Conditional stability of Kleinian groups

Katsuhiko Matsuzaki * Department of Mathematics, Ochanomizu University Tokyo, Japan

Abstract

We prove that any algebraically small quasiconformal deformation of a finitely generated Kleinian group is induced by a quasiconformal automorphism of the Riemann sphere with a small dilatation.

This is a research announcement on a problem of stability of Kleinian groups. More detailed arguments are contained in a forthcoming monograph [5].

Let Γ be a finitely generated non-elementary Kleinian group, which is identified with a discrete subgroup of $PSL_2(\mathbf{C})$, with a fixed system of generators $\Gamma = \langle \gamma_1, \ldots, \gamma_N \rangle$. We consider the set of $PSL_2(\mathbf{C})$ -representations

 $\operatorname{Hom}(\Gamma) = \{ \rho \mid \rho : \Gamma \to \operatorname{PSL}_2(\mathbf{C}) \text{ is a homomorphism} \}.$

This is regarded as an analytic subset of $PSL_2(\mathbf{C})^N$ by the correspondence

$$\rho \mapsto (\rho(\gamma_1), \ldots, \rho(\gamma_N)) \in \mathrm{PSL}_2(\mathbf{C})^N.$$

We also consider an analytic set of all representations sending any parabolic element to a parabolic one or the identity, that is

 $PHom(\Gamma) = \{ \rho \in Hom(\Gamma) \mid tr^2 \rho(\gamma) = 4 \text{ for any parabolic } \gamma \in \Gamma \}.$

Let $\Omega(\Gamma)$ be the region of discontinuity of Γ in $\hat{\mathbf{C}}$. We consider the Teichmüller space $T(\Omega(\Gamma)/\Gamma)$ of the union of orbifolds $\Omega(\Gamma)/\Gamma$. For every

^{*}E-mail: matsuzak@math.ocha.ac.jp

 $[\mu] \in T(\Omega(\Gamma)/\Gamma)$, we denote by f_{μ} a quasiconformal automorphism of $\hat{\mathbf{C}}$ that gives the deformation $[\mu]$ of the complex structure of $\Omega(\Gamma)/\Gamma$ and that satisfies a suitable normalization condition. Then a holomorphic map

$$\Psi: T(\Omega(\Gamma)/\Gamma) \times \mathrm{PSL}_2(\mathbf{C}) \to \mathrm{PHom}(\Gamma)$$

is defined by

$$\rho(\gamma) = (A \circ f_{\mu})\gamma(A \circ f_{\mu})^{-1}$$

for any pair $([\mu], A) \in T(\Omega(\Gamma)/\Gamma) \times PSL_2(\mathbb{C})$. This map $\tilde{\Psi}$ is well-defined independently of the choice of the representative μ . Moreover, the Sullivan rigidity theorem implies that the image of $\tilde{\Psi}$ coincides with the set of the whole representations induced by quasiconformal automorphisms of $\hat{\mathbb{C}}$ (cf. [5, Chapter 5]). This set is called the quasiconformal deformation space and denoted by $QHom(\Gamma)$ ($\subset Hom(\Gamma)$).

For a torsion-free geometrically finite Kleinian group Γ , Marden [4] proved that $\operatorname{QHom}(\Gamma)$ is a complex *regular* submanifold of $\operatorname{PSL}_2(\mathbb{C})^N$. In this note, we prove that this is satisfied for any finitely generated Kleinian group Γ . It is known that the derivative $d\tilde{\Psi}$ of $\tilde{\Psi}$ at any point is injective. Hence $\tilde{\Psi}$ is a holomorphic immersion onto $\operatorname{QHom}(\Gamma)$. Thus our problem is just compatibility of the Teichmüller topology of $T(\Omega(\Gamma)/\Gamma) \times \operatorname{PSL}_2(\mathbb{C})$ and the topology of $\operatorname{QHom}(\Gamma)$, which is the algebraic topology for $\operatorname{PSL}_2(\mathbb{C})$ -representations:

Problem If ρ_n converge to id in $\operatorname{QHom}(\Gamma)$, do there always exist $(t_n, A_n) \in \tilde{\Psi}^{-1}(\rho_n)$ such that t_n converge to the base point $0 \in T(\Omega(\Gamma)/\Gamma)$ and A_n converge to id as $n \to \infty$?

This problem is originated in Bers [1, p.578]. See also [2]. Later Krushkal published a series of papers (cf. [3]) concerning this problem. A finitely generated Kleinian group is called *conditionally stable* or *quasi-stable* if it satisfies the property in the problem above.

We will show that a result on geometric convergence of Kleinian groups yields the affirmative answer to this problem.

Theorem 1 Any finitely generated Kleinian group Γ is conditionally stable. Hence $\operatorname{QHom}(\Gamma)$ is a complex regular submanifold of $\operatorname{PSL}_2(\mathbf{C})^N$.

We first remark the following two facts.

Lemma 2 Γ is conditionally stable if any component subgroup of Γ is conditionally stable.

Proof. This follows easily from the definition of conditional stability.

Lemma 3 Let Γ be a finitely generated Kleinian group and Γ' a subgroup of Γ of finite index. If Γ' is conditionally stable, then so is Γ .

Proof. Suppose that Γ is not conditionally stable. Then there is a sequence $\rho_n \in \text{QHom}(\Gamma)$ converging to *id* such that the maximal dilatation of the extremal quasiconformal automorphism f_n inducing ρ_n does not tend to 1 as $n \to \infty$. Here the extremal quasiconformal map is the one with the smallest maximal dilatation among quasiconformal maps with the required property.

We restrict ρ_n to the subgroup Γ' and have $\rho'_n \in \operatorname{QHom}(\Gamma')$. Then ρ'_n converges to *id* and f_n induces ρ'_n . Since Γ' is of finite index in Γ , f_n is also the extremal quasiconformal automorphism that induces ρ'_n (cf. [6]). But this contradicts the assumption that Γ' is conditionally stable. Thus we see that Γ is also conditionally stable.

By these facts, it suffice to consider torsion-free function groups Γ for proving Theorem 1. It is known that such Γ is constructed from elementary groups, quasifuchsian groups and totally degenerate groups without APT by a finite number of applications of the Maskit combination theorem. Moreover we can see that conditional stability is preserved under the Maskit combination theorem:

Lemma 4 Assume that a torsion-free function group Γ is constructed from Γ_1 and Γ_2 (as the amalgamated free product or the HNN–extension) by the Maskit combination theorem. If both Γ_1 and Γ_2 are conditionally stable, then so is Γ .

Proof. See [5, Section 7.3].

Therefore Theorem 1 will complete if it is solved for totally degenerate groups without torsion nor APT. The crucial fact for this step is the following result due to Thurston (cf. [5, Section 7.2]).

Proposition 5 Let Γ_0 be a finitely generated torsion-free Fuchsian group and $\theta_n : \Gamma_0 \to \Gamma_n$ a sequence of type-preserving isomorphisms onto Kleinian groups, which converges algebraically to a type-preserving isomorphism θ : $\Gamma_0 \to \Gamma$. If Γ is a totally degenerate group, then Γ_n also converge geometrically to Γ . Applying this proposition, we can assert:

Lemma 6 Under the same circumstances as in Proposition 5, if Γ_n and Γ are totally degenerate groups, then the marked complex structures t_n of $\Omega(\Gamma_n)/\Gamma_n$ converge to t of $\Omega(\Gamma)/\Gamma$. In particular, any torsion-free, totally degenerate group without APT is conditionally stable.

Proof. Let C_n be the convex core of the hyperbolic manifold \mathbf{H}^3/Γ_n and ∂C_n the relative boundary of C_n , which is regarded as a pleated surface with a marked hyperbolic structure s_n . By Proposition 5, we can see that s_n converge to the marked hyperbolic structure s of the boundary surface of the convex core of \mathbf{H}^3/Γ . By Sullivan's theorem (cf. [5, Section 7.1]), s_n and t_n are in a bounded Teichmüller distance independent of n. Hence $\{t_n\}$ is a bounded sequence in the Teichmüller space and there is a subsequence $\{t_{n'}\}$ which converges to some t'. Then $\Gamma_{n'}$ converge algebraically to a bgroup Γ' such that the marked complex structure of D'/Γ' is t', where D' is the invariant component of $\Omega(\Gamma')$. However, Γ' should coincide with Γ , and hence t' = t.

Thus we obtain Theorem 1.

References

- Bers, L. On boundaries of Teichmüller spaces and on kleinian groups I. Ann. of Math., 91 (1970), 570–600.
- [2] Bers, L. Spaces of Kleinian groups. Maryland conference in several complex variables. Lecture Notes in Math. 155, Springer, pp. 9–34.
- [3] Krushkal, S. Quasiconformal stability of Kleinian groups. Siberian Math. J., 20 (1979), 229–234.
- [4] Marden, A. The geometry of finitely generated Kleinian groups. Ann. of Math., 99 (1974), 383–462.
- [5] Matsuzaki, K. and Taniguchi, M. The theory of Kleinian groups. Oxford Univ. Press. To appear.
- [6] Ohtake, H. Lifts of extremal quasiconformal mappings of arbitrary Riemann surfaces. J. Math. Kyoto Univ., 22 (1982), 191–200.