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Abstract. For an analytically infinite Riemann surface R, we consider the action
of the quasiconformal mapping class group MCG(R) on the Teichmüller space T (R),
which preserves the fibers of the projection α : T (R) → AT (R) onto the asymptotic
Teichmüller space AT (R). We prove that, if MCG(R) has a common fixed point

α(p) ∈ AT (R), then it acts discontinuously on the fiber Tp over α(p), which is a
separable subspace of T (R). This in particular implies that MCG(R) is a countable
group. This is a generalization of a fact that MCG(R) acts discontinuously on To =

T (R) for an analytically finite Riemann surface R.

§1. Introduction

The asymptotic Teichmüller space AT (R) of a Riemann surface R is a certain
quotient space of the Teichmüller space T (R). A quasiconformal homeomorphism
f of R is called asymptotically conformal if, for every ε > 0, there exists a compact
subset V of R such that the maximal dilatation K(f) of f is less than 1+ε on R−V .
Two quasiconformal homeomorphisms f1 and f2 of R are said to be asymptotically
equivalent if there exists an asymptotically conformal homeomorphism h : f1(R) →
f2(R) such that f−1

2 ◦ h ◦ f1 : R → R is homotopic to the identity relative to the
ideal boundary at infinity of R. The asymptotic Teichmüller space AT (R) is the set
of all asymptotic equivalence classes [f ]@ of quasiconformal homeomorphisms f of
R. Since a conformal homeomorphism is asymptotically conformal, the Teichmüller
equivalence, which is defined by “conformal” instead of “asymptotically conformal”,
is stronger than the asymptotic equivalence. Hence there exists a natural projection
α : T (R) → AT (R) that maps each Teichmüller equivalence class p = [f ] ∈ T (R)
to the asymptotic equivalence class α(p) = [f ]@ ∈ AT (R).

It is proved in [4] that the asymptotic Teichmüller space AT (R) has a complex
Banach manifold structure. This is the unique complex structure on AT (R) such
that the projection α : T (R) → AT (R) is holomorphic with respect to the complex
structure on T (R). It is also proved that the fiber To over the base point α(o) ∈
AT (R) is a closed submanifold of T (R), which is separable in the sense that it has
a countable dense subset. These properties are also valid for the fiber Tp over any
α(p) ∈ AT (R).
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For a quasiconformal homeomorphism f of R, the boundary dilatation H(f) is
defined by the infimum of the maximal dilatations K(f |R−V ) taken over all compact
subsets V of R. For a Teichmüller class [f ] ∈ T (R), we set

K([f ]) = inf
f∈[f ]

K(f); H([f ]) = inf
f∈[f ]

H(f).

Then H([f ]) = 1 if and only if [f ] ∈ To, which is a consequence from the fact
that To is closed. We say that [f ] is asymptotically conformal if [f ] belongs to
To. Moreover, H([f ]@) := inff∈[f ]@ H(f) is equal to H([f ]). A distance between
[f ] ∈ T (R) and the base point o = [id] is defined by d([f ], o) = 1

2 log K([f ]),
and a distance between [f ]@ ∈ AT (R) and the base point α(o) = [id]@ is defined
by d@([f ]@, α(o)) = 1

2 log H([f ]@). They canonically extend to definitions of the
distances between any two points, which become the Teichmüller distance d on
T (R) and the asymptotic Teichmüller distance d@ on AT (R).

A quasiconformal mapping class is a homotopy equivalence class [γ] of quasicon-
formal automorphisms γ of R and the quasiconformal mapping class group MCG(R)
is the group of all these mapping classes. Here the homotopy is also meant to be
relative to the ideal boundary at infinity. Every element [γ] ∈ MCG(R) induces a
biholomorphic automorphism of T (R) by [f ] 7→ [f ◦ γ−1], which is also isometric
with respect to the Teichmüller distance d. In this way, MCG(R) acts on T (R)
and a representation ι : MCG(R) → Aut(T (R)) is given. Similarly, [γ] ∈ MCG(R)
induces a biholomorphic automorphism of AT (R) by [f ]@ 7→ [f ◦ γ−1]@ (see [5,
§6.2]), which is also isometric with respect to the asymptotic Teichmüller distance
d@. Thus we have a representation ι@ : MCG(R) → Aut(AT (R)). We denote both
ι([γ]) and ι@([γ]) by the same symbol [γ]∗. The action of MCG(R) preserves the
fibers, which means that [γ]∗ ◦ α(p) = α ◦ [γ]∗(p) for every p ∈ T (R) and for every
[γ] ∈ MCG(R). For [γ] ∈ MCG(R), set

K([γ]) = inf
γ∈[γ]

K(γ); H([γ]) = inf
γ∈[γ]

H(γ),

namely, d([γ]∗(o), o) = 1
2 log K([γ]) and d@([γ]∗(α(o)), α(o)) = 1

2 log H([γ]). We say
that [γ] is asymptotically conformal if [γ] fixes α(o), that is, H([γ]) = 1.

In our previous papers [12] and [13], we first construct a Riemann surface R
such that every element of MCG(R) fixes the base point of AT (R) and then make
another Riemann surface such that every element of MCG(R) fixes every point of
AT (R). In these examples, the Riemann surfaces R have the properties that R
satisfies the divergent geometry condition defined just below and that MCG(R)
consists only of a countable number of elements.

Definition. We say that a hyperbolic Riemann surface R satisfies the divergent
geometry condition if R has no ideal boundary at infinity and if, for every L > 0,
the number of closed geodesics in R whose lengths are less than L is finite.

In this present paper, we consider the relationship between the following three
conditions mentioned above.

(1) MCG(R) has a common fixed point on AT (R);
(2) MCG(R) is countable;
(3) R satisfies the divergent geometry condition.
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The implication (2) ⇒ (3) was given in [12] and (1) ⇒ (3) was proved in [7]. In
Corollary 5.2 of this paper, we prove the implication (1) ⇒ (2). Actually, we prove
in Theorem 5.1 that, if MCG(R) has a common fixed point α(p) ∈ AT (R), then
MCG(R) acts on the fiber Tp discontinuously. The separability of Tp then implies
that MCG(R) is countable.

For an analytically finite Riemann surface R, the asymptotic Teichmüller space
AT (R) is trivial and hence the fiber To over the base point is coincident with
T (R). It is known that the mapping class group MCG(R) is finitely generated
(and hence countable) and it acts discontinuously on T (R). Therefore the above
mentioned result in this paper may be regarded as a generalization of these facts
for analytically finite Riemann surfaces.

Next we consider the stabilizer subgroup MCGα(p)(R) of α(p) ∈ AT (R) in the
quasiconformal mapping class group MCG(R) in general. We will see in Theorem
6.1 that MCGα(p)(R) is countable if the Riemann surface R satisfies a certain
bounded geometry condition opposite to the divergent geometry condition.

In Theorem 7.1, we show that the implication (2) ⇒ (1) is not always true by
giving an example of a Riemann surface that satisfies (2) but not (1). In Theorem
8.1, we show that the implication (3) ⇒ (2) is not always true by giving an example
of a Riemann surface that satisfies (3) but not (2).

The next three sections (Sections 2–4) are devoted to preliminary results for the
proofs of the theorems mentioned above. They are concerning the classification
of quasiconformal mapping classes (Section 2), an estimate of the dilatations of
twists along simple closed geodesics (Section 3) and an estimate of the norms of
the Schwarzian derivatives by the Bers projection (Section 4). Although they are
prepared for later purpose, the results themselves seem to be applicable widely.

§2. Mapping classes of divergence type

In this section, we consider several properties of a quasiconformal mapping class
of divergence type. For an analytically finite Riemann surface R, this is nothing
but a mapping class of infinite order.

Definition. We say that a quasiconformal mapping class [γ] ∈ MCG(R) is of
divergence type if the orbit {[γ]n∗ (p)} for some, hence for all, p ∈ T (R) diverges to
the point at infinity of T (R), that is, d([γ]n∗ (p), p) → ∞ as n → ∞.

In particular, if [γ] is of divergence type, then it has no fixed point in T (R), or
equivalently, the mapping class [γ] has no realization as a conformal automorphism.
For an analytically infinite Riemann surface R, there exists an example of a mapping
class [γ] ∈ MCG(R) of infinite order but not of divergence type. Concerning the
classification of the quasiconformal mapping classes, see [14].

Before stating a result in this section, we prepare notations and basic facts
on representations of mapping classes. For any quasiconformal mapping class
[γ] ∈ MCG(R) in general, we choose a representative γ : R → R, lift it to a
quasiconformal automorphism γ̃ of the unit disk ∆ against the universal cover
πR : ∆ → R = ∆/H and extend it to a quasisymmetric automorphism γ̄ of the
unit circle ∂∆. Note that γ̄ is determined up to conjugation of the elements of the
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Fuchsian group H (regarded as acting on ∂∆) and is independent of the choice of
the representative γ.

Every mapping class [γ] ∈ MCG(R) induces an outer automorphism of the fun-
damental group π1(R) ∼= H by the correspondence of β ∈ πi(R, a) to γ(β) ∈
πi(R, γ(a)). The outer automorphism is determined independently of the choices
of a representative γ ∈ [γ] or an arc connecting a and g(a) in R. This gives a
representation ι# : MCG(R) → Out(π1(R)) to the group of all outer automor-
phisms and we denote ι#([γ]) by [γ]#. A sequence of outer automorphisms [γn]#
converges to id by definition if, for every finitely generated subgroup H ′ of π1(R),
there exists n0 such that the restriction [γn]#|H′ to H ′ is the identity modulo inner
automorphisms of π1(R) for every n ≥ n0.

Proposition 2.1. Let R = ∆/H be a Riemann surface having no ideal boundary at
infinity, namely, the limit set Λ(H) of the Fuchsian group H is the whole ∂∆. Then
the following conditions are equivalent for a sequence of quasiconformal mapping
classes [γn] ∈ MCG(R).

(1) There exist quasiconformal automorphisms γn ∈ [γn] of R such that γn

converge locally uniformly to id;
(2) The outer automorphisms [γn]# converge to id;
(3) There exist quasisymmetric automorphisms γ̄n of ∂∆ corresponding to [γn]

such that γ̄n converge uniformly to id.

Proof. It is easy to see that (1) implies (2). Take any subgroup H ′ of the Fuchsian
group H ∼= π1(R) and its limit set Λ(H ′) ⊂ ∂∆. Then the condition that [γn]#|H′

is the identity modulo inner automorphisms of π1(R) is equivalent to that there is
some γ̄n satisfying γ̄n|Λ(H′) = id. Since an exhaustion of H by a sequence of finitely
generated subgroups {H ′} gives an exhaustion of Λ(H) = ∂∆ by {Λ(H ′)}, we see
that (2) implies (3). As is given in [2], the conformally barycentric extensions of
γ̄n yield quasiconformal automorphisms γn of R converging locally uniformly to id.
Hence (3) implies (1). ¤

Now we show the following theorem concerning a quasiconformal mapping class
of divergence type.

Theorem 2.2. Let [γ] ∈ MCG(R) be a quasiconformal mapping class that is not
of divergence type. Assume that there exists a non-cyclic subgroup H ′ of π1(R) such
that the restriction [γ]#|H′ is the identity modulo inner automorphisms of π1(R).
Then [γ] = [id].

Proof. We can regard H ′ as a subgroup of the Fuchsian group H ∼= π1(R). The
limit set Λ(H ′) is a closed subset of ∂∆ having more than two points. From the
assumption, we see that there exists a corresponding quasisymmetric automorphism
γ̄ of ∂∆ that fixes every point of Λ(H ′).

To prove that γ̄ = id, which is equivalent to saying that [γ] = [id], suppose to the
contrary that γ̄ ̸= id. Then the set L of points that are fixed by γ̄ is a proper closed
subset of ∂∆ containing Λ(H ′). Take any interval J in ∂∆ − L, which is invariant
under γ̄. Since γ̄|J is monotonous, for every point x ∈ J , γ̄±n(x) converge to j±
respectively as n → ∞, where j± are the end points of J . Take any y ∈ L other
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than j±. Then the ratio of the moduli of the quadrilaterals (∂∆; γ̄±n(x), j+, y, j−)
to (∂∆; x, j+, y, j−) converges to 0 or ∞ as n → ∞. This implies that the maximal
dilatations K([γn]) tend to ∞ and hence the orbit {[γ]n∗ (o)} of the base point
o ∈ T (R) diverges to the point at infinity. This contradicts the assumption that [γ]
is not of divergence type. ¤

Corollary 2.3. Let R be a Riemann surface whose fundamental group π1(R) is
non-cyclic. If a sequence of distinct mapping classes [γn] ∈ MCG(R) satisfies
[γn]# → id, then [γn] are of divergence type for all sufficiently large n.

We also note here another corollary to Theorem 2.2, which is not used later in
this paper but is of independent interest.

Corollary 2.4. Let [γ] ∈ MCG(R) be a quasiconformal mapping class that is not
of divergence type.

(1) Assume that there exists an essential subsurface W ⊂ R with a non-cyclic
fundamental group such that γ(c) is freely homotopic to c in R for each
closed curve c in W . Then [γ] = [id].

(2) Assume that there exists a non-trivial closed curve c such that γ(c) is freely
homotopic to c in R. Then [γ] is of finite order.

Proof. Statement (1) immediately follows from Theorem 2.2 if we take π1(W ) ⊂
π1(R) as the subgroup H ′.

To prove statement (2), suppose to the contrary that [γ] is of infinite order.
Since [γ] is not of divergence type, there is some bounded subset B ⊂ T (R) and
an infinite sequence {nk} ⊂ Z such that [γ]nk

∗ (o) ∈ B for every k. Then there are
representatives γk ∈ [γ]nk whose maximal dilatations are uniformly bounded and
which fix the homotopy class of c. Hence, taking a subsequence, we may assume
that γk converge locally uniformly to a quasiconformal automorphism of R.

This implies that, for a sufficiently large k, the quasiconformal mapping class
[γ−1

k ◦ γk+1] ∈ 〈[γ]〉 satisfies the assumption in statement (1). Note that, if [γ] is
not of divergence type then either is [γ]n for n ̸= 0, and vice versa. Applying (1),
we conclude that [γ]nk = [γ]nk+1 . However, this contradicts that [γ] is of infinite
order. ¤

§3. Maximal dilatation of twist

In this section, we give an estimate of the maximal dilatations of twists along
simple closed geodesics as in the following Theorem 3.1. In the former work [11],
we gave a similar estimate in the case where the twists are n-times full Dehn twists.
Although the essential idea for the proofs are the same, the assertion in the present
version is more general and in particular includes the old one. The estimate consists
of two parts: from below and from above. As we can see easily, if the simple closed
geodesic has a collar of large width, then the difference between the upper and
lower bounds becomes small.

Theorem 3.1. Let {ci}∞i=1 be a family of mutually disjoint simple closed geodesics
in a hyperbolic Riemann surface R. Assume that ci has a collar A(ci, ωi) of width



6 KATSUHIKO MATSUZAKI

ωi > 0 such that A(ci, ωi)∩A(cj , ωj) = ∅ for i ̸= j. Let [f ] be a Teichmüller class of
quasiconformal homeomorphisms f : R → R′ determined by the twists of hyperbolic
lengths ti along ci for all i. Then the maximal dilatation K([f ]) satisfies

K([f ]) ≥ sup
i∈N

[
1 +

(
max{ti − 2b(ωi), ti − ℓ(ci), 0}

π

)2
]

;

K([f ]) ≤ sup
i∈N

{
1 +

(
ti

4 arctan(sinhωi)

)2
}1/2

+
ti

4 arctan(sinhωi)

2

≤ sup
i∈N

[
1 +

ti
2 arctan(sinhωi)

]2

,

where

b(x) = log
1 + cos{arctan(sinhx)}
1 − cos{arctan(sinhx)}

.

The proof of Theorem 3.1 begins here. We represent R = H/H by a Fuchsian group
H acting on the upper half-plane H and consider the universal cover πR : H → R.
Choose an arbitrary simple closed geodesic ci from {ci}∞i=1 and denote it by c. Set
ℓ = ℓ(ci), ω = ωi and t = ti. We may assume that a connected component c̃ of
the inverse image π−1

R (c) is the imaginary axis and the corresponding hyperbolic
element of H is h(z) = eℓz.

Let A = H/〈h〉 and consider the universal cover πA : H → A and the annular
cover π′ : A → R such that πR = π′ ◦ πA. The ideal boundary at infinity of A with
respect to the hyperbolic metric consists of two components, ∂0A = R>0/〈h〉 and
∂1A = R<0/〈h〉, where R>0 and R<0 are the positive and the negative real axes
respectively. A fundamental domain {z ∈ H | 1 ≤ |z| ≤ eℓ} of 〈h〉 is mapped onto a
rectangle in the complex plane by a conformal map ζ = log(z). Then the annulus A
has the conformal coordinate ζ = (ξ, η), where ξ ∈ [0, ℓ) and η ∈ [0, π]. Hereafter,
we refer to the euclidean metric with respect to this conformal coordinate as the
euclidean metric on A. In this coordinate, ∂0A = [0, ℓ)×{0} and ∂1A = [0, ℓ)×{π}.

Consider the inverse image L ⊂ H of all the simple closed geodesics {ci}∞i=1

under πR. The complement of L in H consists of simply connected components,
each of which is bounded by complete geodesic lines and non-empty ideal boundary
on ∂H = R ∪ {∞}. Let E0 and E1 be the adjacent components of H−L facing to
each other along c̃. Both of them are invariant under the cyclic group 〈h〉.

We make a lift f̃ : H → H of some representative f ∈ [f ] so that f̃ is the identity
on ∂E0 ∩ ∂H. It is basically obtained by shifting the components of H − L other
than E0 along L by hyperbolic translation. The boundary value of f̃ on ∂H is
determined only by this shifting operation and it does not depend on the choice of
a representative of [f ]. The component E1 is invariant under 〈h〉 and it moves along
the imaginary axis c̃ by hyperbolic length t. Although E0 and E1 have geodesic
boundaries other than c̃ and the shifting operations are also carried out along them,
they do not affect the value of f̃ on ∂E0 ∩ ∂H or ∂E1 ∩ ∂H.
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Let fA : A → A be the lift of f that is the projection of f̃ onto A. Its maximal
dilatation K(fA) is equal to K(f).

Here we calculate the euclidean lengths of the intervals in ∂A spanned with the
hyperbolic geodesic lines πA(L). They are bounded from above by the length of βω

given in the following proposition.

Proposition 3.2. Let A = {(ξ, η) | ξ ∈ [0, ℓ), η ∈ [0, π]} be an annulus with the
core geodesic c of hyperbolic length ℓ. Let βω be a hyperbolic geodesic line in A
whose hyperbolic distance from c is ω > 0 and let βω be the interval in ∂A spanned
with βω. Then the euclidean length of βω with respect to the conformal coordinate
(ξ, η) is

b(ω) = log
1 + cos{arctan(sinhω)}
1 − cos{arctan(sinhω)}

,

which tends to 0 as ω → ∞.

Proof. The euclidean distance between c and βω is θ = arctan(sinhω). Then ele-
mentary geometry yields the assertion. ¤

In the annulus A, consider the segments αξ = {ξ}× [0, π] for every ξ ∈ [0, ℓ). For
a quasiconformal automorphism g of A preserving each component of ∂A, let τξ ≥ 0
be the difference between the ξ-coordinates of g(ξ, 0) and g(ξ, π) taking account of
a multiple of ℓ by the winding number of g(αξ). The minimum of τξ taken over
all ξ ∈ [0, ℓ) is defined to be τ(g). For the quasiconformal automorphism fA of the
annular cover A, it is easy to see that

τ(fA) ≥ max{t − 2b(ω), t − ℓ, 0}.

For a curve family V in a domain D in general, the extremal length λ(V) is
defined by

λ(V) = sup
ρ

{infα∈V
∫

α
ρ(ζ)|dζ|}2∫∫

D
ρ(ζ)2dξdη

,

where the supremum is taken over all Borel measurable non-negative functions
ρ(ζ) on D. Under a K-quasiconformal homeomorphism g : D → D′, the extremal
lengths of the curve families V and g(V) satisfy

K−1λ(V) ≤ λ(g(V)) ≤ Kλ(V).

Using extremal lengths, we can estimate maximal dilatations of quasiconformal
maps.

Lemma 3.3. Let g be a quasiconformal automorphism of A preserving each com-
ponent of ∂A and having a positive τ(g) > 0. For every ε > 0 less than τ(g), there
exists a rectangle Q = [ξ0, ξ1] × [0, π] in A such that a family VQ of all rectifiable
curves in Q connecting the sides [ξ0, ξ1] × {0} and [ξ0, ξ1] × {π} satisfies

λ(g(VQ))
λ(VQ)

≥ 1 +
(

τ(g) − ε

π

)2

.
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Proof. Take a positive integer k so that ℓ/k ≤ ε < τ(g) and divide the annulus A
into k rectangles Q1, . . . Qk in parallel, where Qi = [(i−1)ℓ/k, iℓ/k]×[0, π]. Consider
the images {g(Qi)} in g(A) = A. Then at least one rectangle Q = [ξ0, ξ1] × [0, π]
among {Qi} has a property that the euclidean area of g(Q) is not greater than that
of Q, namely, area(g(Q)) ≤ πℓ/k.

It is known that the euclidean metric restricted to Q is the extremal metric for
VQ and hence λ(VQ) = πk/ℓ. On the other hand, the euclidean length

∫
g(α)

|dζ|
for any α ∈ VQ is greater than or equal to {π2 + (τ(g) − ℓ/k)2}1/2. Therefore the
extremal length λ(g(VQ)) can be estimated by

λ(g(VQ)) ≥
{infα∈VQ

∫
g(α)

|dζ|}2

area(g(Q))
≥ π2 + (τ(g) − ε)2

πℓ/k
.

Hence we have the estimate for λ(g(VQ))/λ(VQ) as in the statement. ¤
Corollary 3.4. A quasiconformal automorphism g of A preserving each boundary
component satisfies K(g) ≥ 1 + (τ(g)/π)2.

Proof. The maximal dilatation K(g) satisfies K(g) ≥ λ(g(VQ))/λ(VQ) for any rec-
tangle Q in A. By taking the rectangle Q as in Lemma 3.3 for an arbitrarily small
ε > 0, we have the lower estimate of K(g). ¤
Remark. Let V# = {αξ}ξ∈[0,ℓ) be a curve family in A consisting of all the
segments αξ = {ξ} × [0, π]. Instead of considering the curve family VQ in the
rectangle Q, we can use V# to obtain the same estimate as in Corollary 3.4, which
is the original method given in [11]. In fact, we may regard each segment αξ as a
limit of the rectangles Q of the side lengths ℓ/k when k → ∞.

Since τ(fA) ≥ max{t − 2b(ω), t − ℓ, 0}, Corollary 3.4 implies that

K(f) = K(fA) ≥ 1 +
(

max{t − 2b(ω), t − ℓ, 0}
π

)2

.

This gives the lower bound in Theorem 3.1.
Next we estimate the upper bound in Theorem 3.1. We consider a quasiconformal

homeomorphism f0 ∈ [f ] of R whose restriction to each collar A(ci, ωi) ⊂ R is a
canonical quasiconformal map hi representing the twist of length ti and that is
conformal outside of

∪
A(ci, ωi). Then the estimates on all A(ci, ωi) give K(f0)

and hence the required upper bound. Fix an index i and set c = ci, ℓ = ℓ(ci),
ω = ωi and t = ti as before. Note that the collar A(c, ω) can be embedded in the
annular cover A with respect to c. In the following Proposition 3.5, we calculate the
maximal dilatation of the canonical quasiconformal automorphism h of the annulus
Aθ = A(c, ω), where θ = arctan(sinhω) stands for the width of the collar measured
by the euclidean metric on A.

Proposition 3.5. Let h(ξ, η) = (ξ + tη/(2θ), η) be a quasiconformal automorphism
of a sub-annulus

Aθ = {(ξ, η) ∈ A | |η − π/2| ≤ θ} (0 < θ ≤ π/2)
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for a given constant t ≥ 0. Then its maximal dilatation is

K(h) =

{
1 +

(
t

4θ

)2
}1/2

+
t

4θ

2

.

Proof. Since hξ = 1 and hη = t/(2θ) + i, we have ∂h(ζ) = 1− it/(4θ) and ∂̄h(ζ) =
it/(4θ). Substituting them for

K(h) =
|∂h(ζ)| + |∂̄h(ζ)|
|∂h(ζ)| − |∂̄h(ζ)|

,

we have the assertion. ¤
That completes the proof of Theorem 3.1. ¤

In the remainder of this section, we estimate the boundary dilatation H([f ]) of
f given by the same twists as before.

Theorem 3.6. To the same circumstances as in Theorem 3.1, we add an extra
assumption that, for any compact subset V ⊂ R, the number of the collars A(ci, ωi)
having the intersection with V is finite. Then the boundary dilatation H([f ]) satis-
fies

H([f ]) ≥ lim sup
i→∞

{
1 +

(
max{ti − 2b(ωi), ti − ℓ(ci), 0}

π

)2
}

.

Proof. Denote by Ki the value before taken the limit in the required inequality
above. Suppose to the contrary that lim supi→∞ Ki − H([f ]) is positive and set
this value by δ. For this δ > 0, there exist a compact subset V ⊂ R and a
quasiconformal homeomorphism f ∈ [f ] such that K(f |R−V ) < H([f ]) + δ. Hence
K(f |R−V ) < lim supi→∞ Ki. Take a constant θ ∈ (0, π/2) so that

K ′ :=
2θ

π
K(f |R−V ) +

π − 2θ

π
K(f) < lim sup

i→∞
Ki.

For this θ, there exists a number i0 such that the hyperbolic distance between ci

and V is greater than arcsinh(tan θ) for every i ≥ i0. Then, fix some i ≥ i0 such
that K ′ < Ki. Set ε := Ki − K ′ > 0.

Let A be the annular cover of R with respect to this ci and let fA be the lift of f
to A. It satisfies τ(fA) ≥ max{ti − 2b(ωi), ti − ℓ(ci), 0}. For the ε above, we choose
ε′ > 0 such that

1 +
(

τ(fA) − ε′

π

)2

> Ki − ε.

Then by Lemma 3.3 applied to this ε′, we have a rectangle Q = [ξ0, ξ1] × [0, π] in
A such that

λ(fA(VQ))
λ(VQ)

> Ki − ε = K ′.

However, the following Proposition 3.7, which has been used in [7], asserts that the
ratio of the extremal lengths satisfies λ(fA(VQ))/λ(VQ) ≤ K ′. This contradiction
proves the assertion. ¤
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Proposition 3.7. Let g : Q → g(Q) be a K-quasiconformal homeomorphism of
a rectangle Q = [ξ0, ξ1] × [0, π] and let VQ be a family of all rectifiable curves in
Q connecting the sides [ξ0, ξ1] × {0} and [ξ0, ξ1] × {π}. If the restriction g|Qθ

to
Qθ = [ξ0, ξ1]× [π/2− θ, π/2 + θ] is H-quasiconformal (1 ≤ H ≤ K), then the ratio
of the extremal lengths satisfies

λ(g(VQ))
λ(VQ)

≤ 2θ

π
H +

π − 2θ

π
K.

Proof. Let V∗
Q be the dual family to VQ that consists of all rectifiable curves in Q

connecting the other sides {ξ0} × [0, π] and {ξ1} × [0, π]. Since λ(VQ)λ(V∗
Q) = 1

and λ(g(VQ))λ(g(V∗
Q)) = 1, we estimate the ratio λ(g(V∗

Q))/λ(V∗
Q) from below.

Set a conformal metric ρ(z)|dz| on g(Q) by

ρ(z) :=
1

|∂g(g−1(z))| − |∂̄g(g−1(z))|
.

Since |dz| ≥ (|∂g(ζ)| − |∂̄g(ζ)|)|dζ|, we have∫
g(β)

ρ(z)|dz| ≥
∫

β

|dζ|

for every β ∈ V∗
Q. On the other hand,∫∫

g(Q)

ρ(z)2dxdy =
∫∫

Q

|∂g(ζ)| + |∂̄g(ζ)|
|∂g(ζ)| − |∂̄g(ζ)|

dξdη

≤ H area(Qθ) + K area(Q − Qθ)

=
(

2θ

π
H +

π − 2θ

π
K

)
area(Q).

Thus we have

λ(g(V∗
Q)) ≥

(
2θ

π
H +

π − 2θ

π
K

)−1

λ(V∗
Q),

which yields the required inequality. ¤

§4. Bers projection and conformally barycentric extension

Let Bel(R) denote the Banach space of all measurable Beltrami differentials µ on
a Riemann surface R with the L∞-norm ∥µ∥∞ finite, and let Bel1(R) be the open
unit ball of Bel(R). By the measurable Riemann mapping theorem, the quasicon-
formal homeomorphisms f of R and the Beltrami differentials µ in Bel1(R) corre-
spond bijectively up to post-composition of conformal homeomorphisms, through
the complex dilatation µf = ∂̄f/∂f of f . Hence a Teichmüller class [f ] ∈ T (R)
can be also denoted by [µ] for µ = µf ∈ Bel1(R). In this manner, we have the
Teichmüller projection π : Bel1(R) → T (R) by µ 7→ [µ], which is a holomorphic
split submersion.



MAPPING CLASS GROUPS AND ASYMPTOTIC TEICHMÜLLER SPACES 11

Two Riemann surfaces R and R∗ are complex conjugate to each other if there
exists an anti-conformal homeomorphism j : R → R∗. For a subset V ⊂ R, the
complex conjugate V ∗ ⊂ R∗ is defined by V ∗ = j(V ).

Let B(R∗) be the Banach space of all bounded holomorphic quadratic differen-
tials ϕ on R∗ having the hyperbolic L∞-norm

∥ϕ∥ = sup
z∈R∗

ρR∗(z)−2|ϕ(z)| < ∞,

where ρR∗ is the hyperbolic density on R∗. The norm restricted to a subset V ∗ ⊂ R∗

is denoted by ∥ϕ∥V ∗ = supz∈V ∗ ρR∗(z)−2|ϕ(z)|. The boundary semi-norm ∥ϕ∥0 is
defined to be the infimum of ∥ϕ∥R∗−V ∗ taken over all compact subsets V ∗ ⊂ R∗.
We say that a bounded holomorphic quadratic differentials ϕ on R∗ vanishes at
infinity if ∥ϕ∥0 = 0. Let B0(R∗) ⊂ B(R∗) be the Banach subspace consisting of all
bounded holomorphic quadratic differentials vanishing at infinity.

The Bers projection B : Bel1(R) → B(R∗) is defined as follows. For any
µ ∈ Bel1(R), consider its lift µ̃ to the unit disk ∆ and take the quasiconformal
homeomorphism F of the Riemann sphere Ĉ such that µF = µ̃ on ∆ and µF = 0
on ∆∗ = Ĉ − ∆. Then take the Schwarzian derivative SF |∆∗ on ∆∗ and project
it on R∗ as a holomorphic quadratic differential ϕ. This belongs to B(R∗) and
defines B(µ). The Bers projection B is decomposed by the Teichmüller projec-
tion π : Bel1(R) → T (R) into the Bers embedding β : T (R) → B(R∗) such that
B = β ◦ π. The image of B is a bounded domain in B(R∗), which is biholomorphic
to T (R) under β.

The Bers projection above is defined with respect to the Fuchsian projective
structure on the Riemann surface R∗ = ∆∗/H, and it is possible to generalize it to
any quasifuchsian projective structure on R∗. For a Teichmüller class [g] = [ν] ∈
T (R), consider its lift ν̃ to ∆ and take the quasiconformal homeomorphism G of Ĉ
such that µG = ν̃ on ∆ and µG = 0 on ∆∗. Next, for any [µ] ∈ T (g(R)), consider
its lift µ̃ to G(∆) and take the quasiconformal homeomorphism F of Ĉ such that
µF = µ̃ on G(∆) and µF = 0 on G(∆∗). Then take the Schwarzian derivative
SF |G(∆∗)

and project it on R∗ as a holomorphic quadratic differential ϕ. This
belongs to B(R∗) and defines Bg(µ). We call this map Bg : Bel1(g(R)) → B(R∗)
the generalized Bers projection with respect to [g] ∈ T (R).

The norm of a bounded holomorphic quadratic differential obtained by the gen-
eralized Bers projection is estimated as follows. See [10, III.4.2].

Proposition 4.1. Let Bg : Bel1(g(R)) → B(R∗) be the generalized Bers projection
with respect to [g] ∈ T (R). Then there exist positive constants c(K) and C(K)
depending only on K = K([g]) ≥ 1 such that

c(K)∥µ∥∞ ≤ ∥Bg(µ)∥ ≤ C(K)∥µ∥∞

for any extremal µ ∈ Bel1(g(R)) in the Teichmüller class [µ] ∈ T (g(R)). Moreover,
c(K) and C(K) are monotone increasing and decreasing respectively as K → 1 with
c(1) = 1/2 and C(1) = 3/2.
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This proposition gives a global relationship between the norms of Beltrami differ-
entials and quadratic differentials under the correspondence of the Bers projection.
On the other hand, there is a local relationship which can be expressed as follows.
If a Beltrami differential µ ∈ Bel1(R) is small on a subset E ⊂ R, then the holo-
morphic quadratic differential B(µ) ∈ B(R∗) is small on the corresponding subset
E∗ ⊂ R∗. See [15, Lemma 3.1].

The conformally barycentric extension [2] gives a systematic way of taking a rep-
resentative f from each Teichmüller class [f ] ∈ T (R). In other words, it defines a
global section s : T (R) → Bel1(R) for the projection π : Bel1(R) → T (R). This sec-
tion has a good property as in the following proposition, which was proved partially
in [4] and completed in [6]. We can understand it as another formulation of the
above mentioned principle on the local relationship between Beltrami differentials
and quadratic differentials.

Proposition 4.2. The following conditions are equivalent for any p ∈ T (R):
(1) The Teichmüller class p ∈ T (R) is asymptotically conformal, that is, p ∈ To;
(2) The quasiconformal homeomorphism of R that is determined by the Beltrami

differential s(p) ∈ Bel1(R) is asymptotically conformal;
(3) The bounded holomorphic quadratic differential β(p) ∈ B(R∗) vanishes at

infinity.

In virtue of this proposition, we see that the Bers embedding β : T (R) → B(R∗)
of the Teichmüller space T (R) is projected to the asymptotic Bers embedding β̂ :
AT (R) → B(R∗)/B0(R∗) in a commutative way with the projection α : T (R) →
AT (R) and the quotient map B(R∗) → B(R∗)/B0(R∗). Here B(R∗)/B0(R∗) is
regarded as the quotient Banach space with the quotient norm.

Let A(R) be the Banach space of all integrable holomorphic quadratic differ-
entials on R. Since the Poincaré series operator Θ : A(∆) → A(R) is surjective
bounded linear and since polynomials are dense in A(∆), we see that A(R) is sepa-
rable (cf. [9, §3.2]). In [3], the predual Banach space Z0(R) to A(R) is given, which
is a closed subspace of the tangent space Z(R) of T (R) at the base point. Since a
Banach space X is separable in general if so is the dual space X∗, we see that Z0(R)
is separable. Also there is a bijective bounded linear map between Z(R) and B(R∗)
that maps Z0(R) onto B0(R∗) (see [4]). Hence B0(R∗) is also separable. Since the
fiber To over the base point α(o) ∈ AT (R) is embedded into B0(R∗) by β, we see
that To is separable. This is also valid for the fiber Tp over any α(p) ∈ AT (R).

The following lemma is a direct consequence from a well-known formula for
Schwarzian derivatives and Proposition 4.2. This will be used later.

Lemma 4.3. Let Bg : Bel1(g(R)) → B(R∗) be the generalized Bers projection with
respect to [g] ∈ T (R). Then any [f ] ∈ T (g(R)) satisfies

B(µf◦g) = B(µg) + Bg(µf ).

If both [g] and [f ] are asymptotically conformal, then Bg(µf ) vanishes at infinity.

Proof. Let G be the quasiconformal automorphism of Ĉ determined by µg on ∆
and let F be the quasiconformal automorphism of Ĉ determined by µf on G(∆).
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Then the Cayley identity for Schwarzian derivatives

SF◦G|∆∗ (z) = SG|∆∗ (z) + SF |G(∆∗)
(G(z))G′(z)2 (z ∈ ∆∗)

implies the first assertion. If g and f are asymptotically conformal, then so is f ◦ g.
This implies that B(µf◦g) vanishes at infinity by Proposition 4.2 as well as B(µg)
does. Hence so does Bg(µf ). ¤

§5. A common fixed point on the asymptotic Teichmüller space

There is an example of a Riemann surface R such that the quasiconformal map-
ping class group MCG(R) acts on the asymptotic Teichmüller space AT (R) having
a common fixed point and that MCG(R) is a countable group [12]. In this section,
we prove that MCG(R) is always countable whenever MCG(R) acts on AT (R)
having a common fixed point. This is a consequence from the following theorem.

Theorem 5.1. Suppose that MCG(R) has a common fixed point α(p) on AT (R)
and hence MCG(R) acts on the fiber Tp ⊂ T (R). Then MCG(R) acts on Tp

discontinuously, namely, for every q ∈ Tp, there exists a neighborhood Uq ⊂ Tp

of q, such that the number of elements [γ] ∈ MCG(R) satisfying [γ]∗(Uq) ∩ Uq ̸= ∅
is finite.

Corollary 5.2. If MCG(R) has a common fixed point α(p) on AT (R), then it is
a countable group.

Proof. If MCG(R) is uncountable, then the orbit of any point in Tp under MCG(R)
has an accumulation point because Tp is separable. However, this contradicts the
consequence of Theorem 5.1 that MCG(R) acts on Tp discontinuously. ¤

Corollary 5.2 is a generalization and a factorization of the following Lemma 5.3
proved in [7]. We use this result in the course of proving Theorem 5.1. Note
that Lemma 5.3 can be proved by using Theorem 3.6, which is basically the same
argument as in the proof of [7].

Lemma 5.3. If MCG(R) has a common fixed point on AT (R), then R satisfies
the divergent geometry condition.

We begin proving Theorem 5.1 here. We may assume that the common fixed
point is the base point α(o) of AT (R). Suppose that MCG(R) acts on To but not
discontinuously. Then there exist a sequence of distinct elements [γn] ∈ MCG(R)
and a point q ∈ To such that [γn]∗(q) converge to q as n → ∞. Without loss of
generality, we may assume that q is the base point o of T (R). We choose an extremal
quasiconformal representative γn in each asymptotically conformal mapping class
[γn].

By Lemma 5.3, the Riemann surface R satisfies the divergent geometry condition.
Then, for any closed geodesic c ⊂ R, each image γn(c) is freely homotopic to one of
a finite number of closed geodesics in R because the geodesic lengths of γn(c) are
close to the length of c. This implies that a subsequence of {γn} converges locally
uniformly to a conformal automorphism h of R. Then γn ◦ h−1 converge to id.
Renaming γn ◦ h−1 by γn, we see that [γn]∗(o) → o and [γn]# → id as n → ∞. See



14 KATSUHIKO MATSUZAKI

Proposition 2.1. Then, by Corollary 2.3, we see that [γn] is of divergence type for
every sufficiently large n. Hence, for any constant r > 0, there exists an integer n0

such that [γn] is of divergence type and satisfies 0 < dT ([γn]∗(o), o) ≤ r for every
n ≥ n0. Since the orbit under 〈[γn]〉 is unbounded, there exists the least integer
k(n) ≥ 1 satisfying r ≤ d([γn]k(n)

∗ (o), o). Since d([γn]k(n)−1
∗ (o), o) < r, this implies

d([γn]k(n)
∗ (o), o) ≤ 2r as well.

Summing up, we have a sequence of asymptotically conformal mapping classes
[γn] and positive integers k(n) such that [γn]# → id as n → ∞ and that

0 < r ≤ d([γn]k(n)
∗ (o), o) ≤ 2r

for each n. Here we set [gn] := [γn]k(n), which is also an asymptotically conformal
mapping class. No matter how the power k(n) is dependent on n, we have [gn]# →
id as n → ∞. This is because the condition [γn]#|H′ = id for a subgroup H ′ ⊂
π1(R) implies [gn]#|H′ = id. Then by Proposition 2.1, we have a sequence of
quasisymmetric automorphisms ḡn : ∂∆ → ∂∆ corresponding to [gn] so that ḡn

converge to id uniformly on ∂∆.
Let g̃n be a quasiconformal automorphism of ∆ obtained by the conformally

barycentric extension of ḡn and let µg̃n be the complex dilatation of g̃n. By a
property of the conformally barycentric extension [2, Prop.2], g̃n converge to id
uniformly, ∂g̃n converge to 1 locally uniformly and ∂̄g̃n converge to 0 locally uni-
formly on ∆. Hence the complex dilatations µg̃n in particular converge to 0 locally
uniformly on ∆. On the other hand, as in [2, Prop.7], the maximal dilatation K(g̃n)
of g̃n is estimated by

K(g̃n) ≤ A exp
{
Be4r

}
=: K0,

where A and B are certain positive constants and r is the constant satisfying
d([gn]∗(o), o) ≤ 2r.

Since g̃n are compatible with the Fuchsian group H, they project on R to be
quasiconformal automorphisms gn, which converge to id locally uniformly on R.
Also the complex dilatations µgn of gn converge to 0 locally uniformly on R and
the maximal dilatations K(gn) are bounded by the constant K0 ≥ 1. Since [gn] is
an asymptotically conformal mapping class, the representative gn defined by the
conformally barycentric extension is asymptotically conformal by Proposition 4.2.

Lemma 5.4. Let {gn}n∈N be a sequence of asymptotically conformal automor-
phisms of R such that gn → id and µgn → 0 locally uniformly and that K(gn) ≤ K0

for every n. Then, for any ε > 0, there exists a subsequence {gni}i∈N of {gn}n∈N
such that any composition of a finite number of elements in {gni} respecting the
order is (K0e

ε)-quasiconformal.

Proof. Fix a constant δ > 0 arbitrarily. For a subset V ⊂ R and a map g :
R → R in general, we denote by g(V )δ the open δ-neighborhood of g(V ) with
respect to the hyperbolic distance dH on R. Take any element gn1 out of {gn}.
Since gn1 is asymptotically conformal, there is a compact subset V1 ⊂ R such that
log K(gn1 |R−V1) ≤ ε/2.
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Since gn → id and µgn → 0 uniformly on gn1(V1)δ, there is n2 > n1 such that

sup {dH(gn(z), z) | z ∈ gn1(V1)δ, n ≥ n2} ≤ δ/4; log K(gn2 |gn1 (V1)δ) ≤ ε/4.

Since gn2 is asymptotically conformal, there is a compact subset V2 ⊂ R with
gn1(V1)δ ∩ V2 = ∅ such that log K(gn2 |R−V2) ≤ ε/4.

Suppose that we have taken gn1 , . . . , gni and compact subsets V1, . . . , Vi in R
satisfying

{gn1(V1)δ ∪ · · · ∪ gni−1(Vi−1)δ} ∩ Vi = ∅; log K(gni |R−Vi) ≤ ε/2i.

Then there is ni+1 > ni such that

sup {dH(gn(z), z) | z ∈ gn1(V1)δ ∪ · · · ∪ gni(Vi)δ, n ≥ ni+1} ≤ δ/2i+1;

log K(gni+1 |gn1 (V1)δ∪···∪gni
(Vi)δ) ≤ ε/2i+1.

Also there is a compact subset Vi+1 ⊂ R such that

{gn1(V1)δ ∪ · · · ∪ gni(Vi)δ} ∩ Vi+1 = ∅; log K(gni+1 |R−Vi+1) ≤ ε/2i+1.

In this manner, we choose a subsequence {gni} of {gn} inductively.
We take a finite number of elements out of {gni} and, for the sake of simplicity,

assume them to be gn1 , gn2 , . . . , gnk
. Consider the composition h = gnk

◦ · · · ◦ gn1 .
For any i and j (1 ≤ i < j ≤ k), the compact subset Vj is disjoint from gni(Vi)δ.
Also (gnj−1 · · · gni)(Vi) is contained in gni(Vi)δ because

∑∞
i=1 δ/2i = δ. Hence Vj

and (gnj−1 · · · gni)(Vi) are disjoint, from which we see that the k compact subsets

V1, g
−1
n1

(V2), . . . , (gni−1 · · · gn1)
−1(Vi), . . . , (gnk−1 · · · gn1)

−1(Vk)

are mutually disjoint. For each factor gni , its maximal dilatation is bounded by K0

on Vi and by exp(ε/2i) elsewhere. This contributes to the maximal dilatation K(h)
of the composition h by at most K0 on (gni−1 · · · gn1)

−1(Vi) and at most exp(ε/2i)
elsewhere. Hence K(h) is bounded by K0e

ε because
∑∞

i=1 ε/2i = ε. ¤
The subsequence {gni} obtained by this lemma is renamed as {gn} hereafter.

Remember that each gn satisfies d([gn]∗(o), o) ≥ r > 0. We will further choose an
infinite subsequence of {gn} so that their composition converges locally uniformly
to a quasiconformal automorphism of R whose mapping class is not asymptotically
conformal. To show that the limit is not asymptotically conformal, we use bounded
holomorphic quadratic differentials obtained by the generalized Bers embedding.

Lemma 5.5. Let {gn}n∈N be a sequence of asymptotically conformal automor-
phisms of R with d([gn]∗(o), o) ≥ r > 0 such that gn → id and µgn → 0 locally
uniformly and that any composition of a finite number of elements in {gn} respect-
ing the order is uniformly K1-quasiconformal for some K1 ≥ 1. Then there exists a
subsequence {gnj} of {gn} such that the composition hk := gnk

◦ · · · ◦ gn1 converges
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locally uniformly to a quasiconformal automorphism h∞ of R as k → ∞ such that
the mapping class [h∞] ∈ MCG(R) is not asymptotically conformal.

Proof. Since gn → id locally uniformly and since any finite composition is uniformly
K1-quasiconformal, by passing to a subsequence of {gn} if necessary, we may assume
that, for any subsequence {gnj} of {gn}, the composition hk = gnk

◦ · · · ◦ gn1

converges locally uniformly to a K1-quasiconformal automorphism h∞ of R. Hence
we have only to choose the subsequence {gnj} so that the mapping class [h∞] is
not asymptotically conformal for this limit h∞.

Take arbitrarily gn1 and consider ϕ1 = B(µgn1
). Since d([gn1 ]∗(o), o) ≥ r, Propo-

sition 4.1 asserts that ∥ϕ1∥ ≥ c(1)b ≥ c(K1)b, where b := (e2r − 1)(e2r + 1)−1 > 0.
Also, since h1 := gn1 is asymptotically conformal, Proposition 4.2 asserts that ϕ1

vanishes at infinity. Set

W1 =
{
z ∈ R∗ | ρR∗(z)−2|ϕ1(z)| ≥ c(K1)b/22

}
.

Then this is a non-empty compact subset of R∗.
Consider the generalized Bers projection Bh1 : Bel1(h1(R)) → B(R∗) with re-

spect to [h1]. Since µgn → 0 locally uniformly, Bh1(µgn) converge to 0 uniformly
on W1. Then there exists gn2 with n2 > n1 such that ϕ2 := Bh1(µgn2

) satisfies
∥ϕ2∥W1 < c(K1)b/23. It also satisfies ∥ϕ2∥ ≥ c(K1)b by Proposition 4.1. Since
both h1 and gn2 are asymptotically conformal, Proposition 4.2 and Lemma 4.3
imply that ϕ2 vanishes at infinity. Then

W2 :=
{
z ∈ R∗ | ρR∗(z)−2|ϕ2(z)| ≥ c(K1)b/23

}
is a non-empty compact subset of R∗ disjoint from W1. The composition h2 :=
gn2 ◦ gn1 holds B(µh2) = ϕ1 + ϕ2.

Similarly, there exists gn3 with n3 > n2 such that ϕ3 := Bh2(µgn3
) satisfies

∥ϕ3∥W1∪W2 < c(K1)b/24 in addition to that ∥ϕ3∥ ≥ c(K1)b and ϕ3 ∈ B0(R∗).
Then

W3 :=
{
z ∈ R∗ | ρR∗(z)−2|ϕ3(z)| ≥ c(K1)b/24

}
is a non-empty compact subset of R∗ disjoint from W1 ∪ W2. The composition
h3 := gn3 ◦ h2 = gn3 ◦ gn2 ◦ gn1 holds B(µh3) = ϕ1 + ϕ2 + ϕ3.

Inductively, assume that we have taken hk−1 = gnk−1 ◦ · · · ◦ gn1 , ϕ1, . . . , ϕk−1 ∈
B0(R∗) and W1, . . . ,Wk−1 ⊂ R∗. Then we choose gnk

with nk > nk−1 such that
ϕk := Bhk−1(µgnk

) ∈ B0(R∗) satisfies

∥ϕk∥W1∪···∪Wk−1 < c(K1)b/2k+1; ∥ϕk∥ ≥ c(K1)b.

We also set

Wk :=
{
z ∈ R∗ | ρR∗(z)−2|ϕk(z)| ≥ c(K1)b/2k+1

}
,

which is a non-empty compact subset of R∗ disjoint from W1 ∪ · · · ∪Wk−1, and set

hk := gnk
◦ hk−1 = gnk

◦ · · · ◦ gn1 ,
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which holds B(µhk
) = ϕ1 + · · · + ϕk.

The sequence {hk} converges locally uniformly to a quasiconformal automor-
phism h∞ of R. Hence Φk :=

∑k
j=1 ϕj = B(µhk

) converge locally uniformly to
Φ := B(µh∞). In particular, ϕk converge locally uniformly to 0 as k → ∞. This
implies that the compact subsets {Wk} exit to infinity, that is, for every compact
subset V ⊂ R∗, there exists k0 such that Wk ∩ V = ∅ for every k ≥ k0.

We will show that Φ does not vanish at infinity, which implies that [h∞] is not
asymptotically conformal by Proposition 4.2. Each holomorphic quadratic differ-
ential ϕk satisfies ∥ϕk∥Wk

= ∥ϕk∥ ≥ c(K1)b. On the other hand, since Wk is
disjoint from any other Wm (m ̸= k), we see that ∥ϕm∥Wk

< c(K1)b/2m+1. Hence
Φ satisfies

∥Φ∥Wk
> c(K1)b

(
1 −

∞∑
m=1

1/2m+1

)
=

c(K1)b
2

for every k ∈ N. This implies that Φ does not vanish at infinity. ¤
Summing up all the above arguments, we complete the proof.

Proof of Theorem 5.1. We are assuming that all the elements of MCG(R) fix the
base point of AT (R). The conclusion of Lemma 5.5 that [h∞] ∈ MCG(R) is not
asymptotically conformal has been derived from the assumption that MCG(R)
does not act on To discontinuously. However, this is a contradiction, for such
[h∞] does not fix the base point. Thus we have proved that MCG(R) acts on To

discontinuously. ¤

§6. Countability of the stabilizer subgroups

In the previous section, we have dealt with a particular quasiconformal mapping
class group MCG(R) having a common fixed point on AT (R) and investigated
its properties. In this section, however, we will consider the stabilizer subgroup
MCGα(p)(R) of MCG(R) in general, where

MCGα(p)(R) = {[γ] ∈ MCG(R) | [γ]∗ ◦ α(p) = α(p)}

for α(p) ∈ AT (R). We prove that MCGα(p)(R) is countable under the following
assumption on hyperbolic geometry of R.

Definition. We say that a hyperbolic Riemann surface R satisfies the lower bound
condition if the injectivity radius at every point of R is uniformly bounded away
from zero except in cusp neighborhoods. We say that R satisfies the upper bound
condition if there exists a subdomain Ř of R such that the injectivity radius at
every point of Ř is uniformly bounded from above and such that the homomorphism
π1(Ř) → π1(R) induced by the inclusion map Ř ↪→ R is surjective. We say that R
satisfies the bounded geometry condition if R has no ideal boundary at infinity and
if both the lower and upper bound conditions are satisfied.

For example, a non-universal normal cover R of a compact Riemann surface
always satisfies the bounded geometry condition. More generally, if R admits a
pants decomposition such that the lengths of geodesic boundary components of all
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pairs of pants in the decomposition are uniformly bounded from above and below,
then R satisfies the bounded geometry condition. The bounded geometry condition
and the divergent geometry condition are mutually exclusive except for analytically
finite Riemann surfaces.

Theorem 6.1. Assume that a Riemann surface R satisfies the bounded geometry
condition. Then the stabilizer subgroup MCGα(p)(R) for any point α(p) ∈ AT (R)
is countable.

Proof. Suppose that MCGα(p)(R) is uncountable. Take a closed geodesic c in R.
Since the closed geodesics in R are countably many, there exists a closed geodesic
c′ such that γ(c) is freely homotopic to c′ for uncountably many elements [γ] in
MCGα(p)(R). Since the subspace Tp ⊂ T (R) is separable, there exists a sequence
of distinct elements [γn] ∈ MCGα(p)(R) such that γn(c) is freely homotopic to c′

and that [γn]∗(p) converge to some point p′ ∈ Tp as n → ∞. However, when R
satisfies the bounded geometry condition, there is no such sequence as is proved in
[8]. Thus we see that MCGα(p)(R) is countable. ¤

In Section 5, we first show the discontinuity of the action and then prove the
countability from it. However there is no converse way. In fact, even if MCGα(p)(R)
is countable, it does not necessarily act discontinuously on Tp. A simple example
can be seen if we assume R to satisfy the bounded geometry condition and choose
p as a fixed point of some [γ] ∈ MCG(R) of infinite order, which is represented by
a conformal automorphism γ of the Riemann surface corresponding to p.

§7. Countable but no common fixed point

In this section, we will show that the converse of Corollary 5.2 does not neces-
sarily hold.

Theorem 7.1. There exists a Riemann surface R̂ such that MCG(R̂) is countable
but MCG(R̂) does not have a common fixed point on AT (R̂).

In [12], we have obtained an analytically infinite Riemann surface R such that the
quasiconformal mapping class group MCG(R) consists only of a countable number
of elements and the base point α(o) ∈ AT (R) is a common fixed point of MCG(R).
The Riemann surface R̂ as in Theorem 7.1 is constructed from R by giving a certain
amount of twist along infinitely many simple closed geodesics. Then MCG(R̂)
remains countable but there exists an element of MCG(R̂) that moves α(o) ∈
AT (R̂) arbitrarily far away.

A pair of pants P is a hyperbolic surface with three geodesic boundary com-
ponents that is homeomorphic to a three-punctured sphere. Every pair of pants
admits the canonical orientation-reversing isometric involution. The fixed point
loci of this involution consist of three geodesic segments, which we call the symme-
try axes. Cutting along the symmetry axes, we have two congruent right-angled
hexagons D. Let P0 be a pair of pants the lengths of whose geodesic boundary
components are 0! and 1! and 1!. Let P1 be a pair of pants with the lengths 1! and
2! and 2!. In the same way, for every non-negative integer n, let Pn be a pair of
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pants with the lengths n! and (n + 1)! and (n + 1)!. The three symmetry axes σn

divide Pn into two congruent right-angled hexagons Dn. The geodesic boundary
components of length n! and (n+1)! in Pn are denoted by cn and cn+1 respectively.

The Riemann surface R is made of 2n+1 copies of Pn for all n ≥ 0 as follows.
We take 2 copies of P0 and glue the geodesic boundary component c0 of each P0

together. The resulting hyperbolic surface with 4 geodesic boundary components
c1 is denoted by R1. Next take 4 copies of P1 and glue the geodesic boundary
component c1 of each P1 with the 4 boundary components of R1. The resulting
hyperbolic surface with 8 geodesic boundary components c2 is denoted by R2.
Continuing this process, we obtain, for every n ≥ 1, a hyperbolic surface Rn with
2n+1 geodesic boundary components cn made of Rn−1 and 2n copies of Pn−1. Then
we take the exhaustion of these surfaces Rn, which is R =

∪∞
n=1 Rn. Each connected

component of R−Rn is called an end neighborhood and is denoted by En. At each
step of gluing, we give an appropriate amount of twist along cn so that R is a
complete hyperbolic surface without ideal boundary at infinity.

We choose an end neighborhood En for every n ≥ 1 so that the family {En}n∈N
are mutually disjoint and denote it by E∗

n. Each E∗
n contains 2i simple closed

geodesics cn+i. For i ≥ 2, take the (2i−1 − 1)-th one from the right and denote it
by c′n+i. The end neighborhood bounded by c′n+i is denoted by E′

n+i. In E′
n+i, we

take a simple closed geodesic cm (m > n + i) that has at least hyperbolic distance
i away from c′n+i. We denote this cm by c∗m(n,i). Then, for each n ≥ 1 and each
i ≥ 2, we give a twist of hyperbolic length n along c∗m(n,i) to the right. The resulting

surface is our required R̂. See Figure.

Proposition 7.2. In the pair of pants Pn, let δn( ̸⊂ cn) be the shortest geodesic
arc that connect its boundary component cn with itself and let δ′n(̸⊂ cn+1) be the
shortest geodesic arc that connect its boundary component cn+1 with itself. Then
their hyperbolic lengths ℓ(δn) and ℓ(δ′n) satisfy

ℓ(δn) > n! × n; ℓ(δ′n) >
n!
2

+ 1.

Proof. The estimate for ℓ(δn) is given in [12, Prop.5] by using trigonometry on the
right-angled hexagon Dn. We will prove the estimate for ℓ(δ′n) in a similar way.
It is easy to see that the half of δ′n in Dn is the geodesic segment connecting cn+1

and σn perpendicularly. Then by trigonometry on the right-angled pentagon (cf.
[1, p.37]), we have

cosh
ℓ(δ′n)

2
= sinh

n!
2

· sinh ℓ(σn)

> sinh
n!
2

· 1
sinh(n!/4)

= 2 cosh
n!
4

> cosh
n! + 2

4
.

Here we have used an estimate of sinh ℓ(σn) from below, which was given by [12,
Prop.3]. Hence we have ℓ(δ′n) > (n!/2) + 1. ¤
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Figure. The end neighborhood E∗
n in R̂

Proposition 7.3. The simple closed geodesic c∗m(n,i) in R, as well as in R̂, has
a collar A∗

m(n,i) of width i that is contained in E′
n+i ⊂ E∗

n. Moreover A∗
m(n,i) ∩

A∗
m(n,j) = ∅ for i ̸= j.

Proof. Consider the shortest geodesic arc δ( ̸⊂ c∗m(n,i)) connecting c∗m(n,i) with itself.
We will show that ℓ(δ) > 2i, which implies that c∗m(n,i) has a collar neighborhood
A∗

m(n,i) of width i in both directions.
If δ lies outside c∗m(n,i), namely in Em(n,i), then δ contains a subarc in Pk for

some k ≥ m(n, i) ≥ n + i whose endpoints are on ck. By Proposition 7.2, ℓ(δ) >
k! × k ≥ 2i. If δ lies in the other side of c∗m(n,i) and if ℓ(δ) ≤ 2i, then δ is in E′

n+i

and δ contains a subarc either in Pk′ for some k′ ≥ n + i (where m(n, i) − 1 ≥ k′)
whose endpoints are on ck′+1 or in Pk for some k ≥ n + i + 1 whose endpoints are
on ck. The estimate for the latter case is the same as before. In the former case,
ℓ(δ) > (k′!/2) + 1 ≥ 2i for i ≥ 2 again by Proposition 7.2.

Since the distance between c′n+i and c∗m(n,i) is more than i, the collar A∗
m(n,i) is

contained in E′
n+i ⊂ E∗

n. In particular, E′
n+i∩E′

n+j = ∅ implies A∗
m(n,i)∩A∗

m(n,j) =
∅ for i ̸= j. ¤
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The Riemann surface R̂ is obtained from R by giving the twist of hyperbolic
length n along all c∗m(n,i) (n ≥ 1, i ≥ 2). By (the proof of) Theorem 3.1, there

exists a locally quasiconformal homeomorphism f : R → R̂ such that f is Kn-
quasiconformal on each E∗

n and is conformal outside
∪

E∗
n, where

Kn =
{

1 +
n

2 arctan(sinh 2)

}2

.

Lemma 7.4. The quasiconformal mapping class group MCG(R̂) for the Riemann
surface R̂ is countable.

Proof. The Riemann surfaces R and R̂ consist of the same pairs of pants Pn as
building blocks with the same combination. The argument in [12] for proving
that MCG(R) is countable is also applicable to seeing that the quasiconformal
automorphisms of R̂ modulo free homotopy, which is also known as the reduced
mapping class group, is countable. If R̂ has no ideal boundary at infinity, then
the free homotopy and the homotopy relative to the ideal boundary at infinity
are coincident, which means that the reduced mapping class group is nothing but
MCG(R̂).

To show that R̂ does not have ideal boundary at infinity, suppose to the con-
trary that it does have. Then there is a geodesic line β that bounds a simply
connected domain B̂ together with ideal boundary at infinity. Since B̂ has no in-
tersection with the closed geodesics in R̂, it should be contained in one of {E∗

n}
or in some end neighborhood Em outside

∪
E∗

n. Since f−1 is quasiconformal on
this end neighborhood, the corresponding f−1(E∗

n) or f−1(Em) in R must contain
a simply connected domain f−1(B̂) facing to ideal boundary at infinity. However,
this contradicts the fact that R has no ideal boundary at infinity. ¤

For a half Dehn twist [gn] ∈ MCG(R) along ∂E∗
n, let c∗∗m(n,i) be the simple closed

geodesic in R freely homotopic to gn(c∗m(n,i)) and A∗∗
m(n,i) the collar of c∗∗m(n,i) with

the width i. Let An be a collar of ∂E∗
n disjoint from all A∗

m(n,i) and A∗∗
m(n,i). The

corresponding simple closed geodesics and their collars in R̂ under f : R → R̂ are
written by the same notations. Consider f ◦ gn ◦ f−1 of R̂. Actually, its homotopy
class can be represented by a quasiconformal automorphism whose support is on

An ⊔
∪
i≥2

(A∗
m(n,i) ⊔ A∗∗

m(n,i)),

which we denote by the same letter gn. Hence we have [gn] ∈ MCG(R̂) for every
n ≥ 1.

Lemma 7.5. For the half Dehn twist gn along ∂E∗
n in R̂, the asymptotic Teich-

müller distance between the base point α(o) ∈ AT (R̂) and its image [gn]∗(α(o))
satisfies

d@([gn]∗(α(o)), α(o)) ≥ 1
2

log{1 + (n/π)2}.
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Proof. By Theorem 3.6, we see that the boundary dilatation H([gn]) for [gn] ∈
MCG(R̂) satisfies

H([gn]) ≥ lim sup
i→∞

{
1 +

(
n − 2b(i)

π

)2
}

.

This yields the assertion. ¤
Proof of Theorem 7.1. By Lemma 7.4, the quasiconformal mapping class group
MCG(R̂) is countable. Suppose that MCG(R̂) has a common fixed point α(p) ∈
AT (R̂). This in particular implies that d@([gn]∗(α(p)), α(p)) = 0 for the half Dehn
twist [gn] for every n ≥ 1. Then we have

d@([gn]∗(α(o)), α(o))

≤d@([gn]∗(α(o)), [gn]∗(α(p))) + d@([gn]∗(α(p)), α(p)) + d@(α(p), α(o))

=2d@(α(p), α(o)).

However, this contradicts Lemma 7.5 when n → ∞. Hence MCG(R̂) has no com-
mon fixed point on AT (R̂). ¤

§8. Divergent geometry but not countable

We construct a Riemann surface S satisfying the properties mentioned in the
following theorem by gluing certain pieces along their geodesic boundaries.

Theorem 8.1. There exists a Riemann surface S such that S satisfies the divergent
geometry condition but MCG(S) is not countable.

First, we prepare hyperbolic surfaces with geodesic boundaries as in the following
proposition. Since we can actually make them in various manners, for instance, by
a similar construction as in [12], we omit a proof for their existence.

Proposition 8.2. (1) For every integer n ≥ 2, there exists a hyperbolic surface
Xn with one boundary component xn but without ideal boundary at infinity such
that the number of closed geodesics in Xn whose lengths are less than L is finite
for every L > 0 and such that xn is a closed geodesic of the shortest length n in
Xn with an inward half-collar of width n. (2) There exists a hyperbolic surface Y
with infinitely many boundary components {yn}n≥2 but without ideal boundary at
infinity such that the number of closed geodesics in Y whose lengths are less than
L is finite for every L > 0 and such that each yn is a closed geodesics of length n
with a mutually disjoint inward half-collar of width n.

For every integer n ≥ 2, take a compact hyperbolic cone surface Z ′
n of no genus,

one cone point z′n of branch number n, two geodesic boundary components x′
n of

length n and y′
n of length 1. By the collar lemma (cf. [1, Chap.4]), y′

n has an
inward collar of width ω := arcsinh{1/ sinh(1/2)} ; 1.4. Then taking an n-sheeted
branched cover of Z ′

n, we have a compact hyperbolic surface Zn with geodesic
boundary components {xi

n}1≤i≤n of length n and yn of length n. It admits an
isometric automorphism hn of Zn corresponding to the branched cover that fixes
the branch point zn, preserves yn and permutes {xi

n} cyclically. Note that the
geodesic boundary yn also has an inward collar of the width ω in Zn.
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Proposition 8.3. The length of the shortest closed geodesic in Zn is n.

Proof. The cone surface Z ′
n admits the canonical isometric involution and its sym-

metric half is a hyperbolic pentagon Qn with four right angles and an angle of π/n.
Then by trigonometry on Qn (cf. [1, p.37]), length b of the side of Qn opposite to
the angle of π/n satisfies

cosh b sinh
n

2
sinh

1
2

= cosh
n

2
cosh

1
2

+ cos
π

n
.

Let Q̃n be the double of Qn with respect to the side between z′n and y′
n, which

is a hyperbolic polygon of seven sides. Consider the shortest geodesic segment of
length a in Q̃n that connects the side of length b and the side between z′n and x′

n.
Then we have a right-angled hexagon in Q̃n, which has a pair of opposite sides
of lengths a and b. Again by trigonometry on the right-angled hexagon (cf. [1,
Th.2.4.2]), we have

cosh b =
cosh a + cosh(n/2) cosh 1

sinh(n/2) sinh 1
.

These two equalities yield

cosh a = cosh
n

2
+ 2 cosh

1
2

cos
π

n
,

which implies a > n/2. By elementary geometric consideration, this is enough to
see that any closed geodesic in Zn other than xi

n and yn has length greater than
n. ¤

Along each geodesic boundary yn of Y (n ≥ 2), we glue Zn identifying yn. Then
along all geodesic boundary component xi

n of Zn (1 ≤ i ≤ n) for each n ≥ 2, we
glue n copies of Xn identifying xn with xi

n. The resulting hyperbolic Riemann
surface is our required S.

Lemma 8.4. The Riemann surface S satisfies the divergent geometry condition.

Proof. By Propositions 8.2 and 8.3, for any L > 0, the number of closed geodesics
contained in Xn, Y or Zn (n ≥ 2) whose lengths are less than L is finite. Since
the boundary components xn in Xn and yn in Y have inward half-collars of width
n, closed geodesics of length less than L that intersect these boundary components
are also finitely many. Thus the assertion follows. ¤
Proof of Theorem 8.1. By Lemma 8.4, the Riemann surface S satisfies the divergent
geometry condition. Hence we have only to show that MCG(S) is not countable.
Each simple closed geodesic yn has a collar A(yn, 1) ⊂ S of width 1 such that
A(yn, 1) ∩ A(ym, 1) = ∅ for n ̸= m. For any subset I ⊂ {n ≥ 2}, let gI be a locally
quasiconformal automorphism of S obtained by twists of length 1 along all yn for
n ∈ I. Then by Theorem 3.1, the maximal dilatation of [gI ] satisfies

K([gI ]) ≤
{

1 +
1

2 arctan(sinh 1)

}2

,

and in particular [gI ] belongs to MCG(S). Since such subsets I exist uncountably
many, so do the elements [gI ] ∈ MCG(S). ¤



24 KATSUHIKO MATSUZAKI

References

[1] P. Buser, Geometry and spectra of compact Riemann surface, Progress in Mathematics 106,
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