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0. Introduction

We say a Riemann surface R has extension or R is extendable if it is conformally
embedded in a larger Riemann surface R̂ as a proper subregion. In this paper, we
shall investigate the relationship between the extendability of R and its Fuchsian
model. Let G be a (possibly infinitely generated) Fuchsian group acting on the unit
disk ∆ = {z ∈ C; |z| < 1}. The limit set Λ(G) of G is the set of all accumulation
points of the orbit G(0) = ∪g∈Gg(0) on ∂∆. It is known that G acts properly
discontinuously on Ω(G) = Ĉ−Λ(G). We call G of the first kind if Λ(G) = ∂∆ and
of the second kind otherwise. If G is of the second kind, then R = ∆/G has “visible”
ideal boundary (∂∆−Λ(G))/G called border. However, for Fuchsian groups of the
first kind, we can obtain little information, from the limit set itself, about the ideal
boundary of R (cf. [6]), and about the extendability of R.

On the other hand, there is the following statement about the conformal defor-
mation of Fuchsian group of the first kind:

Folklore. Let G be a Fuchsian group of the first kind, and f a conformal map of
∆ such thatGf = fGf−1 is a Kleinian group. Then f(∆) is an invariant component
of the region of discontinuity of Gf . In particular, ∂f(∆) is the limit set of Gf .

At glance, the folklore seems to be true because the image of the orbit via f
also accumulates to the limit set of Gf which seems to be ∂f(∆). For instance,
in a well-known paper [3] concerning Kleinian groups, the above folklore seems to
be taken for granted (see [3] Theorem 6 and the proof), but it did not cause any
problem because it was applied for finitely generated Fuchsian groups of the first
kind, whose Riemann surfaces are closed except for at most a finite number of
punctures. Under the assumption of the folklore, it is obvious that Λ(Gf ) ⊂ ∂f(∆)
since Gf acts on f(∆). If Λ(Gf ) is a proper subset of ∂f(∆), the Riemann surface
∆/G is extendable beyond the ideal boundary (∂f(∆)−Λ(Gf ))/Gf . Therefore the
extendability of Riemann surfaces is related to the folklore.

Extendability of Riemann surfaces has been well investigated (cf. Sario-Oikawa
[11] X.5). Recently, Sakai [10] has completely classified all the types of extensions.
Among their works, what we are especially interested in is the extension whose
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inclusion map gives homotopy equivalence. Surprising is that there are Riemann
surfaces not admitting border (namely, whose Fuchsian representations are of the
first kind), but admitting such extensions.

In this paper, we disprove the folklore. Moreover, we characterize Fuchsian
groups for which the folklore is true. This is our main theorem and the statement
is in §1. We shall give a proof in §2. Next in §3, a concrete example of a Fuchsian
group of the first kind for which the folklore does not hold is constructed.

Recently, Hamilton [4] considered simultaneous uniformization of a pair of Rie-
mann surfaces by a Kleinian group in a more general situation than the original one
due to Bers [2]. But it seems to the authors that he tried to show the folklore in a
part of the proof. In §4, we give some remarks about this generalized simultaneous
uniformization.

Finally certain related results are given in §5. In particular, we see that a
Fuchsian group whose horocyclic limit set is of full measure satisfies the folklore.

The authors are grateful to the referee for his/her helpful comments.

1. Statement of Main Theorem.

We obtain an answer to the question what Fuchsian groups hold the folklore in
the introduction.

Main Theorem. Let R be a complete hyperbolic Riemann surface and G the Fuch-
sian group acting on the unit disk ∆ which uniformizes R. Then the following are
equivalent.

(S-1) Suppose that f is a conformal map of ∆ such that fGf−1 is a Kleinian
group. Then f(∆) is an invariant component of the region of discontinuity
of fGf−1.

(S-2) Suppose that f is a conformal map of ∆ into ∆ such that fGf−1 is a
Fuchsian group acting on ∆. Then f is a Möbius transformation.

(S-3) R has no homotopic extensions.
(S-4) Suppose that f is a conformal map of ∆ into ∆ such that fGf−1 is a

Fuchsian group acting on ∆. Then fGf−1 is of the first kind.
(S-5) R has no disks with D-ideal boundary.

Here we should define “homotopic extension” and “disk with D-ideal boundary”
which appear in the statement of the main theorem.

We say an open Riemann surface R has homotopic extension if there exists a
conformal map ι of R into another Riemann surface R̂ such that ι(R) is a proper
subregion of R̂ and ι gives homotopy equivalence.

We say a compact subset E of C belongs to the class ND if the unbounded
component V of C−E belongs to the class OAD of Riemann surfaces, in other words,
V admits no non-constant holomorphic functions with finite Dirichlet integrals.

Definition 1 (Disk with D-ideal boundary). Let R be a Riemann surface and
let U be a simply connected subregion of R whose relative boundary ∂RU in R
consists of Jordan arcs. We call U a disk with D-ideal boundary if for the Riemann
map h of U onto the unit disk ∆, ∂∆− h(∂RU) does not belong to ND.

The reason why a disk with D-ideal boundary is related to our problem will be
seen by Proposition 1 in the next section.
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Remark. Sakai [10] further classified the disks withD-ideal boundary into two cases;
they are either simply connected skirts or disks with crowded ideal boundaries in
his terms.

Definition 2 (Stably of the first kind, S-type). We say that a Fuchsian group
is stably of the first kind or simply of S-type if it satisfies the conditions in the main
theorem. We denote by S the class of all the Fuchsian groups stably of the first
kind. We also use the term S-type for Riemann surfaces if they are represented by
Fuchsian groups of S-type.

If a Fuchsian group G is finitely generated and of the first kind, then R = ∆/G
is a closed Riemann surface with at most a finite number of punctures. Thus it
satisfies (S-3) and G is a Fuchsian group stably of the first kind. A Riemann surface
without planar ends is of S-type if and only if it admits no extensions.

Remark. In this paper, we are interested in the conditions under which a Fuchsian
group of the first kind is conjugated to a Fuchsian group of the second kind. On
the other hand, it is known that any non-elementary Fuchsian group of the second
kind is conjugated to a Fuchsian group of the first kind by some conformal map.
Sugawa [13] has referred to this fact. See Theorem 3 in [4] as literature.

2. Proof of Main Theorem

Before the proof of our main theorem, we prepare a result which is used at an
essential step in our argument (cf. Sario-Oikawa [11] X.5B).

Proposition 1. Let E be a closed set in ∂∆. Then the following are equivalent.

(1) There exists a conformal map ϕ of ∆ into ∆ such that ϕ(∆) 6= ∆, ϕ has a
continuous extension to ∂∆−E denoted by the same letter ϕ, and ϕ(∂∆−
E) ⊂ ∂∆.

(2) E does not belong to ND.

Proof. First suppose that E does not belong to ND. By conjugation, we may
consider the proposition on the upper half plane H and assume E to be a bounded
closed set on the real axis R. Let P0(z) and P1(z) be the extremal horizontal and
vertical slit maps of C − E respectively with the Laurent expansion z + a1z

−1 +
a2z

−2 + · · · at ∞. Then we see P0(z) ≡ z because C − E is already an extremal
horizontal slit plane ([11] IX.4B), and P1(z̄) = P1(z) because C − E is symmetric
with respect to R. Since E /∈ ND, we know P0(z) 6= P1(z), in other words, the span
does not vanish ([11] VI.2D). This implies that P1 is not a Möbius transformation
though it maps H into H and R−E on R. Thus the image of H must be properly
contained in H.

Conversely suppose that E belongs to ND. Let ϕ be a conformal map of ∆ into
∆ continuously extending to ∂∆ − E so that ϕ(∂∆ − E) ⊂ ∂∆. By the reflection
principle, ϕ further extends to a conformal map of C−E. Then again by [11] VI.2D,
it must be the restriction of a Möbius transformation. Thus we have ϕ(∆) = ∆. ¤

Proof of Main Theorem. (S-1) ⇒ (S-2): Suppose that there is a conformal map f of
∆ into ∆ such that fGf−1 is a Fuchsian group but f is not a Möbius transformation.
Then f(∆) is a proper subset of ∆ and ∆ is a subset of the invariant component of
the region of discontinuity of the Fuchsian group fGf−1. This contradicts (S-1).
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(S-2) ⇔ (S-3): Suppose that R = ∆/G admits homotopic extension. Then there
exists a Riemann surface R̂ such that R is a proper subregion of R̂ and the inclusion
ι : R → R̂ is a homotopy equivalent conformal map. Let Ĝ be a Fuchsian group
acting on ∆ which represents R̂ and let f : ∆ → ∆ be a lift of ι. This is conformal
and satisfying fGf−1 = Ĝ because ι gives the homotopy equivalence. Since ι(R)
is a proper subregion of R̂, we conclude that f(∆) is a proper subset of ∆. In
particular, f is not Möbius. Thus (S-2) implies (S-3), and the converse is now easy.

(S-3) ⇒ (S-4): If G is of the second kind, R has homotopic extension. Hence
any Fuchsian group satisfying (S-3) is of the first kind. We have seen that (S-3) is
equivalent to (S-2). Therefore (S-4) follows from (S-2) and (S-3).

(S-4) ⇒ (S-5): Suppose that R = ∆/G has a disk with D-ideal boundary U .
From its definition, there exists a conformal map h of U onto ∆ such that E =
∂∆− h(∂RU) does not belong to ND. Considering ϕ as in Proposition 1, we verify
that there exist a Riemann surface R̂ with R ⊂ R̂ and a simply connected subset
Û of R̂ such that U is a proper subset of Û . Take a connected component α
(continuum) of Û − U and consider a Riemann surface R′ = R̂ − α. We denote
by G′ a Fuchsian group representing R′. Lifting the homotopy equivalent inclusion
map ι : R→ R′ to ∆, we have a conformal map f : ∆ → ∆ such that fGf−1 = G′.
But, from the construction of R′, the Fuchsian group G′ is of the second kind. Thus
we have a contradiction.

(S-5) ⇒ (S-1): Let G be a Fuchsian group such that R = ∆/G satisfies (S-
5). Suppose that there exists a conformal map f for which (S-1) does not hold.
Namely, Gf = fGf−1 is a Kleinian group but f(∆) is not an invariant component
of the region of discontinuity of Gf . Then f(∆) is a proper subregion of Ω(Gf ),
the region of discontinuity of Gf . Take a point p ∈ ∂f(∆) ∩ Ω(Gf ) and a small
disk Up centered at p such that g(Up) ∩ Up = ∅ for every g ∈ Gf − {id}. Let V be
a connected component of f(∆) ∩ Up. Obviously it is simply connected. Let ψ be
a conformal map of V onto the unit disk ∆. Then the set ∂V ∩ f(∆) is mapped
to a relatively open subset O of ∂∆ via ψ. We denote by E the complement of O
with respect to ∂∆. We regard V as a simply connected domain in ∆/G. Then,
from (S-5), V is not a disk with D-ideal boundary, and thus E ∈ ND. On the
other hand, V is a proper subdomain of Up and O is mapped on ∂Up via ϕ = ψ−1.
Therefore, from Proposition 1, we see that E does not belong to ND. This is a
contradiction. ¤

3. Example

Now we construct a Fuchsian group of the first kind but not stably of the first
kind. Actually, Example 1 in Sakai [10] is a Riemann surface represented by such
a Fuchsian group. We will explain it with a little modification.

We take a closed set E in ∂∆ which is totally disconnected and satisfying the
conditions of Proposition 1 (cf. [11] IX. 4G-4I). Then we have a conformal map ϕ of
∆ into ∆ such that ϕ(∂∆−E) ⊂ ∂∆ and ϕ(∆) $ ∆. Let P ′ = {p′n}∞n=1 be a discrete
subset in ϕ(∆) such that the derived set is equal to ∂ϕ(∆)∩∂∆ = ϕ(∂∆−E). Then
R′ = ϕ(∆)−P ′ is conformally equivalent toR = ∆−P via ϕ−1, where P = ϕ−1(P ′).
Note that the derived set of P is ∂∆ because E is totally disconnected.

From the construction, R admits a homotopic extension. Indeed, it is a proper
subregion of a Riemann surface which is conformally equivalent to ∆−P ′. Namely,
R is not of S-type.
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On the other hand, if we know R is of the first kind, we obtain the desired
example.

Lemma 1. Let P = {pn}∞n=1 be a discrete subset of ∆ such that the derived set of
P is ∂∆. Then the Fuchsian group G which represents R = ∆ − P is of the first
kind.

Actually, we show a more general result which induces Lemma 1.

Theorem 1. Let R be a hyperbolic planar domain. We consider a connected com-
ponent K of ∂R which is a continuum. For a point p in K and for a neighborhood
U of p, we denote by B(U, p) the set of components of U −K whose boundary con-
tains p. If every V ∈ B(U, p) for every U , p and K satisfies V ∩ ∂R 6= ∅, then the
Fuchsian group G which represents R is of the first kind.

Remark. The converse of Theorem 1 is not true. Moreover, the assumption on
a planar domain R is not conformally invariant; namely, even if R and R′ are
conformally equivalent and R satisfies the condition about ∂R as in Theorem 1, R′

may not. A counterexample is given just by R and R′ in the above example.

Proof of Theorem 1. Suppose that G is of the second kind, and acting on the upper
half plane H = {z = (x, y) | y > 0}. Then there exists a rectangle

Q = {z = (x, y) | a < x < b, 0 < y < c}

such that g(Q) ∩ Q = ∅ for every g ∈ G − {id}. The universal cover π : H → R
restricted to Q is a conformal map onto a simply connected domain π(Q) ⊂ R. We
can take three vertical segments

li = {z = (x, y) | x = xi, 0 < y < c} (i = 1, 2, 3; a < x1 < x2 < x3 < b)

in Q such that the limits
lim

li3z→(xi,0)
π(z) = ζi

exist in ∂R ∩ ∂π(Q) for i = 1, 2, 3 and {ζi}i=1,2,3 are distinct. This is possible
because of the Fatou-Riesz theorem about non-tangential limits of bounded analytic
functions. It is clear that {ζi}i=1,2,3 are in the same component K of ∂R. We
consider the smaller rectangle

Q′ = {z = (x, y) | x1 < x < x3, 0 < y < c}

and its image π(Q′). Since the both ends of the arc ∂Rπ(Q′) are bounded away
from ζ2, we can choose a neighborhood U of ζ2 so that U∩∂Rπ(Q′) = ∅. Then there
is a component of U −K in which π(l2) is accessible to ζ2. Since it is contained in
π(Q′), it has no points of ∂R. Therefore the assumption of the theorem does not
hold for p = ζ2. ¤

Remark. Sakai [10] actually took a two-sheeted unlimited branched covering of ∆
so that the projection of the set of the branch points is P . While our example is
of genus 0 and has planar ends, his example is of infinite genus and has no planar
ends and it also gives a Fuchsian group of the first kind but not stably of the first
kind.
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4. Simultaneous uniformization

Let R and R∗ be hyperbolic Riemann surfaces for which there is an orientation
reversing homeomorphism Ψ : R → R∗. Bers proved that if R and R∗ are of
finite area, then there is a Kleinian group Γ simultaneously uniformizing R and
R∗ (cf. [2]). This means that Γ has two invariant components W and W ∗ of
the region of discontinuity Ω(Γ) so that the Riemann surfaces W/Γ and W ∗/Γ
are conformally equivalent to R and R∗ respectively. In his paper [4], Hamilton
considered the simultaneous uniformization for the general case where the Fuchsian
groups corresponding to R and R∗ are of the first kind. However his proof relies
on the folklore in the introduction, which contradicts our result in the previous
section. See Theorem 4 or Corollary 1 in [4]. Thus we think that this generalized
simultaneous uniformization (Theorem 1 in [4]) is still open.

In this section, we show the simultaneous uniformization theorem for Riemann
surfaces R and R∗ of S-type with an orientation reversing homeomorphism Ψ :
R→ R∗. Of course, Hamilton’s proof is applicable at least to this case. But several
complicated arguments are not necessary any longer. We will prove the theorem
much simply.

Theorem 2. Let R and R∗ be Riemann surfaces of S-type. If there is an orienta-
tion reversing homeomorphism Ψ : R→ R∗, then there is a Kleinian group Γ which
simultaneously uniformizes R and R∗.

Proof. Let G be a Fuchsian group acting on the unit disk ∆ such that R = ∆/G,
and G∗ acting on the exterior of the unit disk ∆∗ = {z ∈ Ĉ | |z| > 1} such that
R∗ = ∆∗/G∗. Lifting Ψ to ∆, we have an orientation reversing homeomorphism
Φ : ∆ → ∆∗ which induces the isomorphism θ : G→ G∗. The G∗ acts not only on
∆∗ but also on ∆. Then Ψ−1 ◦ J : ∆ → ∆ induces θ−1, where J is the reflection
with respect to the unit circle. Let Rn be the exhaustion of R by topologically finite
Riemann surfaces and Gn the corresponding exhaustion of G by finitely generated
subgroups of the second kind. Further, set G∗n = θ(Gn). Of course, Ψ−1 ◦J induces
θ−1 : G∗n → Gn for each n. Since they are finitely generated, we may replace Ψ−1◦J
with a quasiconformal automorphism ωn of ∆ such that ωng

∗ω−1
n = θ−1(g∗) for

every g∗ ∈ G∗n.
Let µn be the complex dilatation of ωn. We define a Beltrami coefficient µ̂n on

Ĉ such that µ̂n = µn on ∆ and µ̂n = 0 elsewhere. Then there is a quasiconformal
automorphism Fn of Ĉ with the complex dilatation µ̂n and with the normalization
that the Laurent expansion at ∞ is

Fn(z) = z +
bn1

z
+
bn2

z2
+ · · · .

This conjugates the Fuchsian group G∗n to a Kleinian group Γn. We define

f∗n = Fn : ∆∗ →W ∗
n ; fn = Fn ◦ ω−1

n : ∆ →Wn.

They are conformal and satisfying f∗nθ(g)f
∗−1
n = fngf

−1
n ∈ Γn for every g ∈ Gn.

The sequences {fn} and {f∗n} constitute normal families. Passing to subse-
quences, we may assume that fn → f and f∗n → f∗ uniformly on each compact
subset in ∆ and ∆∗ respectively. In virtue of the above normalization, we see that
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the limit f∗ is conformal. Therefore f∗nθ(g)f
∗−1
n converges to a Möbius transfor-

mation γg = f∗θ(g)f∗−1 for each g ∈ G, and f∗ conjugates G∗ to a Kleinian group
Γ.

On the other hand, we can prove that f is not a constant map, from the fact
that fngf

−1
n also converge to γg. For the proof, we prepare the following lemma.

Lemma 2. If conformal maps fn of ∆ converge to a constant map f ≡ a and
Möbius transformations γn = fngf

−1
n converge to a Möbius transformation γg,

then the point a is fixed by γg.

Proof. γn converge to γg uniformly and satisfy that γn◦fn(z) = fn◦g(z) for z ∈ ∆.
Taking the limit as n→∞, we have γg(a) = a. ¤

Choosing non-commutative elements g1 and g2 in G, we see that γg1 and γg2 do
not commute. If f is a constant map a, the above lemma shows that they both have
the same fixed point a, and thus they must commute. This contradiction proves
that f is non-constant, and hence conformal.

Let W be the image of ∆ by the conformal map f , and W ∗ the image of ∆∗

by f∗. The Kleinian group Γ = fGf−1 = f∗G∗f∗−1 acts on both W and W ∗

properly discontinuously and keeps each of them invariant. The quotient W/Γ is
conformally equivalent to R and W ∗/Γ is to R∗. Further, by the assumption that
R and R∗ are of S-type, we know that W and W ∗ are the components of the region
of discontinuity of Γ (Main Theorem). Thus Γ simultaneously uniformizes R and
R∗. ¤
Remark. At this stage, we cannot eliminate the possibility that Γ may have other
components of the region of discontinuity than W and W ∗ yet. An example of
a Kleinian group with two invariant components and other components was con-
structed in [1].

Conversely, if Γ is a Kleinian group which has two invariant components W and
W ∗ of the region of discontinuity, the Riemann surfaces W/Γ and W ∗/Γ should
be topologically equivalent by an orientation reversing homeomorphism. In Section
6 of [4], there is a proof about this fact, but there the Riemann surfaces W/Γ
and W ∗/Γ are assumed to be of the first kind. But even if Γ is a Kleinian group
whose region of discontinuity consists of two invariant components W and W ∗,
the Riemann surfaces W/Γ and W ∗/Γ can be of the second kind. In other words,
the Riemann mappings of W and W ∗ may conjugate Γ to Fuchsian groups of the
second kind. This was remarked in [1]. An example of such a Kleinian group was
explained in [5] Note 3.1.3. Thus the proof in [4] should be slightly changed.

5. Supplemental results

(A) Quasiconformal invariance. It is an interesting problem to consider whether
a property of a Riemann surface is preserved under quasiconformal deformations.
Here we prove that the class S has quasiconformal invariance. In other words;

Theorem 3. Let R be a Riemann surface of S-type and R′ a quasiconformal de-
formation of R. Then R′ is also of S-type.

This is known from quasiconformal invariance of ND (cf. [12] II.14-15). A weaker
claim but enough for our application is easily derived from Proposition 1; we include
it here.
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Lemma 3. Let E be a closed set in ∂∆ and σ a quasiconformal automorphism of
C which maps ∆ onto ∆. If E belongs to ND, then so does E′ = σ(E).

Proof. If not, by Proposition 1, there is a conformal map ϕ′ of ∆ into ∆ such that
ϕ′(∆) $ ∆ and ϕ′(∂∆−E′) ⊂ ∂∆. By the measurable Riemann mapping theorem,
there is a quasiconformal automorphism τ of ∆ such that ϕ = τ ◦ϕ′◦σ is conformal.
This maps ∆ into ∆ such that ϕ(∆) $ ∆ and ϕ(∂∆− E) ⊂ ∂∆. This means that
E does not belong to ND by Proposition 1. ¤

Proof of Theorem 3. Suppose that R′ is not of S-type. Then there exists a disk U ′

with D-ideal boundary in R′. Under a conformal map h′ : U ′ → ∆, let us denote
E′ = ∂∆−h′(∂R′U

′). It does not belong toND. Let q : R→ R′ be a quasiconformal
homeomorphism and set U = q−1(U ′). Again, by using a conformal map h : U →
∆, we define E = ∂∆− h(∂RU). Then the composition σ = h′ ◦ q ◦ h−1 : ∆ → ∆ is
a quasiconformal automorphism, extends to C and maps E onto E′. By Lemma 3,
we see that E does not belong to ND. Hence R has a disk with D-ideal boundary,
and it is not of S-type. ¤

(B) Conservative Fuchsian groups. In [9], Pommerenke introduced a certain class
of Fuchsian groups (accessible type), and gave several characterizations of these
groups. One of them is a condition about the horocyclic limit sets. For a Fuchsian
group G, we say in this paper that x ∈ ∂∆ is a horocyclic limit point of G if in
some horodisk tangent to ∂∆ at x, there are points of G(0) which accumulate to x.
The set of horocyclic limit point is denoted by Λh(G), which is of course a subset
of the limit set Λ(G). Generally, the action of G on ∂∆ divides it into the two
parts up to null sets: the dissipative part and the conservative part. The former is
the part where G has a measurable fundamental set. According to Theorem 1 in
[9], we know that the conservative part of G coincides with Λh(G). In this sense,
we say G is conservative if Λh(G) has full Lebesgue measure on ∂∆, and denote
the class of conservative Fuchsian groups by C. Cofinite area Fuchsian groups are
conservative and conservative Fuchsian groups are of the first kind.

Here we see a relation between the classes S and C. The key fact is the following
Proposition 3 derived from Theorem 2 in [9], characterizing Riemann surfaces whose
Fuchsian groups are conservative (abusing notation, these Riemann surfaces are also
called conservative).

Definition 3 (Disk with B-ideal boundary). Let R be a Riemann surface and
let U be a simply connected subregion of R whose relative boundary ∂RU in R
consists of Jordan arcs. We call U a disk with B-ideal boundary if for the Riemann
map h of U onto the unit disk ∆, ∂∆− h(∂RU) has positive linear measure.

Proposition 3. A Riemann surface is conservative if and only if it does not have
a disk with B-ideal boundary.

Let E be a compact subset of C. We say that the set E belongs to the class
NB if the unbounded component V of C − E belongs to the class OAB , in other
words, the planar domain V admits no non-constant bounded analytic functions.
For a compact subset E in ∂∆, it is known that E belongs to NB if and only if the
linear measure of E is zero (cf. [12] II.10A). It is known that OAB ⊂ OAD (cf. [12]
I.9A), and we have NB ⊂ ND from the definition. Accordingly, a disk with D-ideal
boundary is with B-ideal boundary. Therefore we have the following theorem.
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Theorem 4. If a Fuchsian group G is conservative, in other words, if Λh(G) has
full measure on ∂∆, then it is stably of the first kind.

Furthermore, the inclusion C ⊂ S is strict. Indeed, the class C is not quasiconfor-
mally invariant (cf. [7] Theorem 7.1) but the class S is quasiconformally invariant
by Theorem 3, and hence they are not coincident.

Another proof of Theorem 4, which is pointed out by the referee, is obtained
from a result by Nagel, Rudin and Shapiro [8]. They proved in particular that a
conformal map of the unit disk ∆ into ∆ has horocyclic limits almost everywhere
on ∂∆. Let G be a conservative Fuchsian group and f : ∆ → ∆ a conformal map
such that fGf−1 is a Fuchsian group acting on ∆. If f(∆) is a proper subset of ∆,
then there is a subset of positive measure in Λh(G) where f has horocyclic limits
inside ∆. However as the orbits (fGf−1)(f(0)) are conjugate to the orbits G(0),
they must only cluster on ∂∆. This implies that f(∆) = ∆, in other words, f must
be a Möbius transformation. Thus the condition (S-2) in Main Theorem is satisfied
and G is stably of the first kind.

Finally, we remark about a sufficient condition for a planar Riemann surface
R = ∆ − P to be in S, where P = {pn}∞n=1 is a discrete subset of ∆. We define
the conical derived set Lc(P ) of P as follows: x ∈ ∂∆ belongs to Lc(P ) if there is
a Stolz angular region with the vertex x where P accumulates to x. Pommerenke
proved that R = ∆−P belongs to C if and only if Lc(P ) has full Lebesgue measure
on ∂∆ (cf. [7] Lemma 2.1). Therefore we see from Theorem 4 that R belongs to S
if Lc(P ) has full measure. We can also see that Lc(P ) does not have full measure
for the example R = ∆− P in §3.
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