the maximal dilatation K(f) satisfies

π + ϕ

π
≤ K(f) ≤ ψ + ϕ

ψ
,

where ψ = 2arctan{1/ sinh(ℓ(c)/2)}.
Proof. Consider the annular cover A(c) of R with respect to c. If we graft A(c)
along c by an amount ϕ > 0, we have a new annulus A(c, ϕ). Its conformal modulus
is m(A(c, ϕ)) = 2π(π + ϕ)/ℓ(c). Hence, the geodesic length of the core curve c in
the hyperbolic annulus A(c, ϕ) is equal to

2π2

m(A(c, ϕ))
=

π

π + ϕ
ℓ(c).

By considering projective universal covers of R(c, ϕ) and A(c, ϕ) such that the
former contain the latter, we see from the monotonicity of the hyperbolic metric
that the geodesic length ℓp(c) of c in R(c, ϕ) is not greater than that of c in A(c, ϕ)
(see [26]). Hence, we have the first statement. Then, by Proposition 3.1, we have

K(f) ≥ ℓ(c)

ℓp(c)
≥ π + ϕ

π
,

which is the lower estimate in the second statement. The upper estimate obviously
follows from K(f) ≤ K(χc,ϕ). □
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Remark. In Lemma 3.5, we consider the grafting with respect to a single simple
closed geodesic. However, if a quasiconformal homeomorphism f is obtained by
multiple graftings with respect to mutually disjoint, and possibly infinitely many,
simple closed geodesics {ci} by amounts {ϕi}, then we have the same length in-
equality as that in Lemma 3.5 for each i by the same proof.

Next, we consider moderate assumptions concerning the geometry on hyperbolic
Riemann surfaces, which make the analysis of Teichmüller modular groups easier.
Typical conditions of this type are as follows.

Definition. We say that a hyperbolic Riemann surface R satisfies the lower
boundedness condition if the injectivity radius at every point of R is uniformly
bounded away from 0 except in horocyclic cusp neighborhoods of area 1. We
say that R satisfies the upper boundedness condition if there exists a connected
subsurface R∗ of R such that the injectivity radius at every point of R∗ is uniformly
bounded from above and the inclusion R∗ → R induces a surjection π1(R

∗) →
π1(R). We say that R satisfies the bound geometry condition if both the lower and
the upper boundedness conditions are satisfied and if the boundary at infinity ∂∞R
is empty.

These conditions are quasiconformally invariant; hence, we may regard them
as conditions for the Teichmüller space T (R). For example, a non-universal nor-
mal cover of an analytically finite hyperbolic Riemann surface satisfies the bound
geometry condition.

The virtue of assuming the bounded geometry condition lies in the next theorem,
which was proved by Fujikawa, Shiga, and Taniguchi [15] and [10]. For any c ∈
S(R), we define a subgroup of MCG(R) consisting of all mapping classes that
preserve c:

MCGc(R) = {[g] ∈ MCG(R) | g(c) ∼ c},

where ∼ denotes the free homotopy equivalence. The corresponding subgroup
ι(MCGc(R)) of Mod(R) is denoted by Modc(R).

Theorem 3.6. Assume that a Riemann surface R satisfies the bounded geometry
condition. Then, no sequence of distinct elements γn ∈ Modc(R) for c ∈ S(R)
satisfies γn(p) → p as n→ ∞ for some p ∈ T (R).

Thus, under the bounded geometry condition, Modc(R) acts on T (R) discontin-
uously. A precise definition for this property will be given in the next section.

§4. Isometries on complete metric spaces

Let X = (X, d) be a complete metric space with a distance d in general, and
let Isom(X) be the group of all isometric automorphisms of X. For a subgroup
Γ ⊂ Isom(X), the orbit of x ∈ X under Γ is denoted by Γ(x) and the isotropy
(stabilizer) subgroup of x ∈ X in Γ is denoted by StabΓ(x). For an element γ ∈
Isom(X), the set of all fixed points of γ is denoted by Fix(γ).

For a subgroup Γ ⊂ Isom(X) and for a point x ∈ X, a point y ∈ X is a limit
point of x for Γ if there exists a sequence {γn} of distinct elements of Γ such that
γn(x) converges to y as n → ∞. The set of all limit points of x for Γ is denoted
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by Λ(Γ, x), and the limit set for Γ is defined by Λ(Γ) =
∪
x∈X Λ(Γ, x). From this

definition, it is clear that if Γ′ is of finite index in Γ, then Λ(Γ′) = Λ(Γ). It is said
that x ∈ X is a recurrent point for Γ if x ∈ Λ(Γ, x), and the set of all recurrent
points for Γ is denoted by Rec(Γ). It is evident that Rec(Γ) ⊂ Λ(Γ), and these sets
are Γ-invariant.

The following fact appeared in Fujikawa [9] and [13].

Proposition 4.1. For a subgroup Γ ⊂ Isom(X), the limit set Λ(Γ) coincides with
Rec(Γ) and it is a closed set. Moreover, x ∈ X is a limit point of Γ if and only if
either the orbit Γ(x) is not discrete or the isotropy subgroup StabΓ(x) consists of
infinitely many elements.

A limit point x ∈ Λ(Γ) is called a generic limit point if Γ(x) is not a discrete set
and a stabilized limit point if StabΓ(x) is infinite. The set of all generic limit points
is denoted by Λ0(Γ) and the set of all stabilized limit points is denoted by Λ∞(Γ).
By Proposition 4.1, we see that Λ(Γ) = Λ0(Γ) ∪ Λ∞(Γ); however, the intersection
Λ0(Γ)∩Λ∞(Γ) can be non-empty. Furthermore, Λ∞(Γ) is divided into two disjoint
subsets Λ1

∞(Γ) and Λ2
∞(Γ) as in [9]. A limit point x ∈ Λ∞(Γ) belongs to Λ1

∞(Γ) if
there is an element of infinite order in StabΓ(x); otherwise, it belongs to Λ2

∞(Γ). In
other words, Λ1

∞(Γ) =
∪
Fix(γ), where the union is taken over all elements γ ∈ Γ

of infinite order.
Here, we introduce discontinuity and a weaker property defined as stability for

the action of Γ.

Definition. Let Γ be a subgroup of Isom(X). We say that Γ acts at x ∈ X

(a) discontinuously if Γ(x) is discrete and StabΓ(x) is finite;
(b) weakly discontinuously if Γ(x) is discrete;
(c) stably if Γ(x) is closed and StabΓ(x) is finite;
(d) weakly stably if Γ(x) is closed.

If Γ acts at every point x in X (weakly) discontinuously or (weakly) stably, then
we say that Γ acts on X (weakly) discontinuously or stably. The set of points
x ∈ X where Γ acts discontinuously is denoted by Ω(Γ) and called the region of
discontinuity for Γ. The set of points x ∈ X where Γ acts stably is denoted by Φ(Γ)
and called the region of stability for Γ.

The inclusion relation Ω(Γ) ⊂ Φ(Γ) is immediately known from the correspond-
ing definitions. Furthermore, it is clear that, if Γ1 ⊂ Γ2, then Ω(Γ1) ⊃ Ω(Γ2).
However, for the region of stability, Γ1 ⊂ Γ2 does not necessarily imply that
Φ(Γ1) ⊃ Φ(Γ2). A counter-example will be given in the next section.

The discontinuity of the action is usually defined in another way (as condition
(2) below, which is equivalent to proper discontinuity if X is locally compact);
however, as stated by the following proposition, these definitions are all equivalent
(see [9]).

Proposition 4.2. For a subgroup Γ ⊂ Isom(X) and a point x ∈ X, the following
conditions are equivalent:

(1) Γ acts at x discontinuously;
(2) there exists an open ball U centered at x such that the number of elements

γ ∈ Γ satisfying γ(U) ∩ U ̸= ∅ is finite;
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(3) x is not a limit point of Γ.

Hence, the region of discontinuity Ω(Γ) is the complement of the limit set Λ(Γ),
which is an open subset of X.

Similar statements hold for weak discontinuity.

Proposition 4.3. For a subgroup Γ ⊂ Isom(X) and a point x ∈ X, the following
conditions are equivalent:

(1) Γ acts at x weakly discontinuously;
(2) there exists an open ball U centered at x such that γ(U) = U for every

γ ∈ StabΓ(x) and γ(U) ∩ U = ∅ for every γ ∈ Γ− StabΓ(x);
(3) x is not a generic limit point of Γ.

Discontinuity and stability have the obvious inclusion relation mentioned above.
The following theorem states that the converse inclusion holds under a certain
countability assumption. This fact is based on the Baire category theorem and
uncountability of perfect closed sets.

Theorem 4.4. Assume that Γ ⊂ Isom(X) contains a subgroup Γ0 of countable
index, i.e., the cardinality of the cosets Γ/Γ0 is countable, such that Γ0 acts at
x ∈ X weakly discontinuously. If Γ acts at x (weakly) stably, then Γ acts at x
(weakly) discontinuously. In particular, this claim is always satisfied if Γ itself is
countable.

Proof. We consider the coset decomposition of Γ by Γ0:

Γ = γ1Γ0 ⊔ γ2Γ0 ⊔ γ3Γ0 ⊔ · · · .

Then, Γ(x) =
∪∞
i=1 γiΓ0(x), where each γiΓ0(x) is discrete and especially closed

because Γ0 acts at x weakly discontinuously. Since Γ(x) is closed by assumption,
we can regard Γ(x) as a complete metric space by the restriction of the distance
d on X. By the Baire category theorem, there exists an integer i ∈ N, say i = 1,
such that γ1Γ0(x) has an interior point y in Γ(x). Since γ1Γ0(x) is discrete, y
is an isolated point of Γ(x). By the group invariance, this implies that Γ(x) is
discrete. □

While the region of discontinuity Ω(Γ) is always an open set, the region of sta-
bility Φ(Γ) becomes an open set under a certain condition upon Γ. This is also
based on the Baire category theorem.

Theorem 4.5. If Γ ⊂ Isom(X) contains a subgroup Γ0 of countable index such
that Γ0 acts on X stably, then the region of stability Φ(Γ) is open. In particular,
this claim is always satisfied if Γ itself is countable.

Proof. Take a point x ∈ Φ(Γ) and consider the isotropy subgroup Hx = StabΓ(x),
which is a finite group. We consider the two-sided coset decomposition of Γ by Γ0

and Hx:
Γ = Γ0γ1Hx ⊔ Γ0γ2Hx ⊔ Γ0γ3Hx ⊔ · · · .

Since Γ0 is of countable index in Γ, we see that the cardinality of the cosets Γ0\Γ/Hx

is also countable.
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According to this coset decomposition, the closed orbit Γ(x) is decomposed into
the disjoint union

Γ(x) = Γ0γ1(x) ⊔ Γ0γ2(x) ⊔ Γ0γ3(x) ⊔ · · · .

Here, each Γ0γi(x) is closed because Γ0 acts on X stably. Then, by the Baire
category theorem, at least one orbit, say Γ0γ1(x), has an interior point with respect
to the relative topology on Γ(x). This means that there exists a neighborhood
U ⊂ X of γ′1(x) for some γ′1 ∈ Γ0γ1 satisfying U ∩ Γ(x) = U ∩ Γ0γ1(x).

Since the action is isometric, we can choose a neighborhood V of x and a smaller
neighborhood U ′ ⊂ U of γ′1(x) such that γ′1(y) ∈ U ′ and U ′∩Γ(y) = U ′∩Γ0γ1Hx(y)
for every y ∈ V . Here, Γ0γ1Hx(y) is closed because it is the finite union of the closed
sets Γ0γ1γ(y) taken over γ ∈ Hx. In other words, the orbit Γ(y) is closed if it is
restricted to U ′. However, by the group invariance, this implies that the entire
orbit Γ(y) is closed itself.

Moreover, we see that Hy = StabΓ(y) is finite. Indeed, every element γ′ ∈ Hy

satisfies γ′1γ
′(y) ∈ U ′; hence, γ′ is in (γ′1)

−1Γ0γ1Hx. In particular, γ′1(y) is in the
orbit Γ0γ1γ(y) for some γ ∈ Hx. The stability of Γ0 then implies that there are
only finitely many choices for γ0 ∈ Γ0 to satisfy this relation. Hence, the number of
elements γ′ that belong to (γ′1)

−1Γ0γ1Hx is finite, which means that Hy is finite.
We have seen that, for every y ∈ V , Γ(y) is closed and Hy is finite. This implies

that y ∈ Φ(Γ); hence, Φ(Γ) is open. □
Next, we consider certain quotient spaces of the complete metric space (X, d) by

the isometric group action. For an arbitrary subgroup Γ of Isom(X), we define two
points x and y in X to be equivalent, which is denoted by x ∼ y, if there exists
a sequence of elements γn of Γ not necessarily distinct such that γn(x) converges
to y. In particular, all points in the same orbit of Γ are mutually equivalent. It is
easy to check that this satisfies the axiom of equivalence relation, which is called
the closure equivalence. An equivalence class coincides with the closure of the orbit
Γ(x) of some point x ∈ X. This means that Γ(x1) ∩ Γ(x2) ̸= ∅ is equivalent to

Γ(x1) = Γ(x2) as well as x1 ∼ x2.
The closure equivalence is stronger than the ordinary orbit equivalence under the

group action of Γ. The ordinary quotient space by Γ is denoted by X/Γ and the
quotient space by the closure equivalence is denoted by X//Γ. The projections are
denoted by π1 : X → X/Γ and π2 : X → X//Γ, respectively. Then, the projection
π̄ : X/Γ → X//Γ is well defined by π2 ◦ (π1)

−1. The inverse image π̄−1(s) for

s ∈ X//Γ coincides with the closure {σ} ⊂ X/Γ for any point σ ∈ π̄−1(s). Clearly,

{σ} = {σ} if and only if the corresponding orbit Γ(x) is closed for any x ∈ π−1
1 (σ).

The distance d induces pseudo-distances d1 on X/Γ and d2 on X//Γ as

d1(π1(x), π1(y)) : = inf{d(x′, y′) | x′ ∈ Γ(x), y′ ∈ Γ(y)};

d2(π2(x), π2(y)) : = inf{d(x′, y′) | x′ ∈ Γ(x), y′ ∈ Γ(y)}.

Here, d2 always becomes a distance by virtue of the manner of defining the closure
equivalence. Hence, (X//Γ, d2) is a complete metric space.

A theorem on general topology implies the following.
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Proposition 4.6. For a subgroup Γ ⊂ Isom(X) and a point x ∈ X, the following
conditions are equivalent:

(a) Γ acts at x weakly stably;
(b) there exists no point π1(y) different from π1(x) such that d1(π1(x), π1(y)) =

0;
(c) for every point π1(y) different from π1(x), there exists a neighborhood of

π1(y) that separates π1(x), or equivalently, the one-point set {π1(x)} is
closed in X/Γ.

Corollary 4.7. For a subgroup Γ ⊂ Isom(X) and the quotient space X/Γ, the
following conditions are equivalent:

(a) Γ acts on X weakly stably;
(b) the pseudo-distance d1 on X/Γ is a distance;
(c) X/Γ satisfies the first separation (T1) axiom, or equivalently, every point

constitutes a closed set in X/Γ.

In these cases, the closure equivalence is the same as the orbit equivalence; hence,
π̄ : X/Γ → X//Γ is a homeomorphism.

§5. Dynamics of Teichmüller modular groups and moduli spaces

For an analytically finite Riemann surface R, the Teichmüller modular group
Mod(R) acts on T (R) discontinuously. Although Mod(R) has fixed points on T (R),
each orbit is discrete and each isotropy subgroup is finite. Hence, an orbifold
structure on the moduli spaceM(R) is induced from T (R) as the quotient space by
Mod(R). However, these are not always satisfied for analytically infinite Riemann
surfaces.

We introduce the concepts (limit set and so on) defined in the previous sections
for the Teichmüller space X = T (R) with the Teichmüller distance d = dT and the
Teichmüller modular group Mod(R) ⊂ Isom(X). Then, the results presented in the
previous section are all applicable to this case. Moreover, the following property
of Mod(R) enables us to draw more interesting conclusions from Theorems 4.4 and
4.5.

Theorem 5.1. The subgroup Modc(R) for each c ∈ S(R) is of countable index in
Mod(R). Moreover, Modc(R) acts stably on T (R).

Proof. Number all free homotopy classes of S(R) by {ci}∞i=1. For each i, consider
a subset

{[g] ∈ MCG(R) | g(c) ∼ ci} = [gi] ·MCGc(R),

where [gi] is any element of MCG(R) satisfying gi(c) ∼ ci. Since MCG(R) is the
disjoint union of all these subsets taken over i, we get the coset decomposition of
MCG(R) by MCGc(R), whose cardinality is countable. Hence, Modc(R) is also of
countable index in Mod(R).

For p = [f ] ∈ T (R), consider the orbit Γ(p) for Γ = Modc(R). Suppose that
a sequence pn = γn(p) for γn = [gn]∗ ∈ Γ converges to a point q = [f∞] ∈ T (R).
Then, we may choose f , f∞, and gn in each Teichmüller and mapping class such
that the maximal dilatation K(hn) of hn := f ◦ g−1

n ◦ f−1
∞ converges to 1. On the
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other hand, every gn preserves the free homotopy class c. Hence, a subsequence of
hn converges locally uniformly to a quasiconformal homeomorphism h : f∞(R) →
f(R) such that h ◦ f∞(c) ∼ f(c) and K(h) = 1, i.e., h is conformal. Consider a
quasiconformal automorphism g = f−1

∞ ◦ h−1 ◦ f of R, which preserves c, and set
γ := [g]∗ ∈ Γ. Then, f ◦ g−1 = h ◦ f∞; thus, γ(p) = [f ◦ g−1] = [f∞] = q. This
proves that the orbit Γ(p) is closed.

Next, we consider the case where all pn and q coincide with p in the above
proof, i.e., we assume that all hn are conformal automorphisms of Rp. They have
a convergent subsequence, as we have seen above. On the other hand, Conf(Rp)
is discrete (we have seen this claim before by the Fuchsian model, but another
explanation for it is to use the fact that a conformal automorphism fixing the
homotopy class of a pair of pants is the identity). This means that StabΓ(p) consists
only of finitely many elements. Therefore, Γ = Modc(R) acts stably on T (R). □

Remark. We call a subgroup G ⊂ MCG(R) and its representation Γ = ι(G) ⊂
Mod(R) stationary if there exists a compact subsurface V with a boundary inR such
that every representative g of every mapping class [g] ∈ G satisfies g(V ) ∩ V ̸= ∅.
The subgroup Modc(R) in Theorem 5.1 is stationary. In general, for an arbitrary
stationary subgroup Γ, there exists a minimal stationary subgroup Γ ⊂ Mod(R)
that contains Γ and acts on T (R) stably, which can be defined as the closure of Γ
in Mod(R). A proof of this fact can be given similarly as in the arguments above
(see also [25, Cor. 2.24]).

By virtue of the existence of the subgroup Modc(R), Theorems 4.5 becomes the
following assertion in our case.

Theorem 5.2. The region of stability Φ(Γ) for Γ = Mod(R) is an open subset of
T (R).

Proof. By Theorem 5.1, Γ = Mod(R) has the subgroup Modc(R) of countable
index, which acts stably. Then, by Theorem 4.5, Φ(Γ) is open. □

If R satisfies the bounded geometry condition, then Theorem 3.6 states that
Modc(R) acts on T (R) discontinuously. Hence, Theorems 4.4 yields the following.

Theorem 5.3. Assume that R satisfies the bounded geometry condition or a sub-
group Γ of Mod(R) is countable. If Γ acts at p ∈ T (R) (weakly) stably, then Γ acts
at p (weakly) discontinuously. In other words, the stability for Γ is equivalent to
the discontinuity.

Proof. The intersection of Γ with the subgroup Modc(R) is of countable index in Γ
by Theorem 5.1, and it acts on T (R) discontinuously by Theorem 3.6. Hence, the
stability and the discontinuity are equivalent by Theorem 4.4. □

Corollary 5.4. If R satisfies the bounded geometry condition, then Φ(Γ) = Ω(Γ)
for every subgroup Γ of Mod(R).

Note that one cannot remove the assumptions on R and Γ in Theorem 5.3. In
other words, there is an example of an uncountable subgroup Γ ⊂ Mod(R) for
some R without the bounded geometry condition that acts on T (R) stably but not
discontinuously.
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Example. Assume that R has a sequence of mutually disjoint, simple closed
geodesics {ci}∞i=1 whose geodesic lengths ℓ(ci) tend to 0. Let G be a stationary
subgroup of MCG(R) consisting of all mapping classes represented by the compo-
sition of simultaneous Dehn twists along possibly infinitely many curves in {ci}.
Set the subgroup ι(G) of Mod(R) by Γ. Then, the orbit Γ(p) for every p ∈ T (R) is
closed but not discrete. Since StabΓ(p) = {id}, this group Γ acts on T (R) stably
but not discontinuously.

There exists a subgroup Γ′ ⊂ Γ that does not act stably on T (R). Indeed, let
G′ be a countable subgroup of G that is generated by all Dehn twists along each
ci and set Γ′ = ι(G′). Then, Γ′ does not act discontinuously either; hence, it does
not act stably by Theorem 5.3. Here, Γ is actually the closure Γ′ of Γ′ in the sense
of the definition in the remark above. For these groups, we see that Φ(Γ) ̸⊂ Φ(Γ′);
thus, this is an example where the inclusion of the regions of stability does not
conversely follow the inclusion of the subgroups.

The bounded geometry condition is satisfied for any non-universal normal cover
R of an analytically finite Riemann surface (see [10]). In this case, Mod(R) acts
weakly discontinuously at the origin o = [id] of T (R).

Lemma 5.5. Let Γ be a subgroup of Mod(R). Assume that the isotropy subgroup
StabΓ(o) at the origin o ∈ T (R) is identified with G0 ⊂ Conf(R) and the orbifold
R/G0 is analytically finite. Then, Γ acts at o weakly discontinuously.

Proof. Suppose that Γ does not act at o weakly discontinuously. Then, there is
a sequence of elements γn = [gn]∗ ∈ Γ such that pn = γn(o) ̸= o converges to
o as n → ∞. For a simple closed geodesic c ∈ S(R), Proposition 3.1 implies
that ℓpn(c) = ℓ(g−1

n (c)) converges to ℓ(c). Since the lengths of all closed geodesics
not necessarily simple on R/G0 are still discrete, we see that ℓ(g−1

n (c)) = ℓ(c) for
all sufficiently large n. Then, there are a finite number of simple closed geodesics
{ci}ki=1 ⊂ S(R) with ℓ(ci) = ℓ(c) such that, for each sufficiently large n, there are an
element hn ∈ G0 and an integer i(n) with 1 ≤ i(n) ≤ k satisfying hn◦g−1

n (c) = ci(n).

By passing to a subsequence, we may assume that hn ◦ g−1
n (c) = h1 ◦ g−1

1 (c) for all
n. Then, [hn ◦g−1

n ] ∈ [h1 ◦g−1
1 ] ·MCGc(R). Since R satisfies the bounded geometry

condition, Modc(R) acts discontinuously on T (R) by Theorem 3.6. However, from
pn = [gn]∗(o) → o, it follows that [gn ◦ h−1

n ]∗(o) → o as n → ∞. This contradicts
the discontinuity of Modc(R). □

In the remainder of this section, we consider moduli spaces associated with a
Riemann surface R. Regardless of how far the action of Mod(R) is from discon-
tinuity, the moduli space M(R) is a topological space by the quotient topology
induced by the projection

π1 = πM : T (R) →M(R) = T (R)/Mod(R).

We call M(R) the topological moduli space. Moreover, a pseudo-distance d1 = dM
on M(R) is induced from the Teichmüller distance d = dT on T (R).

We define two open subregions in M(R): MΩ(R) = Ω(Γ)/Γ and MΦ(R) =
Φ(Γ)/Γ for Γ = Mod(R). The region MΩ(R) inherits the geometric structure from
Ω(Γ) ⊂ T (R). In particular, MΩ(R) is a complex Banach orbifold. The moduli
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space of the stable points MΦ(R) is the maximal open subset of M(R) where the
restriction of the pseudo-distance dM becomes a distance.

The geometric moduli space M∗(R) is a complete metric space, which is the
quotient by the closure equivalence with the projection

π2 = πM∗ : T (R) →M∗(R) = T (R)//Mod(R).

The distance d2 = dM∗ is induced from d = dT . Let π̄ : M(R) → M∗(R) be the
canonical projection. We will consider the projection π̄ in further detail later on
and see that the metric completion of MΦ(R) is isometric to M∗(R).

By Corollary 4.7, we have the following theorem. Note that a sufficient condition
for Mod(R) to not act on T (R) weakly stably will be given in Section 6.

Theorem 5.6. For the Teichmüller modular group Mod(R) acting on T (R) and
for the moduli spaces M(R) and M∗(R), the following conditions are equivalent:

(a) Mod(R) acts on T (R) weakly stably;
(b) the pseudo-distance dM on M(R) is a distance;
(c) M(R) satisfies the first separation (T1) axiom, or equivalently, every point

constitutes a closed set in M(R);
(d) the projection π̄ :M(R) →M∗(R) is an isometric homeomorphism.

We can also consider quotient spaces defined by certain proper subgroups Γ
of Mod(R). The following space has been defined in [14] for the investigation of
the asymptotic Teichmüller space, which is a deformation space of the complex
structures outside any compact subsurfaces in R.

Example. For a topologically infinite Riemann surface R, let MCG∞(R) be the
subgroup of MCG(R) consisting of all mapping classes [g] such that a representa-
tive g is the identity outside some topologically finite subsurface with a boundary
in R. This is called the stable mapping class group, which is countable and normal
in MCG(R). The corresponding subgroup in Mod(R) is denoted by Mod∞(R).
If we assume that R satisfies the bounded geometry condition, then Mod∞(R)
acts on T (R) discontinuously and freely. Then, the quotient space T∞(R) =
T (R)/Mod∞(R) is defined to be the enlarged moduli space. The quotient group
Mod∞(R) = Mod(R)/Mod∞(R) is isomorphic to the asymptotic Teichmüller mod-
ular group.

For an arbitrary c ∈ S(R), Theorem 5.1 states that Modc(R) is a subgroup of
countable index in Mod(R) and it acts stably on T (R). Moreover, if R satisfies
the bounded geometry condition, then it acts discontinuously on T (R) by Theo-
rem 5.3. We consider the quotient space T c(R) = T (R)/Modc(R), which we call
the relative Teichmüller space with respect to c. This is a complete metric space

with the quotient distance d̂. The relative Teichmüller space T c(R) divides the
action of Mod(R) on T (R) into the stable part Modc(R) and the countable part
Mod(R)/Modc(R). In Section 13, we will investigate T c(R) in order to see the
non-separability of the topological moduli space M(R).
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§6. Elliptic subgroups

We say that a modular transformation in Mod(R) is elliptic if it has a fixed
point p on the Teichmüller space T (R). A mapping class corresponding to an
elliptic element is realized as a conformal automorphism of the Riemann surface
corresponding to p ∈ T (R). We call this a conformal mapping class at p. Therefore,
the following sentences have the same meaning for p = [f ] ∈ T (R) and γ = [g]∗ ∈
Mod(R): the Teichmüller class p belongs to Fix(γ); the modular transformation
γ belongs to Stab(p); the mapping class [g] belongs to MCGp(R) ∼= Conf(Rp).
When R is topologically finite, every elliptic element of Mod(R) is of finite order
because every conformal automorphism of R is of finite order. However, when R is
topologically infinite, an elliptic element of Mod(R) can be of infinite order.

Remark. For an analytically finite Riemann surface R, there are two types of
classification of the elements in MCG(R) and Mod(R) related to each other: one
is topological classification of the mapping classes according to Thurston and the
other is analytical classification of the modular transformations according to Bers
[3]. We adopt the definition of ellipticity from the latter. For analytically infinite
Riemann surfaces, we have attempted to classify the modular transformations in
[23].

We say that a subgroup Γ ⊂ Mod(R) is elliptic if it has a common fixed point
on T (R). Let Fix(Γ) denote the set of all common fixed points of Γ in T (R). As
before, the following notations are equivalent for p = [f ] and Γ = ι(G): p ∈ Fix(Γ);
Γ ⊂ Stab(p); G ⊂ MCGp(R). Note that every elliptic subgroup is countable because
so is every conformal automorphism group of a Riemann surface. Assume that the
origin o ∈ T (R) belongs to the fixed point locus Fix(Γ). Then, Fix(Γ) coincides
with the Teichmüller space T (R/G) embedded in T (R), which has been explained
in Section 2. In general, if p ∈ Fix(Γ), then Fix(Γ) is identified with T (Rp/Gp) for
Gp = ef (G).

In the analytically finite case, the solution of the Nielsen realization problem
given by Kerckhoff [17] asserts that Γ ⊂ Mod(R) is elliptic if and only if Γ is a
finite group. We generalize this fact to the analytically infinite case. Here, we do
not have to restrict ourselves to finite groups in this case. Note that, if Γ has a fixed
point on T (R), then the orbit of Γ is clearly bounded since Γ acts isometrically.

Theorem 6.1. A subgroup Γ of Mod(R) is elliptic if and only if the orbit Γ(p) is
bounded for any p ∈ T (R).

Let D → R be the universal cover of a Riemann surface R and let H be the
corresponding Fuchsian group acting on the unit disk model D of the hyperbolic
plane. Let G be a subgroup of MCG(R) and assume that the orbit Γ(p) for Γ = ι(G)
is bounded for any p ∈ T (R). We lift a quasiconformal automorphism g of R
representing each [g] ∈ G to D as a quasiconformal automorphism. We take all
such lifts for all [g] ∈ G and extend them to quasisymmetric automorphisms of the

boundary ∂D. Thus, we have a group H̃ of quasisymmetric automorphisms that
contain the Fuchsian groupH as a normal subgroup such that H̃/H is isomorphic to
G. Since the orbit Γ(p) is bounded, we see that there exists a uniform bound for the

quasisymmetric constants of all elements of H̃, i.e., H̃ is a uniformly quasisymmetric
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group. Then, Theorem 6.1 is a consequence of the following theorem proved by
Markovic [20].

Theorem 6.2. For a uniformly quasisymmetric group H̃ acting on the unit circle
∂D, there exists a quasisymmetric automorphism f of ∂D such that fH̃f−1 is the
restriction of a Fuchsian group to ∂D.

Next, we consider the discreteness of the orbit for an elliptic subgroup of Mod(R).
Note that, by Theorem 5.3, the discreteness is equivalent to the closedness of the
orbit for an elliptic subgroup since it is countable. For an elliptic cyclic group of
infinite order, we have the following, which has appeared in [23].

Proposition 6.3. Let γ ∈ Mod(R) be an elliptic transformation of infinite order.
Then, the cyclic group ⟨γ⟩ does not act weakly discontinuously on T (R). In fact, in
every neighborhood U of a fixed point p ∈ Fix(γ), there exists q ̸= p such that the
orbit of q under ⟨γ⟩ is not a discrete set.

This is easily seen from the following more general assertion if we observe that
an infinite cyclic group ⟨γ⟩ contains an infinite descending sequence ⟨γ⟩ ⫌ ⟨γ2⟩ ⫌
⟨γ4⟩ · · · .

Theorem 6.4. Let Γ0 be a subgroup of the isotropy subgroup Stab(p) ⊂ Mod(R)
at p ∈ T (R). If there exists an infinite descending sequence

Γ0 ⫌ Γ1 ⫌ Γ2 ⫌ · · · ⫌ Γn ⫌ · · ·

of subgroups of Γ0, then, in every neighborhood U of p, there exists q ̸= p such that
Γ0(q) is not a discrete set, i.e., q ∈ Λ0(Γ0).

Proof. We may assume that p is the origin of T (R). Let G0 ⊂ Conf(R) be the
group of conformal automorphisms of R identified with Γ0. We also define Gn
to be the corresponding subgroup to Γn for each n ≥ 1. By Lemma 2.1, if two
subgroups Γ1 and Γ2 satisfy the inclusion relation Γ1 ⫌ Γ2 and if the index of Γ2 in
Γ1 is sufficiently large, then the fixed point loci Fix(Γ1) = T (R/G1) and Fix(Γ2) =
T (R/G2) in T (R) satisfy the inclusion relation Fix(Γ1) ⫋ Fix(Γ2). Hence, by
choosing a subsequence if necessary, we have an infinite ascending sequence

Fix(Γ0) ⫋ Fix(Γ1) ⫋ Fix(Γ2) ⫋ · · · ⫋ Fix(Γn) ⫋ · · ·

of the fixed point loci. By considering the Bers embedding β, we may regard each
of these fixed point loci Fix(Γn) = T (R/Gn) as the intersection of the open subset
β(T ) with the closed subspace B(Hn) in the Banach space B(1), where Hn is the
Fuchsian group such that U/Hn = R/Gn.

Take the union F =
∪∞
n=1 Fix(Γn) of all these sets and consider its closure F in

T (R). Then, F −F is not an empty set (in fact, this is a dense subset). Indeed, if it
is empty, then the complete metric space F is composed of the countable union of
the closed subsets Fix(Γn). By the Baire category theorem, at least one of them has
a non-empty interior; however, this is impossible for the infinite ascending sequence
of linear subspaces of a Banach space restricted to some open subset in it. Hence,
we have a point q ∈ F − F .
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Take a point qn ∈ Fix(Γn) for each n ≥ 1 such that the Teichmüller distances
dT (q, qn) converge to 0 as n→ ∞. Then, since every element γn of Γn fixes qn, we
have

dT (q, γn(q)) ≤ dT (q, qn) + dT (qn, γn(qn)) + dT (γn(qn), γn(q)) = 2dT (q, qn).

Here, γn(q) is distinct from q because q does not belong to Fix(Γn). Hence, γn(q) ̸=
q converges to q, which means that the orbit Γ0(q) is not a discrete set. □

By applying Theorem 5.3 to the above theorem, we see that the topological
moduli space M(R) = T (R)/Mod(R) for a certain topologically infinite Riemann
surface R is not a T1-space.

Corollary 6.5. We assume that R satisfies the bounded geometry condition and
Mod(R) contains an elliptic element of infinite order. Then, M(R) does not satisfy
the first separation (T1) axiom. In particular, for an infinite cyclic cover R of an
analytically finite Riemann surface, M(R) is not a T1-space.

Proof. Since Mod(R) contains an elliptic element of infinite order, it does not act
weakly discontinuously by Proposition 6.3. Since R satisfies the bounded geome-
try condition, this implies that Mod(R) does not act weakly stably by Theorem
5.3. Then, Theorem 5.6 asserts that M(R) does not satisfy the first separation
axiom. □

§7. Isolated limit points and Tarski monsters

We investigate the dynamics of Teichmüller modular groups by attempting to
find an isolated point of the limit set. This problem itself does not affect the suc-
ceeding arguments; however, it opens up an interesting group theoretical problem.
First, we give the necessary conditions for a limit point to be isolated in the limit
set.

Theorem 7.1. Assume that p ∈ T (R) is an isolated point of the limit set Λ(Γ)
for a subgroup Γ ⊂ Mod(R). Then, the isotropy subgroup StabΓ(p) satisfies the
following conditions:

(1) the common fixed point of each infinite subgroup in StabΓ(p) is only p;
(2) StabΓ(p) is a finitely generated infinite group but does not contain an ele-

ment of infinite order;
(3) every subgroup of StabΓ(p) is either of finite order or of finite index.

Proof. Without loss of generality, we may assume that p is the origin of T (R). Let
Γ0 be an infinite subgroup of StabΓ(p) and G0 be the corresponding subgroup of
Conf(R). Then, the fixed point locus Fix(Γ0) coincides with the Teichmüller space
T (R/G0) embedded in T (R). Clearly, p ∈ Fix(Γ0) and Fix(Γ0) ⊂ Λ(Γ). Since p is
isolated in Λ(Γ), we see that Fix(Γ0) = {p}, which gives condition (1).

Suppose that p is a generic limit point, i.e., p ∈ Λ0(Γ). Then, there exists a
sequence {γn} in Γ such that pn = γn(p) ̸= p converge to p as n → ∞. However,
since pn ∈ Λ(Γ), this violates the assumption that p is isolated in Λ(Γ). Hence, p
must belong to Λ∞(Γ), i.e., StabΓ(p) is an infinite group. Assume that StabΓ(p)
contains an element γ of infinite order. Then, by condition (1), Fix(Γ1) = {p} for
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the infinite cyclic group Γ1 = ⟨γ⟩ ⊂ StabΓ(p) and Fix(Γk) = {p} for its proper
subgroup Γk = ⟨γk⟩ with k ≥ 2. However, this contradicts Lemma 2.1 for a
sufficiently large k. Thus, we see that StabΓ(p) has no element of infinite order.

Moreover, assume that StabΓ(p) is infinitely generated. Since an infinitely gen-
erated group always contains an infinitely generated proper subgroup, we have an
infinitely generated proper subgroup Γ′

1 of StabΓ(p). Then, by applying the above
fact again to this Γ′

1, we have an infinitely generated proper subgroup Γ′
2 of Γ′

1. By
repeating this process several times, we can find an infinite subgroup Γ′

k of StabΓ(p)
with a sufficiently large index. Since Fix(StabΓ(p)) = {p} and Fix(Γ′

k) = {p} by
condition (1), this also contradicts Lemma 2.1. Hence, we see that StabΓ(p) is
finitely generated. Thus, we obtain condition (2).

Assume that StabΓ(p) contains an infinite subgroup Γ0 of infinite index. Then,
Fix(StabΓ(p)) = Fix(Γ0) = {p} by condition (1) as before. However, since the
index of Γ0 in StabΓ(p) is infinite, this again contradicts Lemma 2.1 and hence
yields condition (3). □

In particular, condition (2) of this theorem implies the following.

Corollary 7.2. If p ∈ Λ(Γ) is an isolated limit point for Γ ⊂ Mod(R), then
p ∈ Λ2

∞(Γ).

We cannot determine whether an isolated limit point exists or not. In this sec-
tion, we will see that an abstract group satisfying conditions (2) and (3) in Theorem
7.1 actually exists and can be realized as a group of conformal automorphisms of a
certain Riemann surface. The corresponding isotropy subgroup also satisfies con-
dition (1). Then, we examine the dynamics of the Teichmüller modular group of
this Riemann surface to seek an isolated limit point.

A finitely generated group G is called a periodic group if the order of each element
of G is finite and a bounded periodic group if the order is uniformly bounded. For

integers m ≥ 2 and n ≥ 2, let Fm be a free group of rank m and let F
(n)
m be

the characteristic subgroup of Fm generated by all the elements of the form fn for

f ∈ Fm. Then, the quotient group B(m,n) = Fm/F
(n)
m is an m-generator group, all

of whose elements are the identity by n-times composition. This is called a Burnside
group or a free periodic group. It is easy to see that, for every bounded periodic
group G, there exists a free periodic group B(m,n) for some positive integers m
and n such that G is the image of a homomorphism of B(m,n). For m = 2, it is
known that B(2, 2), B(2, 3), B(2, 4), and B(2, 6) are finite groups. On the other
hand, Novikov and Adjan [27] proved the following.

Theorem 7.3. For all sufficiently large odd integers n ∈ N, the free periodic group
B(2, n) is infinite.

A problem for seeking a stronger example of the finiteness aspect in an infinite
group is whether there is an infinite group G, all of whose proper subgroups are
finite. For this problem, the strongest example was obtained so that every proper
subgroup is a cyclic group of prime order n. This was constructed as the quo-
tient of B(m,n) by giving certain extra relations (see Adjan and Lysionok [1] and
Ol’shanskii [28]). Such a group is sometimes called a Tarski monster.
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Theorem 7.4. For all sufficiently large primes n ∈ N, there exists a 2-generator
Tarski monster of exponent n.

A free periodic group and its quotient B̂(m,n) = ⟨x1, . . . , xm | r1, r2, . . . ⟩, such
as a Tarski monster, can be realized as a group of conformal automorphisms of
some Riemann surface. Indeed, since the fundamental group of an (m + 1)-times
punctured sphere is isomorphic to the free group Fm, a covering Riemann surface
R corresponding to the normal closure N of the relators r1, r2, . . . has the covering
transformation group B̂(m,n) = Fm/N . This means that a subgroup of Conf(R) is

isomorphic to B̂(m,n). Therefore, we consider the following Riemann surface as a
potential candidate for proving the existence of an isolated limit point of Mod(R).

Proposition 7.5. Let R be a Riemann surface that covers the three-times punc-
tured sphere with the covering transformation group G0 ⊂ Conf(R) isomorphic to

a bounded periodic group B̂(2, n), all of whose proper subgroups are finite. Then,
the isotropy subgroup Stab(o) of Mod(R) at the origin o ∈ T (R) satisfies the three
conditions stated in Theorem 7.1

Proof. Let Γ0 be the subgroup of Stab(o) corresponding to G0 ⊂ Conf(R). From
the condition that R/G0 is the three-times punctured sphere whose Teichmüller
space is trivial, we see that

Fix(Stab(o)) = Fix(Γ0) = {o}

and G0
∼= Γ0 is of finite index in Conf(R) ∼= Stab(o). Since G0 has no infinite

proper subgroup, every infinite subgroup of Stab(o) contains Γ0; hence, condition
(1) in Theorem 7.1 is satisfied. Since G0 satisfies algebraic conditions (2) and (3),
so does Stab(o). □

We expect that, in the circumstances of Proposition 7.5 with an additional as-
sumption that the bounded periodic group B̂(2, n) is a Tarski monster given by
Theorem 7.4, the origin o ∈ T (R) should be an isolated limit point. In the next
lemma, we show that this statement is true under a certain extra hypothesis.

Lemma 7.6. Let R be a Riemann surface that covers the three-times punctured
sphere with the covering transformation group G0 ⊂ Conf(R) isomorphic to a 2-
generator Tarski monster of prime exponent n. Let Γ0 be the subgroup of Stab(o)
corresponding to G0. Then, the origin o ∈ T (R) is an isolated limit point of Mod(R)
if the union

∪
γ∈Γ0−{id} Fix(γ) of the sets of all fixed points of the non-trivial ele-

ments of Γ0 is closed in T (R).

Proof. By Proposition 4.3 and Lemma 5.5, we see that there exists a neighborhood
U of the origin o that is precisely invariant under Stab(o); in other words, γ(U) = U
for every γ ∈ Stab(o) and γ(U) ∩ U = ∅ for every γ ∈ Mod(R) − Stab(o). Hence,
we have only to prove that o is an isolated limit point of Stab(o). Furthermore,
since Λ(Stab(o)) = Λ(Γ0) for the subgroup Γ0 ⊂ Stab(o) of finite index, it suffices
to prove the same statement for Γ0. Assume that there exist a point p ∈ U − {o}
and a sequence {γk}∞k=1 of Γ0 such that γk(p) converges to p as k → ∞. We will
show that p is a fixed point of some non-trivial element of Γ0 that is accumulated
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by fixed points of other elements of Γ0. Note that, since the exponent n is prime,
every non-trivial element of G0 has order n.

By the Bers embedding β : T (R) → B(H), where we represent R = U/H by a
Fuchsian group H, the Teichmüller space T (R) is regarded as a bounded domain
of the Banach space B(H) and G0 ⊂ Conf(R) acts on B(H) as a group of linear
isometries. Let gk ∈ G0 be the element corresponding to γk ∈ Γ0 for each k ∈ N.
Then, for φ = β(p) ∈ B(H)−{0}, we have a sequence {(gk)∗(φ)}∞k=1 in B(H) that
converges to φ.

For each k, we take the average of the orbit {φ, (gk)∗(φ), . . . , (gk)n−1
∗ (φ)} un-

der the cyclic group ⟨gk⟩ of order n, i.e., ψk = 1
n

∑n−1
j=0 (gk)

j
∗(φ). This satisfies

(gk)∗(ψk) = ψk, i.e., ψk is a fixed point of (gk)∗. Moreover, we see that ψk con-
verges to φ as k → ∞. Indeed, the difference between ψk and φ is estimated
by

∥ψk − φ∥B ≤ 1

n

n−1∑
j=0

∥(gk)j∗(φ)− φ∥B ≤
∑n−1
j=0 j

n
∥(gk)∗(φ)− φ∥B .

In particular, this shows that ψk ∈ β(T (R)), i.e., ψk represents a point of T (R),
for any sufficiently large k because β(T (R)) is an open subset of B(H). From
the assumption that the set of all fixed points for Γ0 − {id} is closed, we see that
φ = β(p) is a fixed point of some non-trivial element g0 ∈ G0.

For any non-trivial elements g and g′ of G0, we have Fix(g∗) ∩ Fix(g′∗) = {o} if
⟨g⟩ ̸= ⟨g′⟩. This is because ⟨g, g′⟩ = G0 by the property of Tarski monsters and
because the origin o is the only common fixed point for G0. For r = ∥φ∥B > 0, let
Sr be a sphere of radius r in B(H) centered at the origin. Set I(g) = Fix(g∗) ∩ Sr
for a non-trivial g ∈ G0, which is a closed subset of Sr. Then, I(g) and I(g′) are
disjoint if and only if ⟨g⟩ ̸= ⟨g′⟩.

From the fact proved above, the set I(g0) containing φ is accumulated by other
I(gk). By the group invariance, the situation is the same for every I(g). Hence,
for the same reason as the fact that a perfect closed set in a complete metric space
is uncountable, the cardinality of {I(g)} taken over all non-trivial cyclic subgroups
⟨g⟩ ⊂ G0 is uncountable. However, this is impossible, as G0 is countable. □

We will comment about the extra assumption on the closedness of the fixed point
set in Lemma 7.6 later on at the end of Section 12. Then, we will wait for further
arguments to complete the proof of the existence of an isolated limit point.

§8. Exceptional limit points and density of generic limit points

We wish to claim that the set Λ0(Γ) of all generic limit points for a subgroup
Γ ⊂ Mod(R) is dense in Λ(Γ). However, for instance, since an isolated limit point
is not in the closure of Λ0(Γ), we have to make a certain modification to justify this
density problem.

We have seen in Theorem 7.1 that, if p ∈ Λ(Γ) is an isolated limit point of
Γ ⊂ Mod(R), then StabΓ(p) must satisfy certain algebraic conditions. By focusing
on the occupation of limit points satisfying these algebraic conditions, we present
the following concept for limit points.
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Definition. A limit point p ∈ Λ(Γ) for Γ ⊂ Mod(R) is defined to be exceptional if
p /∈ Λ0(Γ) and if there exists a neighborhood U of p in T (R) such that U ∩Λ(Γ) ⊂
Λ2
∞(Γ). The set of all exceptional limit points is called the exceptional limit set

and denoted by E(Γ).

By this definition and Corollary 7.2, it is clear that

{isolated limit points} ⊂ E(Γ) ⊂ Λ2
∞(Γ).

However, thus far, we are unaware of the existence of exceptional limit points, not
to mention isolated limit points.

First, we give a condition for a limit point to be exceptional in Lemma 8.2 below.
The following lemma is crucial for that argument.

Lemma 8.1. For a countable subgroup Γ of Mod(R), if Λ(Γ) = Λ∞(Γ), then they
coincide with Λ2

∞(Γ). More generally, for an open subset U in T (R), if U ∩Λ(Γ) =
U ∩ Λ∞(Γ), then they coincide with U ∩ Λ2

∞(Γ).

Proof. We number the elements of infinite order of Γ by {γi}i∈N and the elements
of finite order of Γ− {id} by {ej}j∈N. Set Xi = Fix(γi) for each i ∈ N, which is a
closed subset of T (R). Consider the union

∞∪
i=1

Xi = Λ1
∞(Γ) = Λ∞(Γ)− Λ2

∞(Γ).

To prove that this is an empty set, we assume that
∪∞
i=1Xi ̸= ∅ and draw a

contradiction.
Set Yj = Fix(ej) ∩ Λ1

∞(Γ) for each j ∈ N, which is also closed. Since Λ1
∞(Γ) ⊂

Λ(Γ) = Λ∞(Γ) by assumption, we have

Λ1
∞(Γ) =

∞∪
i=1

Xi ∪
∞∪
j=1

Yj .

We regard Λ1
∞(Γ) as a complete metric space by the restriction of the Teichmül-

ler distance. Then, by the Baire category theorem, there exists at least one Xi

or Yj that contains an interior point p. This means that there exists an open

neighborhood V of p in T (R) such that Λ1
∞(Γ) ∩ V is contained in Xi or Yj .

First, assume that Xi = Fix(γi) contains an interior point p for some i. Consider
Fix(γki ) for a sufficiently large integer k, i.e., Xi′ for some different integer i′ ̸=
i. Since Xi ⫋ Xi′ by Lemma 2.1, any neighborhood V of p contains a point in

Λ1
∞(Γ) − Xi, which is a contradiction. Next, assume that Yj = Fix(ej) ∩ Λ1

∞(Γ)
contains an interior point p for some j. Then, there exists an open subset V of
T (R) such that p ∈ Λ1

∞(Γ) ∩ V ⊂ Fix(ej). We choose some Xi = Fix(γi) ⊂ Λ1
∞(Γ)

that intersects V . In this situation, the cyclic group ⟨γi⟩ is a proper subgroup of
⟨γi, ej⟩ because the order of ej is finite. Then, we see from Lemma 2.1 again that
Xi ∩ Fix(ej) is properly contained in Xi by replacing γi with some γki if necessary.
This contradicts the fact that every point in Xi ∩ V is fixed by ej .

The same proof can be applied if we restrict all the limit sets to an open subset
U . Thus, the general statement is also valid. □
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Remark. The assumption of Lemma 8.1 that Γ is countable can be removed. This
will be seen in Section 12.

Lemma 8.2. Let Γ be a subgroup of Mod(R). If p ∈ Λ(Γ) − Λ0(Γ) has a neigh-
borhood U such that U ∩ Λ(Γ) ⊂ Λ∞(Γ), then p belongs to E(Γ).

Proof. By Proposition 4.3, we may assume that the neighborhood U of p is equi-
variant under Γ, i.e., γ(U) = U for every γ in the isotropy subgroup Γ0 = StabΓ(p)
and γ(U) ∩ U = ∅ for every γ ∈ Γ − Γ0. Then, U ∩ Λ(Γ) = U ∩ Λ(Γ0) and
U ∩ Λ∞(Γ) = U ∩ Λ∞(Γ0). On the other hand, the assumption implies that
U ∩ Λ(Γ) = U ∩ Λ∞(Γ). Hence, U ∩ Λ(Γ0) = U ∩ Λ∞(Γ0). Since Γ0 is count-
able, it follows from Lemma 8.1 that U ∩ Λ∞(Γ0) = U ∩ Λ2

∞(Γ0). Here, again by
the equivariance of U under Γ, we conclude that U ∩Λ∞(Γ) = U ∩Λ2

∞(Γ); thus, p
belongs to E(Γ) by definition. □

Now, we can formulate the density of generic limit points in the following form.
This is the best possible assertion if we assume the existence of exceptional limit
points.

Theorem 8.3. For a subgroup Γ of Mod(R), the set of generic limit points Λ0(Γ)
is dense in Λ(Γ)− E(Γ).

Proof. Take a limit point p ∈ Λ(Γ)−E(Γ)−Λ0(Γ). If there exists a neighborhood
U of p such that U ∩ Λ(Γ) ⊂ Λ∞(Γ), then p belongs to E(Γ) by Lemma 8.2. This
is a contradiction; thus, there is no such neighborhood. This means that there is a
sequence of points in Λ(Γ)− Λ∞(Γ) ⊂ Λ0(Γ) that converges to p. □

In Proposition 4.3, we have seen certain equivalent conditions for the action
of an isometry group to be weakly discontinuous in a general setting on metric
spaces. Here, we add a specific condition obtained by Theorem 8.3 in the case of a
Teichmüller space.

Corollary 8.4. Let Γ be a subgroup of Mod(R). Then, the following conditions
are equivalent:

(1) Γ acts weakly discontinuously on T (R);
(2) Λ0(Γ) = ∅;
(3) Λ(Γ) = E(Γ).

In particular, condition (3) implies that Λ(Γ) = Λ∞(Γ). We will consider the
converse implication later on in Section 12.

We will show that the isotropy subgroup of an exceptional limit point contains
a subgroup that has the same algebraic property as the isotropy subgroup of an
isolated limit point. Recall that the existence of such a group has been stated in
Section 7.

Theorem 8.5. For an exceptional limit point p ∈ E(Γ) of a subgroup Γ ⊂ Mod(R),
the isotropy subgroup StabΓ(p) contains a finitely generated infinite group Γ0 whose
proper subgroups are all finite.

Proof. Let {Γn}∞n=1 be the family of all infinite subgroups of StabΓ(p). We will
show that the union

∪∞
n=1 Fix(Γn) of all fixed point loci of the subgroups Γn is a
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closed set. Let us suppose that the opposite is true. Then, there exists a sequence
{pm}∞m=1 in

∞∪
n=1

Fix(Γn)−
∞∪
n=1

Fix(Γn)

such that pm → p as m → ∞ and pm ∈ Λ2
∞(Γ). Set Hm = StabΓ(pm) for each

m, which is an infinite group. If p ∈ Fix(Hm), then Hm ⊂ StabΓ(p); however,
this contradicts pm /∈

∪∞
n=1 Fix(Γn). Hence, we have p /∈ Fix(Hm). This implies

that there is some γm ∈ Hm for each m such that γm(p) ̸= p. On the other hand,
γm(pm) = pm and pm → p yield γm(p) → p as m→ ∞. However, since p /∈ Λ0(Γ),
this is impossible. Thus, we have shown that

∪∞
n=1 Fix(Γn) is closed.

We apply the Baire category theorem to the complete metric space
∪∞
n=1 Fix(Γn)

with the restriction of the Teichmüller distance, where each Fix(Γn) is a closed
subset. Then, there is some Γ0 in the family {Γn}∞n=1 such that Fix(Γ0) has an
interior point in

∪∞
n=1 Fix(Γn). In particular, this implies that there is no Fix(Γn)

that contains Fix(Γ0) properly. Thus, by possibly replacing Γ0 with a subgroup of
finite index, we see from Lemma 2.1 that Γ0 has no proper infinite subgroup in it.
This property also forces Γ0 to be finitely generated. □
Corollary 8.6. If a subgroup Γ of Mod(R) does not contain a finitely generated
infinite group Γ0 whose proper subgroups are all finite, then E(Γ) = ∅.

If the group structure does not allow Γ ⊂ Mod(R) to have such a subgroup Γ0,
e.g., if Γ is abelian, then E(Γ) = ∅.

Finally, we give a necessary condition for Γ ⊂ Mod(R) to act weakly discontin-
uously on T (R), which is equivalent to the condition Λ(Γ) = E(Γ), in terms of the
algebraic properties of the isotropy subgroups.

Proposition 8.7. If a subgroup Γ of Mod(R) acts on T (R) weakly discontinu-
ously, then for every p ∈ T (R), the isotropy group Γ0 = StabΓ(p) has no infinite
descending sequence of proper subgroups. In particular, every element of Γ0 is of
finite order and every subgroup of Γ0 is finitely generated.

Proof. If Γ acts weakly discontinuously, then the orbit Γ(q) is a discrete set for
every q ∈ T (R). Then, by Theorem 6.4, Γ0 cannot contain an infinite descending
sequence {Γn}∞n=1 of proper subgroups as in its statement. □

§9. Partial discreteness of the length spectrum

For an analytically finite Riemann surface R, it is well known that the length
spectrum LS(p) is discrete (in a stronger sense, the multiplicity of each point spec-
trum is at most finite) for every p ∈ T (R), from which the discontinuity of the
action of Mod(R) on T (R) follows. Although LS(p) is not necessarily discrete for a
Riemann surface R in general, the distribution of LS(p) gives certain information
on the action of Mod(R) locally at p ∈ T (R). Recall that LS(p) is defined as the
closure of the set {log ℓp(c)}c∈S(R) of all point spectra.

Definition. An accumulation point of LS(p) is called an essential spectrum and
the closed subset of all essential spectra is denoted by LSess(p). We assume that a
point of infinite multiplicity is an essential spectrum. A point in the complement
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LS(p)−LSess(p) is called a discrete point spectrum. Let rx(p) denote the Euclidean
distance from x ∈ R to the closed set LSess(p). For each c ∈ S(R), in particular,
we define rc(p) to be rx(p) where x = log ℓp(c). Let r(p) be the supremum of rx(p)
taken over all the spectra:

r(p) = sup{rx(p) | x ∈ LS(p)} = sup{rc(p) | c ∈ S(R)}.

This represents the gap of LSess(p) relative to LS(p).

Proposition 9.1. The function r(p) is invariant under Mod(R) and continuous
on T (R). More precisely, if r(p) <∞ for every p ∈ T (R), then it satisfies

|r(p)− r(q)| ≤ 2dLS(p, q) ≤ 2dT (p, q).

If r(p) = ∞ for some p ∈ T (R), then r(p) = ∞ for every p ∈ T (R).

Proof. The invariance under Mod(R) is obvious. The second inequality is due to
Proposition 3.1. We will prove the first inequality below.

Suppose that r(p) < ∞ for every p ∈ T (R). For an arbitrary ε > 0, there
exists c ∈ S(R) such that rc(p) > r(p) − ε. Then, there is no point of LSess(p)
within distance r(p)− ε from log ℓp(c), where at most finitely many discrete point
spectra exist. Thus, we see that there is no point of LSess(q) within distance
r(p)− 2dLS(p, q)− ε from log ℓq(c). This implies that rc(q) ≥ r(p)− 2dLS(p, q)− ε;
hence, r(q) ≥ r(p)− 2dLS(p, q)− ε for any q ∈ T (R). Since ε is arbitrary, we have
r(p)− r(q) ≤ 2dLS(p, q). By exchanging the roles of p and q, we obtain the desired
inequality.

If r(p) = ∞ for some p ∈ T (R), then for an arbitrary M > 0, there exists
c ∈ S(R) such that rc(p) > M . By an argument similar to the one presented above,
we have r(q) ≥M − 2dLS(p, q) for any q ∈ T (R). This implies that r(q) = ∞. □

If LS(p) is discrete, i.e., LSess(p) = ∅ or equivalently rc(p) = ∞ for all c ∈ S(R),
then r(p) = ∞. Conversely, we do not know whether r(p) = ∞ implies that
LSess(p) = ∅ or not. As the above proof indicates, these conditions are independent
of p ∈ T (R); if a condition is satisfied for some p, then it is satisfied for all p. By
contrast, there exists a case in which LS(p) is totally indiscrete, i.e., LSess(p) =
LS(p). This is equivalent to the condition that r(p) = 0. For example, if p is a
stabilized limit point of Mod(R), then r(p) = 0.

Here, we consider a situation where LS(p) is partially discrete in the sense that
LSess(p) ̸= LS(p), or equivalently r(p) > 0. We remark that the conditions r(p) > 0
and rc(p) > 0 that appear below include the cases r(p) = ∞ and rc(p) = ∞,
respectively.

Theorem 9.2. If p ∈ T (R) satisfies r(p) > 0, then p belongs to the region of
stability Φ(Γ) for Γ = Mod(R). In addition, if R satisfies the bounded geometry
condition, then p belongs to the region of discontinuity Ω(Γ).

Proof. Since r(p) > 0, there exists c ∈ S(R) such that rc(p) > 0. In the case
where rc(p) = ∞, we assume that rc(p) takes an arbitrary positive constant. Then,
the length spectra belonging to an open interval I(log ℓp(c), rc(p)) ⊂ R with center
log ℓp(c) and radius rc(p) is finite, and we denote the corresponding elements in
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S(R) by {c1, . . . , ck} including c. Let U(p, rc(p)/2) ⊂ T (R) be an open ball with
center p = [f ] and radius rc(p)/2. If an orbit point γ(p) is in U(p, rc(p)/2) for
γ = [g]∗ ∈ Γ, then Proposition 3.1 implies that the quasiconformal automorphism
g−1 of R must send c to one of {c1, . . . , ck}. Hence, f ◦ g−1 ◦ f−1 for all such g
are quasiconformal automorphisms of Rp = f(R) with bounded maximal dilatation
and satisfy the stationary condition. As in the proof of Theorem 5.1, it follows
that the orbit Γ(p) restricted to U(p, rc(p)/2) is closed and the isotropy subgroup
StabΓ(p) is finite. Since the same properties are satisfied for each point in the orbit
Γ(p), we conclude that p ∈ Φ(Γ). The latter statement then directly follows from
Corollary 5.4. □

We can refine this conclusion quantitatively by the value r(p).

Corollary 9.3. If p ∈ T (R) satisfies r(p) > 0, then U(p, r(p)/2) is contained in
Φ(Γ) for Γ = Mod(R). In addition, if R satisfies the bounded geometry condition,
then U(p, r(p)/2) ⊂ Ω(Γ). When r(p) = ∞, the above conclusions are expressed as
Φ(Γ) = T (R) and Ω(Γ) = T (R), respectively.

Proof. Suppose that r(p) <∞. Every q ∈ U(p, r(p)/2) satisfies dT (p, q) = r(p)/2−
ϵ/2 for some ϵ > 0. By the definition of r(p), there exists some c ∈ S(R) such that
rc(p) > r(p) − ϵ. Since | log ℓp(c′) − log ℓq(c

′)| ≤ r(p)/2 − ϵ/2 for every c′ ∈ S(R)
by Proposition 3.1, we see that rc(q) > 0; hence, r(q) > 0. Then, from Theorem
9.2, we conclude that q ∈ Φ(Γ). The additional statement is due to Corollary
5.4. If r(p) = ∞, then r(q) = ∞ for every q ∈ T (R) by Proposition 9.1. Hence,
Φ(Γ) = T (R) by Theorem 9.2. □

Based on a primary version of the above arguments, it was proved in [9] that Ω(Γ)
is not empty for Γ = Mod(R) and for a Riemann surface R satisfying the bounded
geometry condition. An application of the property Ω(Γ) ̸= ∅ to the infinite-
dimensional Teichmüller theory can be found in [12]. In the next two sections, we
will employ the above results to show more detailed properties of Φ(Γ).

We define the bottom of the spectra as

λ0(p) = inf{x ∈ R | x ∈ LS(p)} = inf{log ℓp(c) | c ∈ S(R)}

and the bottom of the essential spectra as

λess(p) = inf{x ∈ R | x ∈ LSess(p)}.

Obviously, λ0(p) ≤ λess(p), and if λ0(p) < λess(p), then the partial discreteness
condition r(p) ≥ λess(p) − λ0(p) > 0 follows. Furthermore, they are continuous
functions on T (R) invariant under Mod(R) satisfying

|λ0(p)− λ0(q)|, |λess(p)− λess(q)| ≤ dLS(p, q) ≤ dT (p, q)

if they are finite over T (R).
We investigate the variation of the bottom of the (essential) spectra under a

quasiconformal deformation. First, we consider the case that the bottom is −∞ or
+∞. Note that the condition λ0(p) = −∞ implies that the hyperbolic Riemann
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surface Rp does not satisfy the lower boundedness condition for the injectivity radii.
Since any K-quasiconformal homeomorphism can move log ℓp(c) by at most logK
for each c ∈ S(R), the conditions λ0(p) = −∞ and λess(p) = −∞ are consistent
throughout p ∈ T (R). On the other hand, the condition λess(p) = +∞ implies
that LSess(p) = ∅ and this is equivalent to the condition that LS(p) is discrete. For
the same reason as that stated above, we see that this condition is also consistent
throughout p ∈ T (R). In other words, we see the following.

Proposition 9.4. If λess(p) = ±∞ for some p ∈ T (R), then λess(p) = ±∞ for
every p ∈ T (R). Hence, λess(p) = ±∞ is a property of the Teichmüller space T (R).

Next, we consider the general case. By virtue of Corollary 3.4, we have the in-
variance of the bottom of the essential spectra under a quasiconformal deformation
whose support is on a compact subset.

Theorem 9.5. If there exists a quasiconformal homeomorphism f : Rp → Rq
between Riemann surfaces corresponding to p and q in T (R) such that f is conformal
off a compact subset E ⊂ Rp, then λess(p) = λess(q).

Proof. We have only to consider the case that λess(p) ̸= ±∞, and prove the claim
that, for every ϵ > 0, the number of c ∈ S(R) satisfying log ℓq(c) ≤ λess(p) − ϵ
is finite. Then, we have λess(p) ≤ λess(q). By exchanging the roles of p and q
considering f−1, we conclude that λess(p) = λess(q).

Let K ≥ 1 be the maximal dilatation of the quasiconformal homeomorphism f .
If log ℓp(c) ≥ λess(p)+logK, then log ℓq(c) ≥ λess(p) by Proposition 3.1. Hence, we
have only to consider such c ∈ S(R) that satisfy log ℓp(c) < λess(p)+ logK. On the
other hand, Corollary 3.4 asserts that, if c ∈ S(R) satisfies log ℓp(c) ≥ λess(p)− ϵ/2
and log ℓq(c) ≤ λess(p)− ϵ, then

logα = log{K + (1−K)
2

π
arctan(sinh dh(c, E))} ≥ ϵ

2
.

This implies that the distances dh(c, E) are bounded above for such c. In addition,
their lengths are bounded above by K exp(λess(p)). Hence, such c are finitely many.
Since the number of c ∈ S(R) satisfying the condition log ℓp(c) < λess(p) − ϵ/2 is
also finite, we obtain the above claim. □

Remark. By arguments similar to those presented above, we can extend Theorem
9.5 to the claim that LSess(p) = LSess(q) is satisfied under any quasiconformal
homeomorphism f : Rp → Rq with the dilatation on a compact support. Moreover,
this is also true when f is an asymptotically conformal homeomorphism. The proof
can be given by applying Lemma 3.7 in [11], which is a generalization of Corollary
3.4 in the present paper.

We conclude this section by presenting another continuous map on the Teich-
müller space T (R) invariant under Mod(R), which is given by using the length
spectrum. Let C(R) be the family of all closed subsets in R equipped with the
Hausdorff distance H. We define the map η : T (R) → C(R) by p 7→ LS(p). By
Proposition 3.1, it is easy to see that η satisfies H(LS(p),LS(q)) ≤ dT (p, q); in
particular, η is Lipschitz continuous.
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§10. Density of the region of stability

In this section, we prove that the region of stability Φ(Γ) for Γ = Mod(R) is
dense in T (R). Actually, we show the density of points q ∈ T (R) satisfying the
partial discreteness condition r(q) > 0 for the length spectrum. Then, by Theorem
9.2, we have the required result.

Theorem 10.1. In every neighborhood Up of every p ∈ T (R), there exists q such
that r(q) > 0.

Corollary 10.2. The region of stability Φ(Γ) for Γ = Mod(R) is dense in T (R).
In addition, if R satisfies the bounded geometry condition, then the region of dis-
continuity Ω(Γ) is dense in T (R).

The proof of Theorem 10.1 is divided into two cases according to the bottom
of the spectra: Lemma 10.3 deals with the case λess(p) > −∞ for p ∈ T (R) and
Lemma 10.4 deals with the case λess(p) = −∞ included in the case λ0(p) = −∞
where R does not satisfy the lower boundedness condition. Recall Proposition 9.4,
which states that these conditions are regarded as assumptions on the Teichmüller
space T (R).

Lemma 10.3. Suppose that λess(p) > −∞ for some p ∈ T (R). Then, for every
ϵ > 0, there exist q ∈ U(p, ϵ) and c ∈ S(R) such that rc(q) ≥ λess(q)− log ℓq(c) > 0.

Proof. If λess(p) = ∞, then the statement is clearly satisfied. Hence, we may
assume that λess(p) <∞. Set an angle

ψ = 2arctan
1

sinh(expλess(p))
.

Choose an amount ϕ ∈ (0, π) such that log (1 + ϕ/ψ) < ϵ. Then, take c ∈ S(R)
satisfying

log ℓp(c)− λess(p) < log

(
1 +

ϕ

π

)
< log 2.

Since ℓp(c)/2 < expλess(p), the collar lemma implies that there is a collar of the
angle ψ for the corresponding simple closed geodesic f(c) on Rp = f(R).

Consider the canonical quasiconformal homeomorphism χf(c),ϕ of Rp induced
by the ϕ-grafting with respect to f(c) and set q = [χf(c),ϕ ◦ f ]. Then, dT (p, q) ≤
log{(ψ + ϕ)/ψ} < ϵ. By Lemma 3.5, the geodesic length ℓq(c) satisfies

log ℓq(c) ≤ log ℓp(c)− log
π + ϕ

π
< λess(p),

where λess(p) = λess(q) by Theorem 9.5. This implies that rc(q) ≥ λess(q) −
log ℓq(c) > 0. □
Lemma 10.4. Suppose that λ0(p) = −∞ for some p ∈ T (R). Then, for every
ϵ > 0, there exist q ∈ U(p, ϵ) and c ∈ S(R) such that rc(q) > 0.

Proof. Take an element c ∈ S(R) of sufficiently small ℓp(c) satisfying

ψ := 2 arctan
1

sinh(2ℓp(c))
≥ 11

12
π.
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Choose an amount ϕ ∈ (0, π) such that 3ρ := log (1 + ϕ/ψ) < ϵ. Then, a simple
calculation gives

2ρ < log

(
1 +

ϕ

π

)
< log 2.

Consider an open interval I(x, ρ) ⊂ R with center x := log ℓp(c) and radius ρ. Let
{ci}∞i=1 be a family of all elements in S(R) except c such that log ℓp(ci) belongs to
I(x, ρ). Since ρ < log 2/2 < log 4, it follows that ℓp(ci)/2 < 2ℓp(c), from which the
collar lemma ensures that there is a collar of the angle ψ > π/2 for each simple
closed geodesic f(ci) on Rp = f(R). In particular, sinh(ℓp(ci)/2) < 1. On the other
hand, the width ωi of the canonical collar of f(ci) satisfies

sinhωi =
1

sinh(ℓp(ci)/2)
> 1.

This implies that ωj > arcsinh 1 > ℓp(ci)/2 for any i and j. If f(ci) intersects a
distinct f(cj), it must take at least length 2ωj to pass the canonical collar of f(cj).
Hence, this inequality guarantees that the simple closed geodesics {ci} are mutually
disjoint.

For each i ∈ N, we perform a grafting by an amount ϕ with respect to f(ci). This
is obtained on the canonical collar A∗(f(ci)) as a quasiconformal homeomorphism
of the maximal dilatation not greater than (ψ + ϕ)/ψ = exp(3ρ). Let χ be the
quasiconformal homeomorphism of Rp induced by all these graftings with respect to
{f(ci)} and set q = [χ ◦ f ]. Then, χ is exp(3ρ)-quasiconformal; hence, dT (p, q) < ϵ.

By Lemma 3.5 and the subsequent remark, the geodesic length ℓq(ci) satisfies

log ℓq(ci) ≤ log ℓp(ci)− log
π + ϕ

π
< log ℓp(ci)− 2ρ.

Hence, log ℓq(ci) /∈ I(x, ρ) for every i.
Next, we consider all c′ ∈ S(R) with log ℓp(c

′) ∈ I(x, 4ρ) − I(x, ρ) or with
c′ = c. Any other c′′ ∈ S(R) with log ℓp(c

′′) /∈ I(x, 4ρ) does not satisfy log ℓq(c
′′) ∈

I(x, ρ) because χ is exp(3ρ)-quasiconformal; hence, | log ℓp(c′′) − log ℓq(c
′′)| ≤ 3ρ

by Proposition 3.1. Since 4ρ < log 4, we still have ℓp(c
′)/2 < 2ℓp(c), which implies

that each f(c′) has a collar of the angle ψ disjoint from all A∗(f(ci)). Since χ is
conformal on A∗(f(c′)), Theorem 3.3 yields

| log ℓp(c′)− log ℓq(c
′)| ≤ log

{
1 +

(exp(3ρ)− 1)(π − ψ)

π

}
< (exp(3ρ)− 1)

π − ψ

π
< 6ρ · 1

12
=
ρ

2
.

This implies that log ℓq(c) belongs to I(x, ρ/2) but log ℓq(c
′) does not belong to

I(x, ρ/2) for any other c′ ∈ S(R). Thus, we have rc(q) > 0. □
Consider the projection π : T (R) → M(R) and the moduli space of the stable

points MΦ(R) = π(Φ(Γ)). Corollary 10.2 implies that MΦ(R) is dense in M(R).
Moreover, since Φ(Γ) is open by Theorem 5.2, the complement M(R)−MΦ(R) is
closed; hence, it is nowhere dense. On the other hand, the moduli space M(R) can
fail the first separability axiom as Corollary 6.5 shows and the closure of a point
set can be a larger set in this case. However, we see that this closure cannot be so
large.
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Proposition 10.5. The closure of a point set {σ} for any σ ∈ M(R) has no
interior.

Proof. If σ ∈MΦ(R), then the closure of {σ} coincides with itself. If σ ∈M(R)−
MΦ(R), then the closure of {σ} is contained in the closed setM(R)−MΦ(R), which
is nowhere dense. □

In Section 13, we will extend this result to any countable subset of M(R).

§11. Connectivity of the region of stability

In this section, we will prove that the region of stability Φ(Γ) for Γ = Mod(R) is
connected. The method for showing this property is similar to the method presented
in the previous section. Specifically, we again utilize the partial discreteness of the
length spectrum. In fact, we prove a stronger result than the global connectivity
of Φ(Γ) as follows.

Theorem 11.1. For every p ∈ T (R) and every r > 0, there exists a positive num-
ber C > 0 depending continuously on p and r that satisfies the following property:
any distinct points q1 and q2 in U(p, r) ∩ Φ(Γ) for Γ = Mod(R) can be connected
by a path in Φ(Γ) whose length is less than CdT (q1, q2).

Corollary 11.2. The region of stability Φ(Γ) for Γ = Mod(R) is connected. In
addition, if R satisfies the bounded geometry condition, then the region of disconti-
nuity Ω(Γ) is connected.

Proof of Theorem 11.1. We divide the proof into two cases as in the proof of Theo-
rem 10.1: (a) λess(p) > −∞; (b) λ0(p) = −∞. We may also assume that λess(p) <
∞. Fix ϵ > 0 such that U(q1, ϵ) ⊂ U(p, r) ∩ Φ(Γ) and U(q2, ϵ) ⊂ U(p, r) ∩ Φ(Γ).

Case (a): By Lemma 10.3, for each i = 1, 2, there exist q′i = [fi] ∈ U(qi, ϵ)
and ci ∈ S(R) such that λess(q

′
i) − log ℓq′i(ci) > 0. Moreover, we can choose c1

and c2 such that the hyperbolic distance dh(c1, c2) is sufficiently large. Take a
K-quasiconformal homeomorphism f of Rq′1 = f1(R) onto Rq′2 = f2(R) such that
0 < logK < dT (q1, q2) + 2ϵ.

Set ϕ := (K2 − 1)π and consider a one-parameter family of the canonical quasi-
conformal homeomorphisms χf1(c1),tϕ of Rq′1 = f1(R) induced by the (tϕ)-grafting
with respect to f1(c1) for 0 ≤ t ≤ 1. This defines a path {α(t)}0≤t≤1 in T (R) by
α(t) = [χf1(c1),tϕ ◦ f1]. By Lemma 3.5, the geodesic length of c1 satisfies

ℓα(t)(c1) ≤
π

π + tϕ
ℓα(0)(c1) ≤ ℓq′1(c1).

Since λess(α(t)) = λess(α(0)) = λess(q
′
1) for every t by Theorem 9.5, we see that

rc1(α(t)) ≥ λess(α(t))− log ℓα(t)(c1) > 0,

which implies that the path α(t) is contained in Φ(Γ). Moreover, for t = 1, we have

λess(α(1))− log ℓα(1)(c1) > log
π + ϕ

π
= 2 logK.
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Let ψ be the angle of the canonical collar A∗(f1(c1)). Since each χf1(c1),tϕ is
obtained by linearly stretching A∗(f1(c1)), we can estimate the distance between
any two points on the path α and hence the length of α (alternatively, we may
consider a Beltrami disk D → T (R) defined by the complex dilatation of χf1(c1),ϕ
and obtain this estimate as explained below). It is bounded above by logK ′ for

K ′ =
ψ + ϕ

ψ
= 1 +

(K2 − 1)π

ψ
,

which is the maximal dilatation of χ = χf1(c1),ϕ. Here, the angle ψ of A∗(f1(c1)) is
estimated by

ψ = 2arctan
1

sinh(ℓq′1(c1)/2)
> 2 arctan

1

sinh{exp(λess(p) + r)/2}
.

Next, we consider a deformation of Rq′2 = f2(R). Define a Beltrami coefficient µ
on Rq′2 by µ = 0 on Rq′2 − f(A∗(f1(c1))) and µ = µχ◦f−1 on f(A∗(f1(c1))), where

µχ◦f−1 denotes the complex dilatation of χ ◦ f−1. Then, take a one-parameter
family of quasiconformal deformations ht of Rq′2 for 0 ≤ t ≤ 1, where ht is the qua-
siconformal homeomorphism with the complex dilatation tµ. This defines a path
{β(t)}0≤t≤1 in T (R) by β(t) = [ht ◦ f2]. Under this deformation, Corollary 3.4 en-
sures that the geodesic length ℓβ(t)(c2) does not change significantly and hence satis-
fies the condition λess(q

′
2)−log ℓβ(t)(c2) > 0, since we have chosen the hyperbolic dis-

tance dh(c1, c2) to be sufficiently large. Again, by λess(β(t)) = λess(β(0)) = λess(q
′
2),

we have

rc2(β(t)) ≥ λess(β(t))− log ℓβ(t)(c2) > 0,

which implies that the path β(t) is contained in Φ(Γ). Moreover, the length of
β is bounded above by logK(χ ◦ f−1) ≤ logK ′ + logK. Indeed, we consider
a holomorphic map (Beltrami disk) from the unit disk D into T (R) by assigning
z ∈ D to a quasiconformal deformation of Rq′2 with a Beltrami coefficient zµ/∥µ∥∞.
Then, the path β(t) is the image of the interval [0, ∥µ∥∞] ⊂ D, and the contraction
of the Kobayashi distance, which coincides with the Teichmüller distance, gives the
claim.

Finally, we connect α(1) and β(1) by a path in Φ(Γ). We define a Beltrami
coefficient µ′ on Rα(1) = χ(Rq′1) by µ′ = 0 on χ(A∗(f1(c1))) and µ′ = µf◦χ−1

on χ(Rq′1 − A∗(f1(c1))). Then, take a one-parameter family of quasiconformal
deformations h′t of Rα(1) for 0 ≤ t ≤ 1, where h′t is the quasiconformal homeomor-
phism with the complex dilatation tµ′. This defines a path {η(t)}0≤t≤1 in T (R)
by η(t) = [h′t ◦ χ ◦ f1] with η(0) = α(1) and η(1) = β(1). We remark that the
maximal dilatation of h′t is bounded above by K because χ−1 is conformal outside
χ(A∗(f1(c1))). Hence,

rc1(η(t)) ≥ λess(η(t))− log ℓη(t)(c1)

≥ (λess(η(0))− logK)− (log ℓη(0)(c1) + logK)

= λess(α(1))− log ℓα(1)(c1)− 2 logK > 0
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for every t. This implies that the path η(t) is contained in Φ(Γ). For the same
reason as before, the length of η is bounded above by logK.

Therefore, q′1 and q′2 are connected by the composition of the paths α · η · β−1 in
Φ(Γ) whose length is bounded above by

2 logK + 2 logK ′ = 2 logK + 2 log

(
1 +

(K2 − 1)π

ψ

)
= 2

(
1 +

2π

ψ

)
(logK − ε(K,ψ)),

where ε(K,ψ) is some positive function of K > 1 and 0 < ψ < 2π. Hence, q1 and
q2 can be connected by a path in Φ(Γ) whose length is 2ϵ greater than that of the
above path. Recall that logK < dT (q1, q2) + 2ϵ. Since ϵ > 0 can be taken to be
arbitrarily small, we set ϵ = ε(K,ψ)/3. Then, we conclude that the length of this
path in Φ(Γ) connecting q1 and q2 is less than CdT (q1, q2), where C = 2(1+2π/ψ)
depends only on p and r.

Case (b): By Lemma 10.4, for each i = 1, 2, there exist q′i = [fi] ∈ U(qi, ϵ) and
ci ∈ S(R) such that rci(q

′
i) > 0. We also require that there is another c0 ∈ S(R)

such that rc0(q
′
1) > 0 and that the geodesic length of c0 is sufficiently small. This

is possible by arguments similar to Lemma 10.4 for finding q′1 that makes the two
spectra isolated simultaneously. Take a K-quasiconformal homeomorphism f of
Rq′1 = f1(R) onto Rq′2 = f2(R) such that logK < dT (q1, q2) + 2ϵ.

We define a one-parameter family of quasiconformal deformations χt of Rq′1 for
0 ≤ t ≤ 1 as follows. Consider all c′ ∈ S(R) except c0 such that log ℓq′1(c

′) belongs to

an open interval I = I(log ℓq′1(c0),
9
4 logK). Since c0 can be taken to be arbitrarily

short, we may assume that all c′ are mutually disjoint and that c1 and c2 are not
among such c′. Set ϕ := (K9/2 − 1)π and perform grafting by an amount tϕ with
respect to each f1(c

′). In each canonical collar A∗(f1(c
′)), we take a smaller collar

A∗∗(f1(c
′)) with a uniform angle ψ = ψ(K) such that the distance to the boundary

∂A∗(f1(c
′)) is sufficiently large and ψ is sufficiently close to π. The collar lemma

makes this possible by choosing c0 to be arbitrarily short. Then, χt is defined
to be a quasiconformal homeomorphism obtained through linear stretching of all
A∗∗(f1(c

′)) by tϕ. This determines a path {α(t)}0≤t≤1 in T (R) by α(t) = [χt ◦ f1].
Since the support of χt is taken to be far from any simple closed geodesic disjoint

from all c′, Corollary 3.4 implies that this grafting process does not influence the
value rc1 significantly. Hence, the condition rc1(α(t)) > 0 is maintained throughout;
thus, the path α(t) is contained in Φ(Γ). By Lemma 3.5, we have

log ℓα(0)(c
′)− log ℓα(1)(c

′) ≥ log
π + ϕ

π
=

9

2
logK.

This implies that log ℓα(1)(c
′) /∈ I for all c′. Owing to the slight influence on

the other geodesic lengths, again we see that the difference between log ℓα(1)(c0)

and any other log ℓα(1)(c) (c ̸= c0) is greater than 17
8 logK, which implies that

rc0(α(1)) > 2 logK. The length of α is bounded above by logK ′ for the maximal
dilatation K ′ = (ψ + ϕ)/ψ of χ = χ1. Since ψ = ψ(K) is arbitrarily close to π and
ϕ is chosen to be (K9/2 − 1)π, we can represent K ′ = K5/ exp(ε(K)) by using a
positive function ε(K) of K > 1.
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The deformation of Rq′2 is defined similarly to case (a). Set a Beltrami coefficient
µ on Rq′2 by µ = 0 on Rq′2 − f(

∪
A∗∗(f1(c

′))) and µ = µχ◦f−1 on f(
∪
A∗∗(f1(c

′))),
where the union is taken over all c′ for which grafting has been performed. Then,
take a one-parameter family of quasiconformal deformations ht of Rq′2 with the
complex dilatation tµ for 0 ≤ t ≤ 1. This defines a path {β(t)}0≤t≤1 in T (R)
by β(t) = [ht ◦ f2]. Corollary 3.4 again states that ht does not change the value
of rc2 significantly; hence, rc2(β(t)) > 0 for every t, which implies that the path
β(t) is contained in Φ(Γ). The length of β is bounded above by logK(χ ◦ f−1) ≤
logK ′ + logK.

We connect α(1) and β(1) by a path in Φ(Γ). As before, a Beltrami coefficient
µ′ on Rα(1) = χ(Rq′1) is defined by µ′ = 0 on χ(

∪
A∗∗(f1(c

′))) and µ′ = µf◦χ−1

on χ(Rq′1 −
∪
A∗∗(f1(c

′))). Then, take a one-parameter family of quasiconformal
deformations h′t of Rα(1) with the complex dilatation tµ′ for 0 ≤ t ≤ 1. This defines
a path {η(t)}0≤t≤1 in T (R) by η(t) = [h′t ◦χ◦f1] with η(0) = α(1) and η(1) = β(1).
Since rc0(η(0)) = rc0(α(1)) > 2 logK and the maximal dilatation of h′t is bounded
above by K, we see that rc0(η(t)) > 0 for every t; hence, the path η(t) is contained
in Φ(Γ). The length of η is bounded above by logK.

Therefore, q′1 and q′2 are connected by the composition of the paths α · η · β−1 in
Φ(Γ) whose length is bounded above by

2 logK + 2 logK ′ = 2 logK + 2 log(K5/ exp(ε(K))) = 12 logK − 2ε(K).

Hence, q1 and q2 can be connected by a path in Φ(Γ) whose length is 2ϵ greater
than that of the above path. Since logK < dT (q1, q2) + 2ϵ and ϵ > 0 can be taken
to be arbitrarily small, we set ϵ = ε(K)/13. Then, we conclude that the length of
this path in Φ(Γ) connecting q1 and q2 is less than 12dT (q1, q2). □

Remark. The positive number C > 0 in Theorem 11.1 has been taken locally
uniformly in case (a) but globally uniformly in case (b). We expect that there
should be a globally uniform constant C for every Teichmüller space.

§12. Stabilized limit points are not dense

We will prove that the set of stabilized limit points is not dense in the limit set.
This is in contrast to the nature of familiar dynamics, such as Kleinian groups and
iterations of rational maps. Strictly speaking, exceptional cases might exist where
the above statement is not true, e.g., the case in which Λ(Γ) coincides with the
exceptional limit set E(Γ). Hence, a certain restriction on the limit set is necessary
to justify the claim.

Definition. For a subgroup Γ ⊂ Mod(R), a limit point p ∈ Λ(Γ) belongs to the
practically exceptional limit set denoted by [E](Γ) if p /∈ Λ0(Γ) and if there exists a

neighborhood U of p in T (R) such that U ∩ Λ(Γ) ⊂ Λ2
∞(Γ).

By definition, E(Γ) ⊂ [E](Γ) is obvious. We expect these sets to be coincident,
but do not pursue this problem herein. Hence, we employ the practically exceptional
limit set [E](Γ) instead of E(Γ) for our arguments and formulate our statement as
follows.
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Theorem 12.1. For a subgroup Γ of Mod(R), if Λ(Γ)− [E](Γ) is not empty, then

the stabilized limit set Λ∞(Γ) is nowhere dense in Λ(Γ)− [E](Γ).

First, we consider the subset Λ1
∞(Γ) of Λ∞(Γ) and prove that Λ1

∞(Γ) is nowhere
dense in the entire limit set Λ(Γ). This is a crucial step in the proof of Theorem
12.1.

Theorem 12.2. Let p0 be a point in Λ1
∞(Γ) for a subgroup Γ of Mod(R). Then,

in every neighborhood U of p0, there exists a generic limit point q ∈ Λ0(Γ) that does

not belong to the closure Λ∞(Γ) of the stabilized limit set. In particular, Λ1
∞(Γ) is

nowhere dense in Λ(Γ).

In particular, this result implies that the limit set Λ(Γ) contains a strictly smaller

Γ-invariant closed subset Λ1
∞(Γ) whenever Γ contains an elliptic element of infinite

order. Hence, in this case, the orbit of any limit point of Γ is not dense in Λ(Γ).
Moreover, Theorem 12.2 extends Lemma 8.1, where we imposed countability on
the subgroup Γ.

Corollary 12.3. For an arbitrary subgroup Γ of Mod(R) and for every open subset
U of T (R), if U ∩ Λ(Γ) = U ∩ Λ∞(Γ), then they coincide with U ∩ Λ2

∞(Γ).

In Corollary 8.4, we had given conditions equivalent to weak discontinuity. The-
orem 12.1 further yields the relationship of these conditions with the fullness of the
stabilized limit set as in the following corollary. We remark that [E](Γ) = E(Γ)
is satisfied under the assumption that Λ(Γ) = Λ∞(Γ) because this assumption is
equivalent to the condition Λ(Γ) = Λ2

∞(Γ) by Corollary 12.3.

Corollary 12.4. The condition Λ(Γ) = E(Γ) equivalent to the weak discontinuity
of Γ ⊂ Mod(R) satisfies the following implication:

Λ(Γ) = E(Γ) =⇒ Λ(Γ) = Λ∞(Γ) =⇒ Λ(Γ) = E(Γ).

We expect the first implication above to be strict, but we do not expect the
second one to be strict.

Proof of Theorem 12.2. Without loss of generality, we may assume p0 ∈ Λ1
∞(Γ) to

be the origin o of the Teichmüller space T (R). There is a conformal automorphism
g ∈ Conf(R) ⊂ MCG(R) of infinite order such that [g]∗ ∈ Γ.

We will find a simple closed geodesic c on R in the following manner. If the set
of lengths of all simple closed geodesics on R modulo multiplicity by ⟨g⟩ has an
isolated point, then we choose c corresponding to this point. Otherwise, (a) if the
lengths of simple closed geodesics on R are bounded from below, then we choose c
whose geodesic length is sufficiently close to the infimum; (b) if R has an arbitrarily
short simple closed geodesic, then we choose a sufficiently short c. Note that, in
case (b), {gn(c)}n∈Z are mutually disjoint for any sufficiently short c.

We observe the images of the simple closed geodesic c under ⟨g⟩. Since ⟨g⟩ acts
properly discontinuously on R, there is a positive integer t such that the images
{gtn(c)}n∈Z are mutually disjoint. Then, by replacing g with gt, we have a quotient

Riemann surface R̂ = R/⟨g⟩ on which c projects injectively. In addition, by choosing
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a larger t, we may assume that the distance between c and g(c) is sufficiently large.

We can also avoid the case in which dimT (R̂) = 0 by this replacement.
Choose an arbitrary neighborhood U of p0 = o ∈ T (R). This defines a neigh-

borhood Û of the origin ô in T (R̂) such that Û is embedded in U by the inclusion

T (R̂) ↪→ T (R). Recall that, for the elliptic modular transformation γ = [g]∗ ∈
Mod(R), the Teichmüller space T (R̂) is identified with the fixed point locus Fix(γ)
in T (R). The mapping class [g] has a conformal representative on the Riemann
surface Rp corresponding to any p ∈ Fix(γ).

We give a deformation of R̂ within Û to find a point p ∈ U ∩ Fix(γ) in T (R)

having a suitable property. Let ĉ be the simple closed geodesic on R̂, which is
the injective image of c under the projection R → R̂. In case (a), by arguments
similar to those given in the proof of Lemma 10.3, we have p ∈ U ∩ Fix(γ) such
that log ℓp(c) is minimal and isolated in LS(p) by decreasing the length of ĉ. In
case (b), we use the arguments for Lemma 10.4 to make log ℓp(c) isolated in LS(p)
by sweeping out all nearby lengths of simple closed geodesics. In both these cases,
we have the isolated point log ℓp(c) in LS(p) modulo multiplicity by ⟨g⟩.

We apply the following lemma to this situation.

Lemma 12.5. Let [g] ∈ MCGp(R) be a conformal mapping class at p ∈ T (R), and
assume that the length spectrum LS(p) has an isolated point of infinite multiplicity
owing to mutually disjoint simple closed geodesics cn = g−n(c) for all n ∈ Z. Then,
there exists a neighborhood V of p such that every conformal mapping class [h] ∈
MCGp′(R) of infinite order at p′ ∈ V acts on the family {cn}n∈Z as a translation,
i.e., there is some k ∈ Z− {0} such that h(cn) ∼ cn+k for every n ∈ Z.

Proof. By contrast, suppose that there is no such neighborhood of p. Then, there
are p′ ∈ T (R) arbitrarily close to p and [h] ∈ MCGp′(R) of infinite order such
that [h] does not act on {cn}n∈Z as a translation. Since p and p′ are close, [h] is
realized on Rp as a quasiconformal automorphism with sufficiently small dilatation.
Then, [h] must give a permutation on the family {cn} because {log ℓp(cn)} are
isolated in LS(p) and Proposition 3.1 makes it impossible for such a quasiconformal
automorphism to send cn to a simple closed curve different from {cn}n∈Z by jumping
the spectral gap. On the other hand, [h] is not a translation by assumption, nor
is it an involution of the form h(cn) ∼ c−n+k for some k ∈ Z. Indeed, if so,
h2(cn) ∼ cn and the conformal mapping class [h2] would keep each simple closed
geodesic cn invariant. This is possible only if [h] is of finite order, which violates
the assumption.

If [h] give a permutation on {cn} but it is neither a translation nor an invo-
lution, then there must be consecutive pairs cn and cn+1 such that their images
h(cn) and h(cn+1) are not consecutive. Then, we see that the distance between
the geodesic realizations of cn and cn+1 on Rp is strictly smaller than the distance
between the geodesic realizations of h(cn) and h(cn+1) on Rp. To see this claim,
we consider the lifts of {cn} to the universal cover D of Rp and their intersection
or shortest connection with the axis corresponding to [g]. If the lifts of {cn} inter-
sect the axis, the claim is clear; otherwise, hyperbolic trigonometry on right-angled
hexagons yields the claim. However, this situation is impossible for the quasicon-
formal automorphism realizing [h] with sufficiently small dilatation, which can be
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seen from Proposition 3.2. Thus, we have reached a contradiction and the proof is
complete. □

The proof of Theorem 12.2 also requires the following fact, which has been used
in [13] to find a generic limit point of an infinite elliptic cyclic subgroup Γ ⊂ Mod(R)

that does not lie on Λ∞(Γ) for a particular Riemann surface R.

Proposition 12.6. Consider the Banach space ℓ∞ of all bilateral infinite sequences
of real numbers with supremum norm, i.e.,

ℓ∞ = {ξ = (ξn)n∈Z | ∥ξ∥∞ = sup |ξn| <∞}.

Let σ : ℓ∞ → ℓ∞ be a shift operator defined by (ξn) 7→ (ξn+1). Then, there exists
an element ξ = (ξn) ∈ ℓ∞ with 0 ≤ ξn ≤ 1 for all n ∈ Z and with ξ0 = 0 that
satisfies the following properties:

(1) there exists a subsequence {k(j)}j∈N ⊂ Z such that ∥σk(j)(ξ)− ξ∥∞ → 0 as
j → ∞;

(2) for every k ∈ Z− {0}, there exists an integer m ∈ Z such that ξmk ≥ 1/2.

Proof of Theorem 12.2 continued. For the given neighborhood U of p0 = o ∈ T (R)
and the selected point p = [f ] ∈ U , we choose a neighborhood V of p as in Lemma
12.5, satisfying V ⊂ U . We will find a point q in V that belongs to Λ0(Γ) but not

to Λ∞(Γ).
Take the canonical collar A∗(f(c)) of the simple closed geodesic f(c) on Rp =

f(R) whose angle is ψ = 2arctan(sinhω) for sinhω = 1/ sinh(ℓp(c)/2). We do
this for each cn = g−n(c) (n ∈ Z) and have the canonical collars A∗(f(cn)), which
are mutually disjoint by the collar lemma. For the element ξ = (ξn)n∈Z ∈ ℓ∞ as
in Proposition 12.6 and for a positive constant θ > 0, let χ be a quasiconformal
homeomorphism of Rp defined by the (ξnθ)-grafting with respect to cn for all n ∈ Z.
We remark that χ is conformal off the union of the canonical collars

∪
n∈ZA

∗(f(cn)).
Set q = [χ ◦ f ]. By choosing θ to be sufficiently small, we may assume that the
maximal dilatation of χ is sufficiently small for q to stay within V . We will show
that q satisfies the required properties.

We choose a subsequence {k(j)}∞j=1 as in property (1) of Proposition 12.6 and

consider the sequence {γk(j)(q)} for γ = [g]∗ ∈ Mod(R). For each j ∈ N, there exists
a quasiconformal homeomorphism between the Riemann surfaces corresponding to
q and γk(j)(q), which is obtained by linearly stretching the annuli χ(A∗(f(cn)))
for all n. It maps each annulus conformally equivalent to Aψ+ξnθ onto an annulus
Aψ+ξn+k(j)θ with the maximal dilatation

max

{
ψ + ξn+k(j)θ

ψ + ξnθ
,

ψ + ξnθ

ψ + ξn+k(j)θ

}
.

Then, the global maximal dilatation is bounded above by

ψ + θ∥σk(j)(ξ)− ξ∥∞
ψ

.

Hence, we have dT (γ
k(j)(q), q) → 0 as j → ∞. This implies that q ∈ Λ(Γ).
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Here, we will estimate the lengths ℓq(cn) from above for all n ∈ Z − {0} and
from below for n = 0. Recall that χ : Rp → Rq is given by the (ξnθ)-grafting on
each A∗(f(cn)). Then, we see from Lemma 3.5 and the subsequent remark that

ℓq(cn) ≤
π

π + ξnθ
ℓp(c0)

for n ∈ Z − {0}. On the other hand, since χ : Rp → Rq is conformal outside∪
n ̸=0A

∗(f(cn)) and its maximal dilatation is bounded above by (ψ+ θ)/ψ, Corol-

lary 3.4 yields ℓq(c0) ≥ ℓp(c0)/α, where

α =
ψ + θ

ψ
+

(
1− ψ + θ

ψ

)
2

π
arctan(sinhω)

and ω is the distance from the geodesic realization of f(c0) to
∪
n ̸=0A

∗(f(cn)),

which was assumed to be sufficiently large (where we chose the integer t), say,

arctan(sinhω) ≥ π

2
− ψ

8
.

Then, the previous inequality becomes

ℓq(c0) ≥
π

π + θ/4
ℓp(c0).

First, we will prove that q is not in the closure of Λ1
∞(Γ). Suppose that there

exists p′ ∈ Λ1
∞(Γ) in the neighborhood V , i.e., there exists some conformal mapping

class [h] ∈ MCGp′(R) of infinite order for p′ ∈ V . Then, by Lemma 12.5, [h] acts
on {cn} by h(cn) = cn+k for some k ∈ Z − {0}. By property (2) of Proposition
12.6, we know that there is some m such that ξmk ≥ 1/2. We compare the lengths
ℓq(cmk) with ℓq(c0). By the estimates obtained in the previous paragraph, we have

ℓq(c0)

ℓq(cmk)
≥ π + θ/2

π + θ/4
=: C > 1.

By Proposition 3.1, this means that the maximal dilatation of any quasiconformal
realization of the mapping class [hmk] on Rq is not less than C. In other words,
dT (q, [h

mk]∗(q)) ≥ logC. On the other hand, [hmk]∗(p
′) = p′ since [h] has a con-

formal realization on Rp′ . Hence,

2dT (q, p
′) = dT (q, p

′) + dT ([h
mk]∗(q), [h

mk]∗(p
′))

= dT (q, p
′) + dT (p

′, [hmk]∗(q))

≥ dT (q, [h
mk]∗(q)) ≥ logC,

from which we have dT (q, p
′) ≥ logC/2. This implies that no limit point p′ ∈ Λ1

∞(Γ)

can enter within the distance logC/2 of q; hence, q /∈ Λ1
∞(Γ).

Finally, we will show that q is not in the closure of Λ2
∞(Γ) either. Then, we

have q /∈ Λ∞(Γ), which completes the proof. Suppose that there exists p′ ∈ Λ2
∞(Γ)
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in the neighborhood V . Then, Rp′ has infinitely many conformal automorphisms
of finite order. By arguments similar to but easier than those of Lemma 12.5, we
see that each mapping class of this conformal automorphism should keep every cn
invariant since a conformal mapping class of finite order cannot give a translation
on the infinite family {cn}n∈Z. However, it is impossible for the infinite group of
conformal automorphisms to keep the same simple closed geodesic invariant because
it acts on Rp′ properly discontinuously. □

Proof of Theorem 12.1. We will prove that, in every neighborhood of p0 ∈ Λ∞(Γ)−
[E](Γ), there exists a limit point q ∈ Λ0(Γ) that does not belong to Λ∞(Γ). If
p0 ∈ Λ1

∞(Γ), then Theorem 12.2 verifies this claim. Actually, this theorem obviously

asserts a slightly stronger claim: if p0 ∈ Λ1
∞(Γ), then we have a limit point q /∈

Λ∞(Γ). Hence, we have only to consider the case where p0 ∈ Λ2
∞(Γ) − [E](Γ) −

Λ1
∞(Γ). This condition implies that there exists a neighborhood W of p0 that

intersects neither [E](Γ) nor Λ1
∞(Γ).

By contrast, suppose that there exists a neighborhood U of p0 ∈ Λ2
∞(Γ) such

that every limit point of Γ in U belongs to Λ∞(Γ). We may assume that U is
contained in W , which intersects neither [E](Γ) nor Λ1

∞(Γ). By the definition of

[E](Γ), we see that every limit point of Γ in U belongs to both Λ2
∞(Γ) and Λ0(Γ).

However, the following lemma shows that this is impossible. □

Lemma 12.7. Let p0 belong to Λ2
∞(Γ) for a subgroup Γ ⊂ Mod(R). Assume that

there exists a neighborhood U of p0 in T (R) such that Λ(Γ) ∩ U ⊂ Λ0(Γ). Then,

there exists a limit point q ∈ U that does not belong to Λ∞(Γ).

For the proof of this lemma, we prepare two claims, both of which are technical
(see the remark after the proof of Proposition 12.9).

Proposition 12.8. Let R be a planar Riemann surface and let G be an infinite
subgroup of Conf(R), all of whose elements are of finite order. Assume that the

orbifold R̂ = R/G is topologically infinite. Then, there exists a simple closed ge-
odesic c on R such that R − c consists of two topologically infinite subsurfaces of
R.

Proof. We choose a topologically finite geodesic subsurface Ŝ of the hyperbolic orb-
ifold R̂ with a geodesic boundary component ĉ such that the connected component
R̂′ of R̂− Ŝ having ĉ as a boundary component is topologically infinite. Note that
any connected component of the inverse image κ−1(ĉ) under the covering projec-

tion κ : R→ R̂ is also a simple closed geodesic since every element of G is of finite
order. Furthermore, we may assume that a connected component S of κ−1(Ŝ) ⊂ R
has multiple boundary components of κ−1(ĉ). Indeed, by taking a sufficiently large

Ŝ, we can make the stabilizer of S in G non-cyclic, which implies that κ−1(ĉ) ∩ S
consists of multiple connected components.

Let c be a connected component of κ−1(ĉ)∩S. Since R is planar, R− c consists
of two connected components. Let R′ be the component of R − c disjoint from S.
Since R̂′ is topologically infinite, so is R′. The other component of R − c is also
topologically infinite since it contains another component of κ−1(ĉ) ∩ S and hence

another component of κ−1(R̂′). □
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Let S#(R) be a subset of S(R) consisting of free homotopy classes of simple
closed geodesics c on R that does not divide R or that divides R into two topolog-
ically infinite subsurfaces. Then, we define the restricted length spectrum

LS#(p) = Cl { log ℓ(c) | c ∈ S#(R)}

for p ∈ T (R) as well as λ#0 (p) = inf LS#(p). For p = o, we may use LS#(R) and

λ#0 (R) instead. If R is not planar, then LS#(R) ̸= ∅. However, even if R is planar,

we can also assume that LS#(R) ̸= ∅ under the circumstances of Proposition 12.8.

Proposition 12.9. Let R be a Riemann surface with LS#(R) ̸= ∅. For a sub-

group G of Conf(R), let κ : R → R̂ be the projection onto the orbifold R̂ = R/G.
Then there exists some constant δ > 0 such that if c ∈ S#(R) satisfies ℓ(c) <

exp(λ#0 (R))+ δ, then the image κ(c) is a simple closed geodesic on R̂ (possibly, κ|c
is not injective), including the case that κ(c) is a geodesic segment connecting two
cone points of order 2.

Proof. We consider any sequence {cn}∞n=1 ⊂ S#(R) such that ℓ(cn) converges to

exp(λ#0 (R)) as n→ ∞. Suppose that ĉn = κ(cn) is a closed geodesic but not simple

on R̂. This implies that there exists some gn ∈ G such that gn(cn) and cn intersect
transversely. Moreover, the angle of the intersection is uniformly bounded away
from 0. Then, we can find a simple closed curve c′n ∈ S#(R) composed of some
portions of gn(cn) and cn whose geodesic length ℓ(c′n) is less than ℓ(cn) by a positive

constant uniformly bounded away from 0. It follows that ℓ(c′n) < exp(λ#0 (R)) for a
sufficiently large n, but this is a contradiction. Thus, we can find a desired constant
δ > 0 as in the statement. □

Remark. In general, for a non-simple closed geodesic ĉn on R̂, we cannot always
find a simple closed curve c′n as above that has a geodesic representative in its free
homotopy class. This happens when any simple closed curve in ĉn that is liftable
to a simple closed curve on R surrounds a puncture. Simple closed geodesics are
restricted to S#(R) in order to avoid this situation.

Proof of Lemma 12.7. Without loss of generality, we may assume that p0 is the
origin o ∈ T (R). Set Γ0 = StabΓ(o) and consider R̂ = R/G0 for G0 ⊂ Conf(R)

corresponding to Γ0. If R̂ is topologically finite, then the set of the lengths of all
closed geodesics that are not necessarily simple is discrete. Hence, LS(R) is discrete
modulo multiplicity by G0. In this case, we apply the following arguments for p = o.

If R̂ is topologically infinite, Propositions 12.8 and 12.9 assert that for a simple

closed geodesic c ∈ S#(R) such that log ℓ(c) is sufficiently close to λ#0 (R), the image

κ(c) is a simple closed geodesic on R̂. For a given neighborhood U of o ∈ T (R),

we consider the corresponding neighborhood Û of the origin ô ∈ T (R̂) under the

inclusion T (R̂) ↪→ T (R). Then, by lifting a quasiconformal deformation of R̂ to a
quasiconformal homeomorphism f of R, we have p = [f ] ∈ U such that log ℓp(c)

for some simple closed geodesic c is isolated in LS#(p) modulo multiplicity by
G0 ⊂ MCG(R). This is similar to the argument in the former part of the proof of
Theorem 12.2.
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Since p ∈ Λ(Γ) ∩ U , it belongs to Λ0(Γ) by assumption. Then, there exists a
sequence γn = [gn]∗ ∈ Γ such that γn(p) = pn ̸= p converges to p as n → ∞. Let
c be the simple closed geodesic on R such that the geodesic lengths ℓp(h(c)) for
all h ∈ G0 are the same but isolated from each other. Furthermore, there exist a
neighborhood U ′ ⊂ U of p and a constant ε > 0 such that the set {log ℓp′(h(c))}h∈G0

for every p′ ∈ U ′ is in the interval I(log ℓp(c), ε) that includes no other spectrum of

LS#(p′). Hence, for any sufficiently large n with pn ∈ U ′, the mapping class [gn]
keeps the set {h(c)}h∈G0

invariant. In particular, there exists some hn ∈ G0 such
that gn ◦ hn(c) ∼ c. Moreover, for γ′n = [gn ◦ hn]∗, we have γ′n(p) = pn, which
converges to p as n→ ∞. Thus, we see that a sequence of some representatives of
the mapping classes [gn ◦ hn] converge locally uniformly to a conformal mapping
class in MCGp(R) that fixes c.

Next, we consider the ϕ-grafting χf(c),ϕ with respect to f(c) on Rp and set
q = [χf(c),ϕ ◦ f ]. We choose the amount ϕ to be sufficiently small such that q ∈ U ′.
Then, we see that q ∈ Λ(Γ). Actually, γ′n(q) → q as n → ∞. Indeed, by the
above argument, there are quasiconformal automorphisms g̃n of Rp homotopic to
f ◦ gn ◦ hn ◦ f−1 that converge to a conformal automorphism g̃ ∈ Conf(Rp) locally
uniformly with the maximal dilatation K(g̃n) tending to 1 as n→ ∞, where g̃ fixes
the simple closed geodesic in the homotopy class of f(c). We may assume that
each g̃n is identical to g̃ on the canonical collar A∗(f(c)). Then, the quasiconformal
automorphisms χf(c),ϕ ◦ g̃n ◦ χ−1

f(c),ϕ of Rq are conformal on the extended collar

A∗(f(c), ϕ) and conformally conjugate to g̃n outside A∗(f(c), ϕ). This implies that
K(χf(c),ϕ ◦ g̃−1

n ◦ χ−1
f(c),ϕ) → 1, i.e., γ′n(q) → q.

Finally, we will show that q /∈ Λ∞(Γ). By Corollary 3.4 and Lemma 3.5, there
exist some constant δ > 0 and a finite subset J of G0 such that log ℓq(h(c)) −
log ℓq(c) > δ for every h ∈ G0 − J . Then, there is a neighborhood U ′′ ⊂ U ′ of
q such that ℓq′(h(c)) ̸= ℓq′(c) for every h ∈ G0 − J and for every q′ ∈ U ′′. By

contrast, suppose that q ∈ Λ∞(Γ). Then, there exists some q′ ∈ U ′′ that belongs to
Λ∞(Γ). Specifically, StabΓ(q

′) and the corresponding subgroup G′ ⊂ MCGq′(R) are
infinite. By the definition of U ′, we see that G′ keeps the set {h(c)}h∈G0 invariant.
Hence, there exists some h ∈ G0 − J and g′ ∈ G′ such that g′(c) ∼ h(c). In
particular, ℓq′(h(c)) = ℓq′(g

′(c)) = ℓq′(c). However, this contradicts the condition
that ℓq′(h(c)) ̸= ℓq′(c). □

Before concluding this section, we will consider a certain problem related to the
above arguments. Epstein [8] proved that the set O(Γ) of all points p ∈ T (R) where
StabΓ(p) is trivial for Γ ⊂ Mod(R) is residual in T (R), which means that it is the
complement of a countable union of nowhere dense subsets. In particular, O(Γ) is
dense in T (R). Let F (Γ) denote the complement of O(Γ), which is the union of
all fixed point loci for elliptic elements of Γ. However, since the number of elliptic
elements in Γ can be uncountable, these loci are not suitable for showing that O(Γ)
is residual. Instead, another locus is defined in [8] by

V(c,c′) = {p ∈ T (R) | ℓp(c) = ℓp(c
′)}

for any pair of distinct elements c and c′ in S(R), which is nowhere dense in T (R).
Here, the set I = {(c, c′)} of all these pairs is countable. Then, F (Γ) is contained
in

∪
(c,c′)∈I V(c,c′); hence, it is a countable union of nowhere dense subsets.
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We will further prove that O(Γ) contains an open dense subset in T (R), which
is equivalent to saying that F (Γ) is nowhere dense. Actually, Theorem 12.2 asserts
that Λ1

∞(Γ), which is the set of all points p ∈ T (R) where StabΓ(p) contains an
element of infinite order, is nowhere dense in Λ(Γ) and hence in T (R). Similar
arguments are applicable to the fixed points of elliptic elements of finite order,
and we can conclude the following. We include a more direct and easy proof for
completeness.

Theorem 12.10. For a subgroup Γ ⊂ Mod(R), the set F (Γ) of all fixed points of
elliptic elements of Γ is nowhere dense in T (R).

Proof. It suffices to prove the statement for Γ = Mod(R). We will show that,
in every open subset U of T (R), there exists q ∈ U that does not belong to the

closure F (Γ). By the proofs of Lemmas 10.3 and 10.4, we can find c ∈ S(R) and
q ∈ U such that log ℓq(c) is isolated in the length spectrum LS(q). Moreover, by
the above-mentioned result that O(Γ) is dense in T (R), we may assume that q is
in O(Γ).

By contrast, suppose that q ∈ F (Γ). Then, there is a sequence of points
pn ∈ F (Γ) that converges to q. Let γn = [gn]∗ be an elliptic element of Γ that
fixes pn. Since the mapping class [gn] is realized by a conformal automorphism
of the Riemann surface Rpn , it is realized by a quasiconformal automorphism of
Rq, which we denote by g̃n. The maximal dilatation of g̃n converges to 1; hence,
by Proposition 3.1, [gn] must keep c invariant for all sufficiently large n. In par-
ticular, this forces the order of [gn] to be finite and uniformly bounded. Then, a
subsequence of quasiconformal automorphisms g̃n converges to a conformal auto-
morphism g̃ uniformly on each compact subset of Rq. Since the order of [gn] is
uniformly bounded, we see that g̃ is not the identity. This implies that q /∈ O(Γ),
which is a contradiction. □

We remark that, if F (Γ) is known to be a closed set, then the statement of
Theorem 12.10 follows immediately from the fact that the complement O(Γ) is
dense in T (R). However, we cannot expect that this will always be true without
any restriction. Recall that, in Lemma 7.6, we have imposed an assumption that
the union of the fixed point loci is closed in order to prove the statement; however,
if this condition were always true, we would have a solution for the existence of an
isolated limit point.

§13. The moduli space is not separable

In this section, we will prove that the topological moduli space M(R) of a topo-
logically infinite Riemann surface R is not separable, and hence, neither is the
geometric moduli space M∗(R). This is an immediate consequence of the following
stronger assertion.

Theorem 13.1. LetM(R) be the topological moduli space of a topologically infinite
Riemann surface R. Then, a countable subset Σ is nowhere dense in M(R), i.e.,
the closure Σ has no interior point.
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Corollary 13.2. The geometric moduli space M∗(R) of a topologically infinite
Riemann surface R does not satisfy the second countability axiom.

Proof. By Theorem 5.2 and Corollary 10.2, we see that the moduli space of the
stable points MΦ(R) is open and dense in M(R). Since M(R) is not separable
by Theorem 13.1, neither is MΦ(R). On the other hand, M∗(R) also contains an
open dense subset that is homeomorphic toMΦ(R). Hence, M∗(R) is not separable
either. For the metric space M∗(R), this is equivalent to saying that M∗(R) does
not satisfy the second countability axiom. □

Take an arbitrary simple closed geodesic c0 ∈ S(R) and consider the relative
Teichmüller space T c0(R) = T (R)/Modc0(R) with respect to c0, which has been
defined in Section 5. We prove Theorem 13.1 by lifting the countable set Σ to
T c0(R).

Theorem 13.3. For a topologically infinite Riemann surface R, every countable
set in T c0(R) is nowhere dense. In particular, T c0(R) is not separable, which
is equivalent to saying that the metric space T c0(R) does not satisfy the second
countability axiom.

Note that Theorem 13.3 is evident when R satisfies the bounded geometry con-
dition because, by Theorems 5.1 and 5.3, Modc0(R) acts discontinuously on the
non-separable space T (R) in this case.

Proof of Theorem 13.1. For every countable set Σ ⊂ M(R), the inverse image
π−1
c0 (Σ) under the projection

πc0 : T c0(R) = T (R)/Modc0(R) →M(R) = T (R)/Mod(R)

is a countable set. This is because Modc0(R) is of countable index in Mod(R)
by Theorem 5.1. Then, π−1

c0 (Σ) is nowhere dense by Theorem 13.3. Since πc0 is
continuous and open, Σ is also nowhere dense in M(R). □

In the remainder of this section, we will prove Theorem 13.3 by constructing a
continuous surjective map from a certain subset in any open set of T c0(R) onto
a non-separable space. This function is defined by the hyperbolic lengths of an
appropriate choice of infinitely many simple closed geodesics on R.

Definition. The multiple length spectrum L̃S(R, c0) for a hyperbolic Riemann
surface R with respect to c0 ∈ S(R) is a set of pairs (log ℓ(c), log ρ(c)) ∈ R2 for
all c ∈ S(R) with c ∩ c0 = ∅ respecting multiplicity, where ρ(c) is the hyperbolic
distance between the simple closed geodesics c and c0 on R. We set

Sc0(R) = {c ∈ S(R) | c ∩ c0 = ∅}.

For each p = [f ] in the Teichmüller space T (R), let ρp(c) be the hyperbolic
distance between the simple closed geodesics f(c) and f(c0) on f(R). Then,
the multiple length function L•(c) : T (R) → R2 for c ∈ Sc0(R) is defined by
Lp(c) = (log ℓp(c), log ρp(c)), which is well defined for the Teichmüller class p. The
multiple length spectrum at p ∈ T (R) is defined by

L̃S(p, c0) = {Lp(c) ∈ R2 | c ∈ Sc0(R)}.
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Proposition 13.4. (1) The multiple length spectrum L̃S(R, c0) is always discrete
in R2 with at most finite multiplicity. (2) If p and q in T (R) are equivalent under

Modc0(R), then L̃S(p, c0) = L̃S(q, c0). In other words, the multiple length spectrum
with respect to c0 is an invariant for an element of the relative Teichmüller space
T c0(R).

Proof. The first assertion follows from the fact that the number of simple closed
geodesics of bounded lengths intersecting a compact subset of R is finite. The
second assertion is obvious. □

We provide the supremum norm ∥·∥∞ for R2. Recall that the constant b = b(K)
in Proposition 3.2 depends on K = edT (p,q) for a quasiconformal homeomorphism
f : Rp → Rq and satisfies b(edT (p,q)) → 0 as dT (p, q) → 0. Then, we have the
following estimate on the multiple length function.

Lemma 13.5. The multiple length function for c ∈ Sc0(R) satisfies

∥Lp(c)− Lq(c)∥∞ ≤ dT (p, q) +
b(edT (p,q))

ω(p, q)
,

where ω is a positive continuous symmetric function on T (R) × T (R) invariant
under Modc0(R)×Modc0(R) and locally uniformly bounded away from 0.

Proof. By Proposition 3.1, the first coordinate of L•(c) satisfies

| log ℓp(c)− log ℓq(c)| ≤ dT (p, q).

For the estimate of the second coordinate, we apply Proposition 3.2 to c0 and
c ∈ Sc0(R) and obtain

ρq(c)

ρp(c)
≤ edT (p,q) +

b(edT (p,q))

ρp(c)
≤ edT (p,q)

{
1 +

b(edT (p,q))

ρp(c)

}
.

Hence,

log ρq(c)− log ρp(c) ≤ dT (p, q) +
b(edT (p,q))

ρp(c)
.

The other inequality obtained by exchanging the roles of p and q is also valid. Here,
ρp(c) and ρq(c) are not less than the widths ω(p) and ω(q) of the canonical collars
for the geodesic realization of c0 on Rp and Rq, respectively. Note that, since every
element of MCGc0(R) preserves c0, these values are invariant under Modc0(R). By
setting ω(p, q) = min{ω(p), ω(q)}, we have

| log ρp(c)− log ρq(c)| ≤ dT (p, q) +
b(edT (p,q))

ω(p, q)
.

Therefore, the required estimate immediately follows from these inequalities. □
For any infinite discrete subsets P and Q of R2 counting multiplicity, the Haus-

dorff distance between P and Q is given by

H(P,Q) = inf
j

sup{ ∥j(z)− z∥∞ | z ∈ P, j : P → Q},
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where the infimum is taken over all bijections j : P → Q. For any points p̂ and q̂
in T c0(R), the pseudo-distance on T c0(R) is defined by

dH(p̂, q̂) = H(L̃S(p, c0), L̃S(q, c0)),

where p and q are any points of T (R) that are mapped to p̂ and q̂, respectively, by
the projection π : T (R) → T c0(R).

As a consequence of Lemma 13.5, we see that the pseudo-distance dH is continu-

ous with respect to the quotient Teichmüller distance d̂ on T c0(R). More precisely,
we have the following.

Corollary 13.6. There exists a continuous symmetric function β̂ ≥ 0 on T c0(R)×
T c0(R) such that dH(p̂, q̂) ≤ β̂(p̂, q̂) for any points p̂ and q̂ in T c0(R) and β̂(p̂, q̂) = 0
precisely when p̂ = q̂.

Proof. For p̂ and q̂ in T c0(R), define

β̂(p̂, q̂) = inf
p,q

{
dT (p, q) +

b(edT (p,q))

ω(p, q)

}
= d̂(p̂, q̂) +

b(ed̂(p̂,q̂))

ω̂(p̂, q̂)
,

where the infimum is taken over all p and q satisfying π(p) = p̂ and π(q) = q̂ for the
projection π : T (R) → T c0(R). Here, ω̂(p̂, q̂) > 0 is well defined from the function
ω(p, q) in Lemma 13.5 owing to its invariance under Modc0(R)×Modc0(R). Then,

β̂ satisfies the required properties. □

Let U(r) be an open ball of radius r > 0 in T (R) centered at the origin o. We
fix the radius r > 0 to be sufficiently small such that

r +
b(er)

infp∈U(r) ω(p, o)
<

log 2

2
− ϵ0

for the constant b and the function ω in Lemma 13.5 and for some constant ϵ0 > 0.
Next, we will choose a sequence of simple closed geodesics on R whose lengths

can parameterize a slice in the relative Teichmüller space T c0(R). An X-piece X(c)
with a core geodesic c ∈ Sc0(R) is a union of two pairs of pants that have a geodesic
boundary c in common but no other intersection. Every X-piece has four geodesic
boundary components. In a topologically infinite Riemann surface R, we take a
sequence of X-pieces {X(ci)}∞i=1 satisfying the following properties:

(1) X(ci) are mutually disjoint and disjoint from c0;
(2) X(ci) escape to infinity in R, i.e., for any compact subsurface S with bound-

ary in R, the number of X(ci) that intersect S is finite.

Actually, we can always take such a sequence of X-pieces in any topologically
infinite Riemann surface R. Indeed, we have only to find a topologically infinite
geodesic subsurface R0 including c0 such that the complement R−R0 has infinitely
many (topologically finite or infinite) connected components Ri containing X(ci)
for i ∈ N. In this situation, it is clear that dh(Ri, c0) → ∞ as i→ ∞, which implies
that X(ci) escape to infinity in R.
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For each i, let c′i denote the closest geodesic boundary component of X(ci) to
c0. Further, set

Mi := max{dh(x, c0) | x ∈ X(ci)} (> ρ(c′i)).

Since ρ(c′i) → ∞ as i→ ∞, we may assume that ρ(c′j) ≥ 2Mi + ℓ(ci) for any i < j
by passing to a subsequence if necessary.

We give a specific deformation of the hyperbolic structure on R restricted to
{X(ci)}∞i=1. For an infinite sequence of real numbers (ξ1, ξ2, . . . ) ∈ R∞, we consider
a locally quasiconformal homeomorphism f of R onto another Riemann surface R′

satisfying the following properties:

(1) f is isometric (conformal) outside X(ci) for all i and no twist is given along
each geodesic boundary component of X(ci);

(2) the image f(ci) itself is a simple closed geodesic on R′ and its length satisfies
log ℓ(f(ci)) = ξi for each i;

(3) f has a constant derivative on each ci with respect to the geodesic length
parameter and no twist is given along ci.

Let ℓ̃i be the maximum of the lengths of the four geodesic boundary components
of X(ci) and ci. Then, as has been proved by Bishop [4], the maximal dilatation
of the above quasiconformal homeomorphism f restricted to each X(ci) can be
estimated as

K(f |X(ci)) ≤ 1 + C| log ℓ(f(ci))− log ℓ(ci)|

if | log ℓ(f(ci)) − log ℓ(ci)| ≤ 2, where C = C(ℓ̃i) > 0 is a constant depending only

on ℓ̃i. Hence, for a given dilatation constant K = er, there exists an open interval
Ii ⊂ R centered at log ℓ(ci) for each i such that, if ξi ∈ Ii for all i, then the above
map f satisfying log ℓ(f(ci)) = ξi is globally K-quasiconformal.

Thus, we have a function

ϕ :
∞∏
i=1

Ii (⊂ R∞) → U(r) (⊂ T (R))

sending (ξ1, ξ2, . . . ) to the Teichmüller class [f ] of f defined as above. This function
ϕ is clearly injective. Moreover, it is real-analytic as a function of a finite number
of variables with the other coordinates fixed. Furthermore, for every c ∈ S(R), take
the length function ℓ•(c) : T (R) → R defined by ℓp(c) for p ∈ T (R) and consider
the composition with ϕ. Then, ℓ•(c) ◦ ϕ :

∏∞
i=1Ii → R is also real-analytic as a

function of a finite number of variables.
For every c ∈ Sc0(R), let E(c) be the ϵ0-neighborhood of the range of the multiple

length spectrum {Lp(c) | p ∈ U(r)} in (R2, ∥ · ∥∞). Then, by Lemma 13.5 and the
definition of r, the radius of E(c) at Lo(c) has a upper bound less than (log 2)/2

independent of c. Since L̃S(R, c0) = L̃S(o, c0) is discrete by Proposition 13.4, for
each i, there exist only finitely many c ∈ Sc0(R) such that E(c) ∩ E(ci) ̸= ∅.

Proposition 13.7. For distinct integers i ̸= j, if a simple closed geodesic c ∈
Sc0(R) intersects X(cj), then E(c) ∩ E(ci) = ∅.
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Proof. If c ∩X(cj) ̸= ∅, then

ρ(c′j)− ℓ(c)/2 ≤ ρ(c) ≤Mj

is satisfied. By contrast, suppose that E(c) ∩ E(ci) ̸= ∅. Then, since the radii of
E(c) and E(ci) are smaller than (log 2)/2, we have ∥Lo(c)−Lo(ci)∥∞ < log 2. This
implies that

1

2
ℓ(ci) < ℓ(c) < 2ℓ(ci);

1

2
ρ(ci) < ρ(c) < 2ρ(ci).

Hence, we have the following two estimates:

ρ(c′j) ≤ ρ(c) + ℓ(c)/2 < 2ρ(ci) + ℓ(ci);

ρ(c′i) ≤ ρ(ci) < 2ρ(c) ≤ 2Mj .

However, when i < j, the first inequality violates the condition ρ(c′j) ≥ 2Mi+ ℓ(ci)
for the distribution of the X-pieces since ρ(ci) ≤ Mi. When i > j, the second
inequality also violates the same condition after exchanging the roles of i and j. □

For each i ∈ N, the composition log ℓ•(ci) ◦ ϕ :
∏∞
i=1 Ii → R is nothing but

the i-th coordinate function (ξ1, ξ2, . . . ) → ξi. In other words, this is the identity
restricted to the i-th coordinate. For c ∈ Sc0(R) with E(c) ∩ E(ci) ̸= ∅, we also
consider the composition log ℓ•(c) ◦ ϕ :

∏∞
i=1 Ii → R. By Proposition 13.7, such a

simple closed geodesic c does not intersect X(cj) for j ̸= i. Hence, this function also
depends only on the i-th coordinate ξi; thus, a real-analytic function hc,i : Ii → R
is induced.

Proposition 13.8. For each c (̸= ci) ∈ Sc0(R) with the property E(c)∩E(ci) ̸= ∅,
the set of points ξ satisfying hc,i(ξ) = ξ is discrete in Ii ⊂ R.

Proof. If a simple closed geodesic c does not intersect X(ci), then hc,i(ξ) is constant
and the claim is obvious. Suppose that c (̸= ci) intersects X(ci). By elementary
hyperbolic geometry, we see that hc,i(ξ) is not the identity. Hence, the set of points
ξ satisfying hc,i(ξ) = ξ should be discrete by the theorem of identity. □

Finally, by choosing an open interval Ji in Ii to be sufficiently small, we have an
appropriate parameter space for a subset of T c0(R).

Lemma 13.9. There exists an open interval Ji ⊂ Ii for each i ∈ N that satisfies
the following properties:

(1) The composition of ϕ :
∏∞
i=1 Ji → U(r) and π : T (R) → T c0(R) is injective;

(2) By setting W = ϕ(
∏∞
i=1 Ji), the inverse function Ξ : π(W ) →

∏∞
i=1 Ji

of π ◦ ϕ is continuous with respect to the uniform topology defined by the
supremum norm ∥Ξ∥∞ = supi ξi for Ξ = (ξ1, ξ2, . . . ).

Proof. For each i ∈ N, the number of c ∈ Sc0(R) satisfying E(c) ∩ E(ci) ̸= ∅
is finite. Hence, by Proposition 13.8, there exist a constant ϵi > 0 and an open
interval Ji ⊂ Ii such that |hc,i(ξ) − ξ| ≥ 2ϵi for every ξ ∈ Ji and for every c ̸= ci
with E(c) ∩ E(ci) ̸= ∅. Furthermore, by taking the interval Ji to be sufficiently
small for each i ∈ N, we can make it satisfy |Ji| ≤ min{2ϵ0, ϵi}.
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For any points Ξ = (ξ1, ξ2, . . . ) and Ξ′ = (ξ′1, ξ
′
2, . . . ) in

∏∞
i=1 Ji, consider the

images p = ϕ(Ξ) and p′ = ϕ(Ξ′) in W ⊂ U(r). Then, we see that

∥Lp(ci)− Lp′(ci)∥ ≥ | log ℓp(ci)− log ℓp′(ci)| = |ξi − ξ′i|

for each i. We will show that Lp(ci) is away from L̃S(p′, c0) (or Lp′(ci) is away from

L̃S(p, c0)).
By the definition of the neighborhood E, every c ∈ Sc0(R) with E(c)∩E(ci) = ∅

satisfies ∥Lq(ci)− Lq′(c)∥ ≥ 2ϵ0 for any q, q′ ∈ U(r). Hence,

∥Lp(ci)− Lp′(c)∥ ≥ 2ϵ0 ≥ |Ji| ≥ |ξi − ξ′i|.

On the other hand, every c ( ̸= ci) ∈ Sc0(R) with E(c) ∩ E(ci) ̸= ∅ satisfies

| log ℓp′(c)− log ℓp′(ci)| = |hc,i(ξ′i)− ξ′i| ≥ 2ϵi

for p′ in W . Hence, in this case, we have

∥Lp(ci)− Lp′(c)∥ ≥ | log ℓp(ci)− log ℓp′(c)|
≥ | log ℓp′(c)− log ℓp′(ci)| − | log ℓp(ci)− log ℓp′(ci)|
≥ 2ϵi − |ξi − ξ′i| ≥ |ξi − ξ′i|.

From these estimates, we see that the distance from Lp(ci) to L̃S(p
′, c0) is not less

than |ξi − ξ′i| for each i ∈ N. Thus, the Hausdorff distance H(L̃S(p, c0), L̃S(p
′, c0))

is bounded from below by |ξi − ξ′i|. By taking the supremum over all i, we have

dH(p̂, p̂′) = H(L̃S(p, c0), L̃S(p
′, c0)) ≥ ∥Ξ− Ξ′∥∞

for p̂ = π(p) and p̂′ = π(p′) in π(W ) ⊂ T c0(R). This implies that the function π ◦ϕ
is injective on

∏∞
i=1 Ji and the projection π is injective on W .

Consider the inverse function Ξ = (π ◦ ϕ)−1 on π(W ) ⊂ T c0(R). The above
estimate implies that ∥Ξ(p̂)−Ξ(p̂′)∥∞ → 0 as dH(p̂, p̂′) → 0. Since dH is continuous

with respect to d̂ by Corollary 13.6, this is also true when d̂(p̂, p̂′) → 0, i.e., Ξ is
continuous on π(W ). □

Using this continuous and surjective map Ξ : π(W ) →
∏∞
i=1 Ji, we now complete

the proof of Theorem 13.3. Note that it is easy to see that
∏∞
i=1 Ji is not separable

in the uniform topology.

Proof of Theorem 13.3. Suppose that the closure of a countable subset {p̂n}n∈N
of T c0(R) contains an open subset V . Without loss of generality, we may assume
that π(o) ∈ V . By replacing the radius r with a smaller one, we may assume that
π(U(r)) ⊂ V . Hence, the set π(W ) of Lemma 13.9 is contained in V .

For each n ∈ N, we take a point p̂′n ∈ π(W ) such that p̂′n = p̂n if p̂n ∈ π(W ) and

d̂(p̂n, p̂
′
n) < inf

p̂∈π(W )
d̂(p̂n, p̂) +

1

n



52 KATSUHIKO MATSUZAKI

otherwise. Then, we see that π(W ) is contained in the closure of the countable set

{p̂′n}n∈N. Indeed, if not, there is a point q̂ ∈ π(W ) such that an open ball V (q̂, 3ϵ)
with center q̂ and radius 3ϵ for some ϵ > 0 contains no p̂′n. On the other hand, there

is some p̂n in V (q̂, ϵ) with 1/n < ϵ because q̂ belongs to {p̂n}−{p̂n}. However, this
contradicts the way of taking p̂′n for this p̂n.

Consider a countable subset {Ξ(p̂′n)}n∈N ⊂
∏∞
i=1 Ji. Since {p̂′n} is dense in π(W )

and Ξ : π(W ) →
∏∞
i=1 Ji is continuous and surjective with respect to the uniform

topology by Lemma 13.9, {Ξ(p̂′n)} is dense in
∏∞
i=1 Ji. However, this contradicts

the fact that
∏∞
i=1 Ji is not separable and thus completes the proof of Theorem

13.3. □

§14. The moduli space of the stable points

In this section, we consider the metric completion of the moduli space of the
stable points MΦ(R) = Φ(Mod(R))/Mod(R). Here, the completion respects the
inner distance diM on MΦ(R) induced from the pseudo-distance dM on the topolog-
ical moduli space M(R) = T (R)/Mod(R). In other words, the distance diM (σ, τ)
between σ and τ in MΦ(R) is given by the infimum of the lengths of all paths in
MΦ(R) measured by dM that connect σ and τ .

The restriction of dM to MΦ(R) becomes a distance and it clearly satisfies the
inequality dM ≤ diM . On the other hand, Theorem 11.1 yields a converse estimate
as in the following theorem. It turns out that the completions by dM and diM are
homeomorphic. We have seen that the stable points are generic in T (R) in the sense
that Φ(Mod(R)) is an open, dense, and connected set. The fact that dM and diM
are comparable on MΦ(R) also reflects a stronger genericity of the stable points.

Theorem 14.1. For every bounded subset V in M(R), there exists a constant C
depending on V such that diM (τ1, τ2) ≤ CdM (τ1, τ2) for any τ1 and τ2 in V ∩MΦ(R).

Proof. Let r0 be the diameter of V . Choose p ∈ T (R) such that π(p) belongs to V
under the projection π : T (R) →M(R). Then, for an arbitrary ϵ > 0, an open ball
U(p, r0 + ϵ) with center p and radius r0 + ϵ in T (R) covers V by the projection π.
Hence, there exists q1 ∈ U(p, r0 + ϵ) ∩ Φ(Γ) for Γ = Mod(R) such that π(q1) = τ1.
Then, since dM (τ1, τ2) ≤ r0, there exists q2 ∈ Φ(Γ) such that π(q2) = τ2 and
dT (q1, q2) < dM (τ1, τ2) + ϵ (≤ r0 + ϵ).

By Theorem 11.1, there exists a constant C depending on p and r = r0 + ϵ
such that q1 and q2 can be connected by a path in Φ(Γ) whose length is less than
CdT (q1, q2). Then, the projection of this path on MΦ(R) connects τ1 and τ2, and
its length is less than C{dM (τ1, τ2) + ϵ}. Since ϵ can be arbitrarily small, this
implies that diM (τ1, τ2) ≤ CdM (τ1, τ2). The constant C depends only on the subset
V because p and r are determined by V . □

Corollary 14.2. The metric completions MΦ(R)
diM

and MΦ(R)
dM

of MΦ(R) with
respect to diM and dM , respectively, are homeomorphic.

Remark. From the proof of Theorem 11.1, we see that, if R does not satisfy the
lower boundedness condition, then we can choose a uniform constant C in Theorem

14.1. Hence, in this case, there is a bi-Lipschitz homeomorphism betweenMΦ(R)
diM

and MΦ(R)
dM

. We expect that this is always the case.
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LetM∗(R) = T (R)//Mod(R) be the geometric moduli space with the projection
π̄ : M(R) → M∗(R). As will be seen in the next theorem, the restriction of

π̄ to MΦ(R) extends continuously to the completion MΦ(R)
dM

, which defines an
isometry onto M∗(R).

Theorem 14.3. There exists a bijective isometry

ι :MΦ(R)
dM →M∗(R)

that extends π̄|MΦ(R) :MΦ(R) →M∗(R).

Proof. Let σ̃ be an element of MΦ(R)
dM

that is represented by a Cauchy sequence
{σn}∞n=1 in MΦ(R). It converges to a point σ ∈ M(R). Choose another rep-
resentative {σ′

n}∞n=1 of σ̃. Then, it also converges to another point σ′ ∈ M(R).
Since dM (σn, σ

′
n) → 0 as n → ∞, we see that dM (σ, σ′) = 0. This implies that

π̄(σ) = π̄(σ′) under the projection π̄ : M(R) → M∗(R). Denoting this element by

s, we have a well-defined continuous map ι :MΦ(R)
dM →M∗(R) by the correspon-

dence σ̃ 7→ s.
The surjectivity of ι is seen from the fact that MΦ(R) is dense in M(R), which

immediately follows from Corollary 10.2. The injectivity of ι is easily seen. Indeed,

for any distinct elements σ̃ and σ̃′ of MΦ(R)
dM

, the Cauchy sequences {σn}∞n=1

and {σ′
n}∞n=1 representing σ̃ and σ̃′, respectively, satisfy dM (σn, σ

′
n) ̸→ 0 (n→ ∞).

Thus, dM (σ, σ′) ̸= 0 for their limits σ and σ′ in M(R). This implies that π̄(σ) ̸=
π̄(σ′) in M∗(R).

It is clear that the restriction of ι to MΦ(R) is nothing but π̄|MΦ(R). Since
π̄|MΦ(R) is isometric, the extension ι is also isometric by the definition of the distance

on the metric completion MΦ(R)
dM

. □

Corollary 14.4. If R satisfies the bounded geometry condition, then the geometric

moduli spaceM∗(R) is isometric to the completionMΩ(R)
dM

of the complex Banach
orbifold MΩ(R).

By a general theory, it is known that the complete metric spaceM∗(R) is isomet-
ric to the locus of zeros of some holomorphic map between complex Banach spaces,
and in particular, it has the structure of a Banach analytic space (see Pestov [29]).

Finally, we conclude this paper by raising a question on more concrete charac-
terizations of an element of M∗(R).

Definition. A geometric invariant of the moduli is a Mod(R)-invariant continuous
map η : T (R) → Y to a metric space Y .

For example, let Y = C(R) be the family of all closed subsets in R equipped
with the Hausdorff distance. Then, the map T (R) → C(R) defined by p 7→ LS(p)
satisfies the above conditions. In other words, the length spectrum is a geometric
invariant of the moduli.

The following proposition asserts that the geometric moduli space M∗(R) is the
universal space for the geometric invariants.
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Proposition 14.5. For every geometric invariant η : T (R) → Y , there exists a
continuous map η̃ : M∗(R) → Y satisfying η = η̃ ◦ πM∗ , where πM∗ : T (R) →
M∗(R) = T (R)//Mod(R) is the projection by the closure equivalence.

Proof. For every s ∈ M∗(R), take any p ∈ T (R) such that πM∗(p) = s and define
η̃(s) to be η(p). This is well defined. Indeed, if we take another q ∈ T (R) such
that πM∗(q) = s, then q is in the closure of the orbit of p under Mod(R). Since η
is invariant under Mod(R), this implies that η(q) is in the closure of the point set
{η(p)}. Since Y is a metric space, this implies that η(q) = η(p). Once η̃ is defined
in this manner, the condition η = η̃ ◦ πM∗ is clearly satisfied. □

We propose the problem of finding a better geometric invariant of the moduli,
which will give an interpretation for an element of our moduli space M∗(R).
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