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Abstract. A domain in the plane obtained by removing all integer lattice
points admits the hyperbolic metric, which is the rank 2 abelian cover
of the once-punctured square tours. We compare the hyperbolic metric
of this domain with a scaled Euclidean metric in the complement of
the cusp neighborhoods. They are quasi-isometric. We investigate the
best possible quasi-isometry constant relying on numerical experiment
by computer.
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1. Euclidean metric vs. hyperbolic metric

In this note, we consider metrics on a planar domain

Ω = C − Z × Z.

Take the square torus T = C/〈z 7→ z +1, z 7→ z + i〉 and remove the point [0]
from T to make a once-punctured torus T ∗. It admits a complete hyperbolic
metric by the uniformization theorem. The universal cover C → T with the
deck transformation group Z × Z induces an Abelian cover π : Ω → T ∗.
The hyperbolic metric on Ω is defined by the pull-back of that on T ∗. The
Euclidean metric on Ω is the restriction of the Euclidean metric on C with
scaling (defined later).

We compare these two metrics on the complement of the cusp neigh-
borhoods. The hyperbolic metric gets much larger near to the punctures and
there is no comparison there. For a given open neighborhood A of T ∗, set

T ∗
0 := T ∗ − A; Ω0 := Ω − π−1(A).

This work was supported by JSPS KAKENHI 25287021.



2 Katsuhiko Matsuzaki

The hyperbolic metric and the Euclidean metric on T ∗
0 are comparable (bi-

Lipschitz) since T ∗
0 is compact, and so are on the covering space Ω0. Hence

the inner distances induced by the integration of these metrics along the
paths in Ω0 are also comparable. However, the distances we are interested in
are just the restriction of the hyperbolic and the Euclidean distances on Ω
to Ω0.

2. A problem on the optimal quasi-isometry constant

We denote the hyperbolic distance and the Euclidean distance on Ω by dH

and dE respectively, and use the same notation for their restriction to Ω0.

Definition 2.1. For metric spaces (X, dX) and (Y, dY ) in general, a map f :
X → Y is called a K-quasi-isometry (K ≥ 1) if there is a constant C ≥ 0
such that

1
K

(dX(x1, x2) − C) ≤ dY (f(x1), f(x2)) ≤ KdX(x1, x2) + C

for any x1, x2 ∈ X.

From the fact that any geodesic curve on (Ω, dH) connecting any two
points in Ω0 cannot go deeply into the cusp, we see the following.

Proposition 2.2. The identity map id : (Ω0, dH) → (Ω0, dE) is a K-quasi-
isometry with the constant C ≥ 0 depending on the cusp neighborhood A.

We try to find the best possible constant K in this proposition. Note
that this is independent of the choice of the cusp neighborhood A. We put the
following normalization. The Euclidean metric is scaled so that the length of
the unit interval is equal to the hyperbolic length of the simple closed geodesic
on the punctured torus T ∗ corresponding to the covering transformation z 7→
z + 1 on Ω. (This also coincides with that for z 7→ z + i by the symmetry of
the square torus.)

Due to the additive constant C, we can ignore small errors in distance
without changing the quasi-isometry constant K. Hence we do not have to
consider any two points in Ω0 for the comparison of the distances. Only the
following measurement is enough to determine K: for any coprime p, q ∈ N,
the distances between a fixed z0 ∈ Ω0 and z0 + pi + q ∈ Ω0. The Euclidean
distance is simply given by

√
p2 + q2 without scaling and the hyperbolic

distance is comparable with the hyperbolic length of the (p/q)-simple closed
geodesic on the once-punctured torus T ∗.

3. The computation of lengths of simple closed geodesics

It is known that the hyperbolic length of the (p/q)-simple closed geodesic on
T ∗, which is denoted by Length(p/q), can be computed recursively by the
trace identity from the lengths of (1/0)- and (0/1)-simple closed geodesics,
which are 2 arccosh

√
2 for the square torus. The information about how many
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times we should apply the recursive relations alternatively is represented by
the coefficients of the regular continued fraction of p/q, which is

p

q
= a0 +

1

a1 +
1

a2 +
1

· · ·
· · ·

an−1 +
1
an

= [a0, a1, a2, . . . , an−1, an].

The idea of this algorithm can be found in Mumford, Series and Wright [2,
Chapter 9]. For example, 30/13 = [2, 3, 4]. Then, in the order of

0
1

1
0−→ 1

1

1
0−→ 2

1
,

1
0

2
1−→ 3

1

2
1−→ 5

2

2
1−→ 7

3
,

2
1

7
3−→ 9

4

7
3−→ 16

7

7
3−→ 23

10

7
3−→ 30

13
,

we derive the lengths of their simple closed geodesics.
To obtain the desired estimate, we consider when the supremum of

Length(p/q)

2 arccosh
√

2 ·
√

p2 + q2

is achieved, where p, q ∈ N run over coprime integers. At first, we expected
that it should be when p/q tend to the golden ratio φ = (1 +

√
5)/2 =

[1, 1, 1, . . .] and its inverse φ−1 = [0, 1, 1, . . .].

Figure 1. Maximum of function h(t)

However, a numerical experiment tells us that this expectation is false.
As Figure 1 by Mathematica shows, the supremum 1.082085 · · · is achieved
when p/q converge to 1.62024 · · · and its inverse, which is slightly different
from the golden ratio φ = 1.61803 · · · .

We also observe the following state (Figure 2) by Mathematica besides
the fact we have mentioned above. In this note, statements of experimental
results without rigorous proof are called “Claim”.
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Figure 2. Graph of h(tan(θ)) on [−π/2, π/2] for square torus

Claim 3.1. For a rational number p/q with coprime p, q ∈ N, define a function

h(p/q) :=
Length(p/q)

2 arccosh
√

2 ·
√

p2 + q2
.

Then h satisfies the following:
1. h is bounded and extends continuously to any t ∈ R ∪ {−∞,∞};
2. the range of h is 1 ≤ h(t) < 1.08209.

By these numerical experiments, we can obtain the optimal quasi-iso-
metry constant.

Claim 3.2. There is a constant C ≥ 0 depending on the cusp neighborhood A
such that

d̃E(z1, z2) − C ≤ dH(z1, z2) < 1.08209 · d̃E(z1, z2) + C

for any z1, z2 ∈ Ω0 = Ω − π−1(A), where d̃E = (2 arccosh
√

2)dE.

4. Absolute norm and rough-isometry

We introduce a new real norm to C = R2 by using the above function h,
which is equivalent to the Euclidean norm ‖ · ‖2. We use a general result
concerning absolute norm.

For a positive continuous function ϕ : [0, π/2] → (0,∞) with ϕ(0) =
ϕ(π/2) = 1, we define

‖(x, y)‖ϕ := ‖(x, y)‖2 · ϕ(arctan (y/x))

for every non-trivial (x, y) ∈ R2 with x, y ≥ 0, and then extend it to R2 by
‖(x, y)‖ϕ = ‖(|x|, |y|)‖ϕ and ‖(0, 0)‖ϕ = 0. The following fact is known by
Bonsall and Duncan [1, Section 21, Lemma 3].
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Proposition 4.1. Under the above notation, ‖(x, y)‖ϕ gives a real norm on R2

if and only if ψ(t) = ‖(1− t, t)‖ϕ (0 ≤ t ≤ 1) is a convex continuous function
such that ψ(0) = ψ(1) = 1 and max{1 − t, t} ≤ ψ(t) ≤ 1.

Now we set ϕ(θ) = h(tan θ) by using our function h. A numerical ex-
periment by Mathematica gives the following graph (Figure 3) of ψ(t) =
‖(1 − t, t)‖ϕ, which satisfies the condition in the above proposition. Then
‖ · ‖h◦tan is a norm on R2.

Figure 3. Graph of ψ(t) = ‖(1 − t, t)‖ϕ for ϕ(θ) = h(tan θ)

If the above observation is true, we will have another claim from the
ones in the previous section.

Claim 4.2. The hyperbolic distance dH on Ω0 is rough-isometric to the dis-
tance defined by the norm (2 arccosh

√
2)‖·‖h◦tan, where rough-isometry means

K-quasi-isometry for K = 1.

5. Generalization: another example

We can consider the similar problem starting from a torus in general

T = C/〈z 7→ z + 1, z 7→ z + τ〉

for τ ∈ H. A difficulty in this case is to describe explicitly the correspon-
dence between τ and the hyperbolic structure on T ∗. Here, we only deal with
another special case: τ = (−1 +

√
3i)/2.

In this case, our function h becomes

h(t) =
Length(p/q)

2 arccosh(3/2) ·
√

p2 + q2 − pq
(t =

√
3p/(2q − p))

and its range is 1 ≤ h(t) < 1.06453 and the supremum is taken at t ≈ 0.42949,
0.74692, 8.44047 and their symmetric points (Figure 4).
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Figure 4. Graph of h(tan(θ)) on [−π/2, π/2] for equilateral torus
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