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On a hyperbolic Riemann surface R of finite area, if a holomorphic qua-
dratic differential has finite L1-norm, then it has finite hyperbolic L∞-norm,
and vice versa. Thus the identity map from the finite dimensional Banach space
of the integrable quadratic differentials on R to that of the bounded differen-
tials is a bounded linear operator. In this note, we survey a relation between
this operator norm and a geometric property of R. It indicates a kind of distor-
tion of the Riemann surface and relates to the ratio of extremal to hyperbolic
length. Moreover this observation is applicable to Riemann surfaces of infinite
type.

We begin with the definition of quadratic differential on a Riemann surface
R. A holomorphic quadratic differential ϕ is a differential expressed as ϕ(z)dz2

in a local holomorphic coordinate system such that ϕ(z) is holomorphic in
z. More precisely, if a local chart U1 in z1 and another chart U2 in z2 have
the intersection, then the expressions ϕ1(z1) in U1 and ϕ2(z2) in U2 satisfy
ϕ1(z1)(dz1/dz2)2 = ϕ2(z2) there.

In this note, a Riemann surface R is always assumed to be hyperbolic and
complete; it is uniformized as R = H/G by a torsion-free Fuchsian group G
acting on the upper half plane model of the hyperbolic plane

H = { z = (x, y) | y > 0 } , ds =
|dz|
y

.
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We consider a pull-back of a holomorphic quadratic differential on R to the
universal cover H; by analytic continuations of the local expressions of the
differential, we have a holomorphic function ϕ(z) on H that satisfies the auto-
morphic condition

ϕ(g(z))g′(z)2 = ϕ(z) for z ∈ H, g ∈ G.

In this manner, we may identify such an automorphic function with a differen-
tial on R and call it a holomorphic quadratic differential for G. Note that it
can be defined also for a Fuchsian group with torsion.

For a holomorphic quadratic differential on R, we introduce two distinct
norms. One is L1-norm, namely, the integral of the invariant form |ϕ(z)||dz|2
over R:

∥ϕ∥1 =
∫∫

R

|ϕ(z)||dz|2 .

A holomorphic quadratic differential of finite L1-norm is called integrable and
the vector subspace of integrable holomorphic quadratic differentials is denoted
by A(R). By L1-norm, A(R) is a Banach space. The other norm we introduce
is hyperbolic L∞-norm, namely, the supremum of the function ρ−2(z)|ϕ(z)|
over R, where ρ(z)|dz| is the hyperbolic metric on R:

∥ϕ∥∞ = sup
R

ρ−2(z)|ϕ(z)| .

A holomorphic quadratic differential of finite L∞-norm is called bounded and
the vector subspace of bounded holomorphic quadratic differentials is denoted
by B(R). By L∞-norm, B(R) is a Banach space. Importance of A(R) is, for
example, in the fact that it is regarded as the cotangent space at R of the
Teichmüller space. Importance of B(R) is due to the Bers embedding of the
Teichmüller space; it is realized as a bounded domain of B(R) and thus complex
structure is provided for it.

The vector space of holomorphic quadratic differentials itself should have
certain informations about the geometry and topology of Riemann surfaces.
In this note, we consider the ratio of the two norms of holomorphic quadratic
differentials . Let R = Rρ be a Riemann surface (possibly of infinite topological
type) with hyperbolic metric ρ. If A(Rρ) ⊂ B(Rρ), we see by the closed graph
theorem that the identity map ϕ 7→ ϕ is a bounded linear operator from A(Rρ)
to B(Rρ) (cf. [2]) and define the finite operator norm as

κ(ρ) = sup{ ∥ϕ∥∞ | ϕ ∈ A(Rρ), ∥ϕ∥1 = 1 } .
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If A(Rρ) ̸⊂ B(Rρ), then we set κ(ρ) = ∞.
The κ(ρ) relates to the ratio of extremal length to hyperbolic length. Let

[α] be a free homotopy class in R of a simple closed curve α not contractible
to a point nor a puncture (which is definite after a metric is given). We denote
the set of all such classes {[α]} by SR. Providing a hyperbolic metric ρ with
R, we define the hyperbolic length lρ(α) of the homotopy class of α by the
infimum of lengths of curves in [α] with respect to the hyperbolic metric ρ. On
the other hand, the extremal length of the homotopy class of α is by definition

Eρ(α) = sup
σ

(
infα∈[α]

∫
α

σ(z)|dz|
)2∫∫

Rρ
σ(z)2|dz|2

,

where the supremum is taken over all Borel measurable conformal metrics
σ(z)|dz| on Rρ.

We consider the ratio Eρ(α)/lρ(α)2. By taking the hyperbolic metric
ρ(z)|dz| as a conformal metric in the definition of the extremal length, we
immediately see that for any [α] ∈ SR,

Eρ(α)
lρ(α)2

≥ Area(Rρ)−1 .

However, the value we are interested in is the upper bound, namely,

ν(ρ) = sup{ Eρ(α)
lρ(α)2

| [α] ∈ SR } .

Moreover, we utilize
λ(ρ) = inf

[α]∈SR

lρ(α) .

We assume that if SR = ∅ then λ(ρ) = ∞.
The following theorem reveals the relation of the index κ(ρ) of holomorphic

quadratic differentials and the geometric values ν(ρ) and λ(ρ) of a Riemann
surface Rρ.

Theorem. There exist universal constants r0 and r1 such that for an
arbitrary hyperbolic Riemann surface Rρ,

1
πλ(ρ)

≤ ν(ρ) ≤ κ(ρ) ≤ max{ r0

λ(ρ)
, r1 } .
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A proof of the theorem is done by combination of the following three results.
The first one is a famous theorem proved by Jenkins and Strebel, which

says that the extremal length is attained by a conformal metric induced by some
holomorphic quadratic differential . In more detail, for a Riemann surface R
and a homotopy class [α] ∈ SR, there is a holomorphic quadratic differential
ϕ(z)dz2 such that the natural coordinate ζ(p) =

∫ z(p) √
ϕ(z)dz (p ∈ R) maps

R−{critical trajectories} onto an annulus A, and the pull-back of the Euclidean
metric |dζ| on the annulus is the conformal metric |ϕ(z)|1/2|dz| with singular-
ities on R which attains the extremal length. By this metric, the area of R is∫∫

A
|dζ|2 and the length of [α] is inf

∫
|dζ|.

Lemma 1. For an arbitrary Riemann surface Rρ and a homotopy class
[α] ∈ SR, there is a holomorphic quadratic differential ϕ(z)dz2 on Rρ such that

Eρ(α) =

(
infα∈[α]

∫
α
|ϕ| 1

2 |dz|
)2∫∫

Rρ
|ϕ||dz|2

.

Note that this is true not only for closed Riemann surfaces but for arbitrary
Riemann surfaces (cf. [9] Chapter VI).

The next one is an estimate based on the mean value theorem of analytic
functions. We can find it in Lehner [4], however we refine the multiple constant
here. Moreover we may admit parabolic and elliptic elements.

Lemma 2. There exist universal constants r0 and r1 such that any
holomorphic quadratic differential ϕ for an arbitrary Fuchsian group G satisfies,

∥ϕ∥∞ ≤ max{ r0

inf lg
, r1}∥ϕ∥1 ,

where lg is the translation length of g and the infimum is taken over all the
hyperbolic elements in G.

The above constants r0 and r1 come from the Marden-Margulis constant
µ0 = 0.131467 . . . which is the supremum of constants µ > 0 with the following
property: for an arbitrary Fuchsian group G and a hyperbolic open disk D(z, µ′)
with center z ∈ H and radius µ′ < µ, a subgroup I(D(z, µ′)) of G generated by
the elements g satisfying g(D(z, µ′)) ∩ D(z, µ′) ̸= ∅ is either cyclic or infinite
dihedral. See Yamada [10].
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Proof of Lemma 2. For z = (x, y) ∈ H, we take an Euclidean open disk
U(z, t) with the center z and the radius t = y(1 − exp(−µ0)). It is contained
in D(z, µ0). By the mean value theorem for a holomorphic function f on H,
we have

f(z) =
1

πt2

∫∫
U(z,t)

f(ζ)dξdη .

If I(D(z, µ0)) is either a hyperbolic cyclic group 〈g〉 or its Z2-extension,
then at most 8µ0/lg points in U(z, t) are equivalent under G. Thus for a
holomorphic quadratic differential ϕ for G, we see∫∫

U(z,t)

|ϕ(ζ)|dξdη ≤ 8µ0

lg
∥ϕ∥1 ,

and
y2|ϕ(z)| ≤ 8µ0

lgπ(1 − exp(−µ0))2
∥ϕ∥1 .

In case I(D(z, µ0)) is a parabolic cyclic group 〈g〉, we assume g(z) = z +1,
and then find y = Im z ≫ 2 because the distance between z and z + 1 is less
than 2µ0. A half plane { z | y > 1 } is precisely invariant under 〈g〉, and by w =
exp(2πiz), it is mapped onto a punctured disk B = {w | 0 < |w| < exp(−2π) }
which we may regard as a subdomain of H/G. By the local coordinate w, the
hyperbolic metric is represented as ρ(w)|dw| = −|dw|/|w| log |w|. We see that
an integrable holomorphic quadratic differential ϕ(w)dw2 admits at most single
pole at 0. Letting R = exp(−2π), we know |w| < R/2 for z with Im z > 2.
Thus

ρ(w)−2|ϕ(w)| = |w|(log |w|)2|wϕ(w)|

≤ C

π(R/2)2

∫∫
B

|ζϕ(ζ)|dξdη

≤ 4C

πR
∥ϕ∥1 ,

where C is the maximal value of |w|(log |w|)2 in |w| < R/2.
In case I(D(z, µ0)) is an elliptic cyclic group of order n, we can consider

an associated disk B in H/G as above, with the local coordinate w which
represents the hyperbolic metric as ρ(w)|dw| = 2|dw|/{n(|w|1− 1

n − |w|1+ 1
n )}

(the origin of B is a singular point of the metric). An integrable ϕ(w)dw2
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admits at most single pole at 0; we estimate ρ(w)−2|ϕ(w)| in the same way as
above and then we obtain that it is bounded by a constant times ∥ϕ∥1 for w
close to the origin.

Finally, if g(U(z, t)) ∩ U(z, t) = ∅, we simply have

y2|ϕ(z)| ≤ 1
π(1 − exp(−µ0))2

∫∫
U(z,t)

|ϕ(ζ)|dξdη ≤ 1
π(1 − exp(−µ0))2

∥ϕ∥1 .

Now we can determine the constants r0 and r1 from the estimates we have
obtained. ¤

The last one is the sharp estimate of the lower bound of the ratio of extremal
to hyperbolic length. Note that this is also true for arbitrary Riemann surfaces
(cf. Maskit [6]).

Lemma 3. For any [α] ∈ SR of an arbitrary hyperbolic Riemann surface
Rρ, we have

1
π

≤ Eρ(α)
lρ(α)

.

Proof. Let G be a Fuchsian group such that Rρ = H/G. By conjugation,
we may assume that G has a hyperbolic element γ(z) = cz (c = exp(lρ(α)))
which corresponds to [α]. We consider a holomorphic quadratic differential
ϕ(z)dz2 = z−2dz2 for the cyclic group Γ = 〈γ〉. The area of the annulus H/Γ
by the metric |ϕ(z)|1/2|dz| is π log c. By the relative Poincaré series operator
ΘΓ\G applied to |ϕ(z)|1/2|dz|, we get a conformal metric on H/G = Rρ which
is

σ(z)|dz| = ΘΓ\G(|ϕ(z)|1/2|dz|) :=
∑

[h]∈Γ\G

|ϕ(h(z))|1/2|h′(z)||dz| .

Then the area of Rρ by this metric is π log c and the length of α ∈ [α] is at
least

∫ c

1
|ϕ(z)|1/2|dz| = log c. By the definition of the extremal length, we see

Eρ(α) ≥ (log c)2

π log c
=

lρ(α)
π

.

Thus we obtain the above estimate. ¤
Proof of Theorem. The first inequality is known from Lemma 3, and the

third is from Lemma 2. Now we have only to show the second.
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Let ϕ ∈ A(Rρ) be the holomorphic quadratic differential with ∥ϕ∥1 =
1 which attains the extremal length Eρ(α) as in Lemma 1. Let α0 be the
hyperbolic geodesic in [α]. Then we see

Eρ(α)1/2 ≤
∫

α0

|ϕ(z)|1/2|dz| =
∫

α0

(ρ−1(z)|ϕ(z)|1/2)ρ(z)|dz|

≤ ∥ϕ∥1/2
∞

∫
α0

ρ(z)|dz| ≤ κ(ρ)1/2lρ(α) .

This means that ν(ρ) ≤ κ(ρ). ¤
There are several direct consequences from Theorem.

Corollary 1 (Neibur-Sheingorn [7]). For a hyperbolic Riemann surface
Rρ, the condition A(Rρ) ⊂ B(Rρ) (⇔ κ(ρ) < ∞) is equivalent to that λ(ρ) is
positive.

Corollary 2. For a homotopy class [α] ∈ SR of an arbitrary hyperbolic
Riemann surface Rρ,

Eρ(α) ≤ κ(ρ)lρ(α)2 .

Compare with Maskit [6]. Even when lρ(α) → ∞, the ratio is ruled by the
shortest geodesic length. This is the hyperbolic geometry.

Corollary 3. For a Riemann surface Rρ of finite area, there is a constant
r depending only on the Euler characteristic of R such that

ν(ρ) ≤ κ(ρ) ≤ r

λ(ρ)
≤ rπν(ρ) .

Note that the length of the shortest geodesic is bounded from above by a
constant depending only on the Euler characteristic for a Riemann surface of
finite area (Bers [1]).

As an application of Corollary 3, we know a relation between the Te-
ichmüller and Sorvali distances on the finite dimensional Teichmüller space.
This result was originally proved by Li Zhong [5].

Let R be a topological surface of genus g ≥ 2, and σ and τ complex struc-
tures on R. Then for the minimizing problem of dilatations of quasiconformal
mappings from Rσ to Rτ in the homotopy class of the identity, there is a unique
extremal solution f . Denoting the maximal dilatation of f by Kf , we define
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the Teichmüller distance by dT (σ, τ) = log Kf . It is known that the extremal
one is a stretch map along the foliation of a Teichmüller quadratic differential.
Further Kerchhoff [3] showed that this foliation λ maximize the ratio of the
extremal lengths Eτ (λ)/Eσ(λ) among all the measured foliations and

dT (σ, τ) = log sup
[α]∈SR

{
Eτ (α)
Eσ(α)

,
Eσ(α)
Eτ (α)

}
.

On the other hand, Thurston’s stretch map is obtained by considering
hyperbolic structures σ and τ on R. It is a solution for the minimizing problem
of the Lipschitz constants of quasi-isometric mappings from Rσ to Rτ in the
homotopy class of the identity. It exists and there is another measured foliation
λ such that the ratio lτ (λ)2/lσ(λ)2 is maximal; we define another distance on
the Teichmüller space as

dS(σ, τ) = log sup
[α]∈SR

{
lτ (α)2

lσ(α)2
,
lσ(α)2

lτ (α)2

}
.

Li Zhong called this the Sorvali distance.
By Corollary 3, we can estimate the difference of these two distances.
Another application is about the energy of a harmonic map. Let σ be

a conformal structure and τ a hyperbolic structure on R. For the homotopy
class of the identity Rσ → Rτ , there is a unique harmonic map f which takes
a stationary point of the energy functional

E(f) =
∫

Rσ

{∣∣∣∣∂f

∂x
(z)

∣∣∣∣2
τ

+
∣∣∣∣∂f

∂y
(z)

∣∣∣∣2
τ

}
σ(z)dxdy .

Minsky [7] proved that the energy of the harmonic map f is essentially
equal to sup[α]∈SR

lτ (α)2/Eσ(α) (up to an additive constant). This value can
be estimated by combination of above results, which gives a relation between
the energy of the harmonic map and the maximal dilatation of the extremal
quasiconformal map.

Corollary 4. Let σ and τ be hyperbolic structures on a surface R of
finite area. Then

λ(τ)
r

exp(dT (σ, τ)) ≤ sup
[α]∈SR

lτ (α)2

Eσ(α)
≤ Area(R) exp(dT (σ, τ)) ,



Differentials and lengths on Riemann surfaces 451

where r depends only on the Euler characteristic of R.
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