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Abstract. Using the correspondence between the quasisymmetric quotient and the
variation of the cross ratio for a quasisymmetric automorphism g of the unit circle, we
establisch a certain integrability of the complex dilatation of a quasiconformal extension
of g to the unit disk if the Liouville cocycle for g is integrable. Moreover, under this
assumption, we verify regularity properties of g such as being bi-Lipschitz and symmetric.

1. Introduction

A quasisymmetric automorphism g : S → S of the unit circle S = {ζ ∈ C | |ζ| = 1}
plays a central role in the quasiconformal theory of Teichmüller spaces. For an orientation-
preserving self-homeomorphism g of S, the concept of quasisymmetry can be defined in
several ways, but boundedness of the variation of the following quantities under g is being
used in some usual definitions, which are known to be equivalent:

(1) the ratio of two intervals given by any three positively ordered points on S;
(2) the cross ratio of four positively ordered points on S.

In both definitions, the variation is taken over all normalized points on S, that is, three
consecutive points with equal intervals in the first case and four points of even cross ratio
in the second case.

To describe the above definition precisely, it is convenient to use a lift of an orientation-
preserving self-homeomorphism g of S to a self-homeomorphism g̃ of the real line R by
the universal covering R→ S with the correspondence x 7→ eix.

In general, for an increasing homeomorphic function h : R → R, the quasisymmetric
quotient is defined by

mh(x, t) =
h(x+ t)− h(x)

h(x)− h(x− t)
for every x ∈ R and every t > 0. If mh(x, t) is uniformly bounded from above and away
from zero, we say that h is quasisymmetric. More precisely, h is M -quasisymmetric if
there exists a constant M ≥ 1 such that 1/M ≤ mh(x, t) ≤ M holds for every x ∈ R
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and for every t > 0. The quasisymmetry of g is defined by that of its lift g̃. Moreover,
a quasisymmetric automorphism g of S or its lift g̃ : R → R is called symmetric if
mg̃(x, t)→ 0 as t→ 0 uniformly, that is, independently of x ∈ R.

On the other hand, for positively ordered distinct points ζ1, ζ2, ζ3, ζ4 ∈ S, the cross ratio
is defined by

[ζ1, ζ2, ζ3, ζ4] =
(ζ1 − ζ3)(ζ2 − ζ4)

(ζ1 − ζ4)(ζ2 − ζ3)
∈ (1,∞).

An orientation-preserving self-homeomorphism g of S is quasisymmetric if and only if
there is some constant M ′ ≥ 1 such that

1

M ′ ≤
[g(ζ1), g(ζ2), g(ζ3), g(ζ4)]

[ζ1, ζ2, ζ3, ζ4]
≤M ′

for any positively ordered distinct points ζ1, ζ2, ζ3, ζ4 ∈ S satisfying [ζ1, ζ2, ζ3, ζ4] = 2.
For ζj = eixj (j = 1, 2, 3, 4) with x1 < x2 < x3 < x4 and x4 − x1 < 2π, the cross ratio

can be represented by the following integral formula:

log [ζ1, ζ2, ζ3, ζ4] =

∫ x4

x3

∫ x2

x1

1

4 sin2((x− y)/2)
dxdy.

If we assume that an orientation-preserving self-homeomorphism g of S is absolutely
continuous, then the logarithm of the variation of the cross ratio under g is

log
[g(ζ1), g(ζ2), g(ζ3), g(ζ4)]

[ζ1, ζ2, ζ3, ζ4]
=

∫ x4

x3

∫ x2

x1

c(g)(x, y) dxdy,

where

c(g)(x, y) =
g̃′(x)g̃′(y)

4 sin2((g̃(x)− g̃(y))/2)
− 1

4 sin2((x− y)/2)
.

This is called the Liouville cocycle for g. Then its integrable norm

‖c(g)‖1 =

∫
S× S \∆

|c(g)(x, y)|dxdy

over S×S \∆ measures the total amount of the variation of the cross ratio under g,
where ∆ denotes the diagonal set of S×S. In particular, ‖c(g)‖1 < ∞ implies that g is
quasisymmetric.

The corresponding totality of the quasisymmetric quotient mg̃(x, t) can be also given
by its integral. However, we do not consider this integration directly. Instead, we apply
the relationship between mg̃(x, t) and the complex dilatation µ̃(z) of a quasiconformal
automorphism of the upper half-plane H = {z = x + iy | y > 0} obtained by the
Beurling-Ahlfors extension of g̃. Using the holomorphic universal covering H → D \{0}
defined by z 7→ ζ = eiz, we have a quasiconformal automorphism of the unit disk D =
{ζ ∈ C | |ζ| < 1} extending g whose complex dilatation µ(ζ) contains information about
the quasisymmetry of g. Then we expect that a certain integral of µ(ζ) can be estimated
in terms of ‖c(g)‖1. This will be a component of the results in this paper, stated as
Theorem 4.1.
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In addition, the integrability of the Liouville cocycle for g reflects certain regularity of
g. Theorem 3.1 shows that g is bi-Lipschitz continuous and Theorem 5.1 shows that g is
symmetric. Those three theorems can be unified in the following statement.

Theorem 1.1. Let g : S→ S be an absolutely continuous quasisymmetric automorphism
with ‖c(g)‖1 <∞. Then g is bi-Lipschitz and symmetric as well as it extends continuously
to a quasiconformal automorphism of D whose complex dilatation µ(ζ) satisfies∫

S
|µ((1− τ)eix)|dx ≤ aτ

for every τ ∈ (0, 1), where a > 0 is a constant depending only on ‖c(g)‖1. In particular,∫
D
|µ(ζ)|(1− |ζ|)−1dξdη ≤ a

2

follows from this estimate.

In the next section, we will supply necessary facts used for our conclusions mentioned
above, especially on (1) the Beurling-Ahlfors extension and (2) the cross ratio and the
Liouville cocycle.

2. Preliminaries

2.1. The Beurling-Ahlfors extension. An orientation-preserving homeomorphism f

of a domain D ⊂ Ĉ is called quasiconformal if it has distributional partial derivatives
and satisfies ‖µf‖∞ < 1 for the complex dilatation µf (z) = ∂̄f(z)/∂f(z). For a constant
K ≥ 1, f is defined to be K-quasiconformal if

1 + ‖µf‖∞
1− ‖µf‖∞

≤ K.

A quasiconformal automorphism of D extends continuously to a quasisymmetric auto-
morphism of S. Conversely, a quasisymmetric automorphism of S extends continuously to
a quasiconformal automorphism of D. In both directions, the quasisymmetric constant M
or M ′ and the quasiconformal constant K appearing in their definitions are related to each
other. This fact is also valid for quasiconformal automorphisms of H and quasisymmetric
functions on R.

We review the canonical quasiconformal extension of an arbitrary quasisymmetric func-
tion. For a quasisymmetric function h : R→ R, set

α(x, y) =

∫ 1

0

h(x+ ty)dt, β(x, y) =

∫ 1

0

h(x− ty)dt

and define

F
(r)
h (z) =

1

2
{α(x, y) + β(x, y)}+

ir

2
{α(x, y)− β(x, y)}
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for z = x + iy ∈ H. This is called the Beurling-Ahlfors extension of h with parameter
r > 0, and it was proved in [3] that this extension is quasiconformal with certain estimate
of its quasiconformal constant. The improvement of the constant as shown in the following
theorem is due to Lehtinen [10].

Theorem 2.1. For an M-quasisymmetric function h of R, its Beurling-Ahlfors extension

F
(r)
h is a K-quasiconformal automorphism of H with boundary function h. Here K can be

estimated as K ≤ min{M3/2, 2M − 1} for some suitable choice of r.

Carleson [4] improveed this theorem in the case where the quasisymmetric quotient
mh(x, t) is uniformly close to one; more precisely, if there is a positive increasing function
ε(t) of t > 0 such that

(∗) 1

1 + ε(t)
≤ mh(x, t) ≤ 1 + ε(t)

and ε(t) gets sufficiently small when t→ 0. A typical case occurs when h is a symmetric
function, which means limt→0 ε(t) = 0 by definition. It was proved in [4] that the complex
dilatation µ̃(z) of the Beurling-Ahlfors extension at z = x + iy is dominated by this
function ε(t) for y = t. An explicit computation of the constant can be found in [12].

Theorem 2.2. Let h : R → R be a quasisymmetric function that satisfies (∗) for a
positive increasing function ε(t). Let µ̃(z) be the complex dilatation of the Beurling-

Ahlfors extension F
(2)
h (z) of h with parameter r = 2. Then |µ̃(z)| ≤ 4ε(y) for every

z = x+ iy ∈ H.

2.2. Cross ratio and the Liouville cocycle. For positively ordered distinct points
ζ1, ζ2, ζ3, ζ4 ∈ S, we consider the cross ratio [ζ1, ζ2, ζ3, ζ4]. We also utilize the following
modification which we call the alternative cross ratio:

[ζ1, ζ2, ζ3, ζ4]∗ =
[ζ2, ζ3, ζ4, ζ1]

[ζ1, ζ2, ζ3, ζ4]

=
−1

1− [ζ1, ζ2, ζ3, ζ4]
= −(ζ1 − ζ4)(ζ3 − ζ2)

(ζ3 − ζ4)(ζ1 − ζ2)
∈ (0,∞).

Just as in the usual case, the alternative cross ratio is invariant under the action of the
Möbius transformations Möb(S) ∼= PSL(2,R):

[γ(ζ1), γ(ζ2), γ(ζ3), γ(ζ4)]∗ = [ζ1, ζ2, ζ3, ζ4]∗

for every γ ∈ Möb(S).
The Liouville measure on the space of oriented hyperbolic geodesic lines on the Poincaré

model D, which is identified with S×S minus the diagonal set ∆, is given by

dL(x, y) =
1

4 sin2((x− y)/2)
dxdy,

matsuzak
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where x and y are the coordinates of S under the universal covering ζ = eix : R → S.
The cross ratio can be represented by the integral of this measure. For an absolutely
continuous self-homeomorphism g of S, the pull-back of dL is defined by

d(g∗L)(x, y) =
g̃′(x)g̃′(y)

4 sin2((g̃(x)− g̃(y))/2)
dxdy,

where g̃ : R → R is the lift of g. The Liouville cocycle c(g)(x, y) is the density of the
signed measure d(g∗L)(x, y)− dL(x, y) with respect to the Lebesgue measure. For details
on the Liouville cocycle, consult the monograph by Navas [13].

By the invariance of the cross ratio under Möb(S), we see that the Liouville measure is
also invariant under Möb(S); d(γ∗L) = dL for every γ ∈ Möb(S). Clearly ‖c(γ)‖1 = 0 for
every γ ∈ Möb(S). The norm ‖c(g)‖1 measures the difference of g from Möb(S).

The alternative cross ratio is also represented by the integral of the Liouville measure:

log [ζ1, ζ2, ζ3, ζ4]∗ =

∫ x1+2π

x4

∫ x3

x2

1

4 sin2((x− y)/2)
dxdy −

∫ x4

x3

∫ x2

x1

1

4 sin2((x− y)/2)
dxdy

for ζj = eixj (j = 1, 2, 3, 4) with x1 < x2 < x3 < x4 and x4 − x1 < 2π. For an absolutely
continuous self-homeomorphism g of S, it follows that

log
[g(ζ1), g(ζ2), g(ζ3), g(ζ4)]∗

[ζ1, ζ2, ζ3, ζ4]∗
=

∫ x1+2π

x4

∫ x3

x2

c(g)(x, y) dxdy −
∫ x4

x3

∫ x2

x1

c(g)(x, y) dxdy.

This implies that∣∣∣∣log
[g(ζ1), g(ζ2), g(ζ3), g(ζ4)]∗

[ζ1, ζ2, ζ3, ζ4]∗

∣∣∣∣
≤

∫
S

∫ x3

x2

|c(g)(x, y)| dxdy +

∫
S

∫ x2

x1

|c(g)(x, y)| dxdy ≤ ‖c(g)‖1.

Let BL+(S) denote the group of orientation-preserving bi-Lipschitz automorphisms of
S. For every g ∈ BL+(S) and every φ ∈ L1(S×S \∆), set

(g∗φ)(x, y) = φ(g(x), g(y))g′(x)g′(y).

This defines a unitary (anti-homomorphic) representation θ of BL+(S) on L1(S×S \∆)
by θ(g) = g∗. Then the Liouville cocycle c(g) satisfies a cocycle condition associated with
the unitary representation θ. Namely,

c(g1g2) = c(g2) + θ(g2)c(g1)

for any g1, g2 ∈ BL+(S).
The use of Liouville cocycles in the study of circle diffeomorphisms has been investigated

by Navas. One of his results is the following, see [14].

Theorem 2.3. Suppose that a non-metabelian subgroup G of the group Diff3+r
+ (S) (0 ≤

r ≤ ∞) of orientation-preserving C3+r-diffeomorphisms implies uniform boundedness of
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‖c(g)‖1 for all g ∈ G. Then G is conjugate to a subgroup of Möb(S) by an element of
Diff3+r

+ (S).

If a group G of diffeomorphisms of S is conjugate to a subgroup of Möb(S), then
in particular it satisfies the convergence property introduced by Gehring and Martin
[7]. Actually it is known that the convergence property characterizes the homeomorphic
conjugation to Möb(S). Theorem 2.3 asserts that the conjugation can be given by a
diffeomorphism of the same regularity as the elements of G.

3. Bi-Lipschitz continuity

In this section, we will show that g : S → S is bi-Lipschitz continuous if ‖c(g)‖1 < ∞.
Only the Lipschitz continuity of g is used in the proofs of Theorems 4.1 and 5.1 below,
but we can prove more, which is of independent interest.

Since Möbius transformations of S are bi-Lipschitz, to verify this claim, we can nor-
malize g by composing a Möbius transformation so that g fixes three distinct points on
S. To make the fixed points symmetric, we prefer using ω0, ω1, ω2 for ω = exp(2πi/3) as
a set of such three fixed points on S.

Theorem 3.1. If an orientation-preserving absolutely continuous self-homeomorphism g
of S satisfies ‖c(g)‖1 <∞, then g is bi-Lipschitz continuous. If g is normalized by fixing
the three points on S, then

c exp(−‖c(g)‖1) |x− x′| ≤ |g̃(x)− g̃(x′)| ≤ C exp(‖c(g)‖1) |x− x′|
for any x, x′ ∈ R, where C > 0 is a universal constant and c > 0 is a constant depending
only on ‖c(g)‖1.

Proof. Dividing the interval between x and x′ into several pieces, we have only to show
the statement in the case where |x − x′| is sufficiently small, say, |x − x′| < π/18. We
may also assume that x < x′. For any two points eix, eix

′ ∈ S with this condition, we can
choose two points ω and ω′ from {ω0, ω1, ω2} so that eix and eix

′
lie in the middle part

of the circular interval between ω and ω′ of length either 2π/3 or 4π/3. Here the middle
part means the union of the second and the third quarters of the interval, when divided
into four equal parts.

We consider the following variation of the cross ratio of positively ordered points:

[ω, eix, eix
′
, ω′] =

(ω − eix′)(eix − ω′)
(ω − ω′)(eix − eix′)

;

[g(ω), g(eix), g(eix
′
), g(ω′)] =

(ω − eig̃(x′))(eig̃(x) − ω′)
(ω − ω′)(eig̃(x) − eig̃(x′))

.

The logarithm of the ratio of these two values is bounded by ‖c(g)‖1, which implies that

exp(−‖c(g)‖1) ≤
∣∣∣∣eig̃(x) − eig̃(x′)

eix − eix′
∣∣∣∣ · ∣∣∣∣ (ω − eix′)(eix − ω′)

(ω − eig̃(x′))(eig̃(x) − ω′)

∣∣∣∣ ≤ exp(‖c(g)‖1).
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Here, the first factor of the middle term is∣∣∣∣(eig̃(x) − eig̃(x′))
(eix − eix′)

∣∣∣∣ =

∣∣∣∣sin((g̃(x)− g̃(x′))/2)

sin((x− x′)/2)

∣∣∣∣ .
By |x−x′| < π/18 and |g̃(x)− g̃(x′)|/2 < 2π/3, this is comparable to |g̃(x)− g̃(x′)|/|x−x′|
having a universal multiplicative error constant.

The second factor of the middle term is bounded away from zero by some universal
constant C ′ > 0 since eix and eix

′
sit in the middle part of the interval between ω and ω′.

On the other hand, it is bounded from above by some constant c′ > 0 depending only on
‖c(g)‖1. This can be verified as follows.

For each of eix and eix
′
, we consider the variation of the cross ratio of positively ordered

points given together with {ω0, ω1, ω2}. By a suitable choice of cyclic permutation, the
following values can be taken as their variations:

eix − ω′

eig̃(x) − ω′
· e

ig̃(x) − ω∗

eix − ω∗
;

eix
′ − ω

eig̃(x′) − ω
· e

ig̃(x′) − ω∗

eix′ − ω∗
.

These values are bounded from above by exp(‖c(g)‖1). Here ω∗ ∈ {ω0, ω1, ω2} is the
farthest point from eix and eix

′
respectively; eig̃(x) and eig̃(x

′) cannot be close to ω∗. Hence,
also using the fact that eix and eix

′
are in the middle part of the interval between ω and

ω′, we see that eig̃(x) cannot get close to ω′ and eig̃(x
′) cannot get close to ω. Thus the

denominator |(ω − eig̃(x′))(eig̃(x) − ω′)| of the fraction in question is bounded away from
zero by a constant depending only on ‖c(g)‖1.

Plugging these estimates in the previous inequality, we obtain the required estimate of
|g̃(x)− g̃(x′)| in terms of |x− x′|. �

Corollary 3.2. The set of all orientation-preserving absolutely continuous self-homeo-
morphisms g of S with ‖c(g)‖1 < ∞ is a subgroup of the group BL+(S) of bi-Lipschitz
automorphisms of S.

Proof. By Theorem 3.1, the condition ‖c(g)‖1 <∞ implies that g is bi-Lipschitz contin-
uous. Consider the unitary representation θ of BL+(S) on L1(S×S \∆). The Liouville
cycle satisfies

c(g1g2) = c(g2) + θ(g2)c(g1)

for any g1, g2 ∈ BL+(S). This in particular implies that ‖c(g1g2)‖1 ≤ ‖c(g1)‖1 + ‖c(g1)‖1

and ‖c(g−1)‖1 = ‖c(g)‖1. Thus the statement follows. �

4. Integrability

In this section, we prove that the integrability of the Liouville cocycle for an absolutely
continuous quasisymmetric automorphism g implies a certain integrability of the complex
dilatation of some quasiconformal extension of g. By virtue of Theorem 3.1, we may
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assume that g is bi-Lipschitz hereafter. Also, we always assume that self-homeomorphisms
of S are orientation-preserving.

Theorem 4.1. Let g : S → S be a bi-Lipschitz automorphism with ‖c(g)‖1 < ∞. Then
g extends continuously to a quasiconformal automorphism of D whose complex dilatation
µ(ζ) satisfies ∫

S
|µ((1− τ)eix)|dx ≤ aτ

for every τ ∈ (0, 1), where a > 0 is a constant depending only on ‖c(g)‖1.

We set up the proof of Theorem 4.1. By the invariance of the norm of the Liou-
ville cocycle and the complex dilatation of the quasiconformal extension under post-
composition of a Möbius transformation, we may assume that g fixes three distinct points
on S, say, ω0, ω1, ω2 for ω = exp(2πi/3) as before. These points divide the circle S into
three circular intervals I0 = [ω1, ω2), I1 = [ω2, ω0) and I2 = [ω0, ω1). We define a map
ω : S→ {ω0, ω1, ω2} by ω(ζ) = ωk if ζ ∈ Ik for k = 0, 1, 2.

For three consecutive points ei(x−t), eix and ei(x+t) on S, we pick up ω(ei(x+t)) ∈ S as the
fourth point. Representing ω(ei(x+t)) = eiω̃ by an appropriate ω̃ ∈ R, we first compare the
quasisymmetric quotient defined by the three points with the variation of the alternative
cross ratio defined by the four points. As before, we pass to the lift g̃ : R → R of g via
the universal covering ζ = eix : R→ S.

Lemma 4.2. Assume that ‖c(g)‖1 < ∞ and g fixes ω0, ω1, ω2. Then there exist a uni-
versal constant B > 0 and a constant t0 > 0 depending only on ‖c(g)‖1 such that∣∣∣∣log

[eig̃(x−t), eig̃(x), eig̃(x+t), eiω̃]∗
[ei(x−t), eix, ei(x+t), eiω̃]∗

− log mg̃(x, t)

∣∣∣∣
≤ B{t+ g̃(x+ t)− g̃(x− t)}

for every x ∈ R and for every t ∈ R with 0 < t ≤ t0.

Proof. We may assume that 0 < t ≤ π/6 by choosing t0 ≤ π/6. First we estimate

[ei(x−t), eix, ei(x+t), eiω̃]∗ =
|eiω̃ − ei(x−t)|
|eiω̃ − ei(x+t)|

.

We may further assume that ei(x+t) ∈ I0 and eiω̃ = ω(ei(x+t)) = 1. Then

|eiω̃ − ei(x−t)|
|eiω̃ − ei(x+t)|

=
sin((x− t)/2)

sin((x+ t)/2)
= 1− 2 cos(x/2) sin(t/2)

sin((x+ t)/2)
.

Since π/3 ≤ (x + t)/2 < 2π/3 and π/4 ≤ x/2 < 2π/3 by the above assumptions, we see
that

1−
√

2√
3
t ≤ [ei(x−t), eix, ei(x+t), eiω̃]∗ ≤ 1 +

1√
3
t.
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Next, we will apply a similar estimate to the first factor of

[eig̃(x−t), eig̃(x), eig̃(x+t), eiω̃]∗ =
|eiω̃ − eig̃(x−t)|
|eiω̃ − eig̃(x+t)|

· |e
ig̃(x) − eig̃(x+t)|
|eig̃(x) − eig̃(x−t)|

.

As before, we have

|eiω̃ − eig̃(x−t)|
|eiω̃ − eig̃(x+t)|

=
sin(g̃(x− t)/2)

sin(g̃(x+ t)/2)

= 1− 2 cos{(g̃(x+ t) + g̃(x− t))/4} sin{(g̃(x+ t)− g̃(x− t))/4}
sin(g̃(x+ t)/2)

.

Here π/3 ≤ g̃(x+ t)/2 < 2π/3 still holds, but in order to assume

π

4
≤ g̃(x+ t) + g̃(x− t)

4
<

2π

3
,

we have to choose t0 > 0 so that g̃(x+ t)− g̃(x− t) ≤ π/3 whenever t ≤ t0. By Theorem
3.1,

t0 =
π

6
· exp(−‖c(g)‖1)

C

with C ≥ 1 is appropriate for this purpose. Hence, if 0 < t ≤ t0, then

1−
√

2√
3
· g̃(x+ t)− g̃(x− t)

2
≤ |e

iω̃ − eig̃(x−t)|
|eiω̃ − eig̃(x+t)|

≤ 1 +
1√
3
· g̃(x+ t)− g̃(x− t)

2
.

For the estimate of the second factor, we use a fact that |eig̃(x)− eig̃(x+t)| is comparable
to g̃(x + t)− g̃(x) with an multiplicative error factor dominated by this difference. This
is also true for |eig̃(x) − eig̃(x−t)|. More precisely,

1 >
|eig̃(x+t) − eig̃(x)|
|g̃(x+ t)− g̃(x)|

=
sin{(g̃(x+ t)− g̃(x))/2}

(g̃(x+ t)− g̃(x))/2
>

(
1 +

g̃(x+ t)− g̃(x)

2

)−1

;

1 >
|eig̃(x) − eig̃(x−t)|
|g̃(x)− g̃(x− t)|

=
sin{(g̃(x)− g̃(x− t))/2}

(g̃(x)− g̃(x− t))/2
>

(
1 +

g̃(x)− g̃(x− t)
2

)−1

.

Here we use

0 <
g̃(x+ t)− g̃(x)

2
<

2π

3
; 0 <

g̃(x)− g̃(x− t)
2

<
2π

3

for these estimates. Thus we have

mg̃(x, t)

(
1 +

g̃(x+ t)− g̃(x)

2

)−1

≤ |e
ig̃(x) − eig̃(x+t)|
|eig̃(x) − eig̃(x−t)|

≤ mg̃(x, t)

(
1 +

g̃(x)− g̃(x− t)
2

)
.
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All the above estimates allow us to conclude that if 0 < t ≤ t0 then∣∣∣∣log
[eig̃(x−t), eig̃(x), eig̃(x+t), eiω̃]∗

[ei(x−t), eix, ei(x+t), eiω̃]∗
− log mg̃(x, t)

∣∣∣∣
≤ − log

(
1−
√

2√
3
t

)
− log

(
1−
√

2√
3
· g̃(x+ t)− g̃(x− t)

2

)

+ log

(
1 +

g̃(x+ t)− g̃(x− t)
2

)
≤ B{t+ g̃(x+ t)− g̃(x− t)},

where B > 0 is some universal constant involved with an estimate of − log(1−x) in terms
of x. This estimate is possible because t and (g̃(x + t) − g̃(x − t))/2 are bounded from
above suitably. �

Next, we take the supremum of the quasisymmetric quotient mg̃(x, t) over the interval

[x− t, x + t] to estimate the complex dilatation µ̃ of the Beurling-Ahlfors extension F
(2)
g̃

of g̃ : R → R with parameter r = 2. We define the optimal quasisymmetric constant for
g̃ by

M(g̃) = sup
x∈R, t>0

max {mg̃(x, t),mg̃(x, t)
−1}.

Proposition 4.3. Assume that M(g̃) < ∞. Then there is a constant b > 0 depending
only on M(g̃) such that

|µ̃(x+ iy)| ≤ b sup
x′,y′
| log mg̃(x

′, y′)|

holds for every x+ iy ∈ H, where the supremum is taken over all x′ ∈ R and y′ > 0 with
[x′ − y′, x′ + y′] ⊂ [x− y, x+ y].

Proof. For a quasisymmetric function g̃ : R → R, the Beurling-Ahlfors extension F
(2)
g̃ :

H→ H is defined by

F
(2)
g̃ (z) =

1

2
{α(x, y) + β(x, y)}+ i{α(x, y)− β(x, y)},

where

α(x, y) =

∫ 1

0

g̃(x+ ty)dt; β(x, y) =

∫ 1

0

g̃(x− ty)dt.

The partial derivatives αx, αy, βx and βy at z = x + iy can be represented by the values

of g̃ only in the interval [x− y, x+ y]. Especially, the complex dilatation µ̃(z) of F
(2)
g̃ (z)

at z = x + iy is estimated in terms of the quasisymmetric quotients mg̃(x
′, y′) for all x′

and y′ with [x′ − y′, x′ + y′] ⊂ [x− y, x + y]. This can be found in Carleson [4]. See also
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[12] for an exposition of this result. Then the local version of Theorem 2.2 is valid. More
precisely, defining ε(x, y) by

1 + ε(x, y) = sup {max {mg̃(x
′, y′),mg̃(x

′, y′)−1} : [x′ − y′, x′ + y′] ⊂ [x− y, x+ y]},

we have |µ̃(x + iy)| ≤ 4ε(x, y). Taking the logarithm in the above equation, we can find
a suitable constant b > 0 depending only on M(g̃). �

Remark. By a similar but simpler argument as in the proof of Lemma 4.2, we see that
M(g̃) can be estimated in terms of ‖c(g)‖1.

Now we are ready to prove the theorem.

Proof of Theorem 4.1. By post-composition of a Möbius transformation, we may assume
that g fixes ω0, ω1, ω2. Then take the lift g̃ : R → R of g and the Beurling-Ahlfors

extension F
(2)
g̃ : H→ H of g̃. Its complex dilatation µ̃ satisfies

|µ̃(x+ iy)| ≤ b sup
x′,y′
| log mg̃(x

′, y′)|

by Proposition 4.3. Note that F
(2)
g̃ satisfies F

(2)
g̃ (z+ 2π) = F

(2)
g̃ (z) + 2π since g̃ satisfies it

too. By projecting F
(2)
g̃ down by the holomorphic universal covering ζ = eiz : H→ D \{0}

and filling 0 as its fixed point, we have a quasiconformal automorphism of D continuously
extending g whose complex dilatation µ(ζ) (ζ ∈ D) satisfies |µ(ζ)| = |µ̃(z)| (a.e.). If we
write ζ = (1 − τ)eix, then τ = 1 − e−y or y = − log(1 − τ). For a fixed τ ∈ (0, 1), the
integration of µ((1− τ)eix) over x ∈ [0, 2π) yields∫

S
|µ((1− τ)eix)|dx ≤ b

∫
S

sup
x′,t′
| log mg̃(x

′, t′)|dx

for t = − log(1− τ), where the supremum is taken over all x′ and t′ with [x′− t′, x′+ t′] ⊂
[x− t, x+ t].

Next, applying Lemma 4.2, we see that if 0 < t ≤ t0 then∫
S

sup
x′,t′
| log mg̃(x

′, t′)|dx

≤
∫
S

sup
x′,t′

∣∣∣∣log
[eig̃(x

′−t′), eig̃(x
′), eig̃(x

′+t′), eiω̃]∗
[ei(x′−t′), eix′ , ei(x′+t′), eiω̃]∗

∣∣∣∣ dx
+

∫
S

sup
x′,t′

B{t′ + g̃(x′ + t′)− g̃(x′ − t′)}dx.
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Here the first term after the inequality sign is bounded by∫
S

sup
x′,t′

(∫
S

∫ x′+t′

x′−t′
|c(g)(u, v)|dudv

)
dx

≤
∫
S

(∫
S

∫ x+t

x−t
|c(g)(u, v)|dudv

)
dx = 2‖c(g)‖1t.

The second term is bounded by∫
S
B{t+ g̃(x+ t)− g̃(x− t)}dx = 6πBt.

Gathering all the above estimates together, we can conclude that∫
S
|µ((1− τ)eix)|dx ≤ b(2‖c(g)‖1 + 6πB)t

if t = − log(1−τ) ≤ t0. On the other hand, since |µ(ζ)| < 1, the integral is bounded by 2π
for any τ ∈ (0, 1). Hence we can find a constant a > 0 such that the integral is bounded
by aτ for any τ ∈ (0, 1). Since t0 and b depend only on ‖c(g)‖1 and B is universal, the
constant a can be taken depending only on ‖c(g)‖1. �

5. Asymptotic conformality

In this section, applying the arguments from previous sections, we investigate the re-
lationship between the vanishing order of the complex dilatation of the quasiconformal
extension of g and its integrability with respect to the hyperbolic metric on D under the
assumption ‖c(g)‖1 <∞.

We say that a quasiconformal automorphism of D is asymptotically conformal if its com-
plex dilatation µ(ζ) vanishes at the boundary ∂ D = S, that is, ess. sup|ζ|≥1−τ |µ(ζ)| → 0
as τ → 0. On the other hand, a quasisymmetric automorphism g of S is symmetric if the
quasisymmetric quotient mg̃(x, t) of the lift g̃ satisfies mg̃(x, t)→ 1 as t→ 0 uniformly on
x ∈ R. Then the boundary extension of an asymptotically conformal automorphism of D
to S is a symmetric automorphism g of S and conversely a symmetric automorphism g of S
extends to an asymptotically conformal automorphism of D. This was essentially proved
by Carleson [4]. See Becker and Pommerenke [2] and Gardiner and Sullivan [6] for prop-
erties of symmetric automorphisms of S and asymptotically conformal homeomorphisms
of D.

Our first application is as follows.

Theorem 5.1. Let g : S→ S be a bi-Lipschitz automorphism of S. If ‖c(g)‖1 <∞, then
g is a symmetric automorphism of S.
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Proof. We will show that mg̃(x, t)→ 1 uniformly as t→ 0. By Theorem 3.1 and Lemma
4.2, we have only to prove that

log
[eig̃(x−t), eig̃(x), eig̃(x+t), eiω̃]∗

[ei(x−t), eix, ei(x+t), eiω̃]∗

=

∫ x−t+2π

ω̃

∫ x+t

x

c(g)(u, v) dudv −
∫ ω̃

x+t

∫ x

x−t
c(g)(u, v) dudv

tends to 0 uniformly as t→ 0. Its absolute value is bounded by∫
S

∫ x+t

x−t
|c(g)(u, v)|dudv =

∫ x+t

x−t
F (u)du,

where F (u) =
∫
S |c(g)(u, v)|dv. Since F (u) is integrable, its indefinite integral is a uni-

formly continuous function on S. Hence the integral from x−t to x+t tends to 0 uniformly
as t→ 0. �

This theorem implies that the quasiconformal extension of g to D is asymptotically
conformal. To measure the vanishing order of the complex dilatation of an asymptotically
conformal automorphism quantitatively, we define

κµ(τ) = ess. sup|ζ|≥1−τ |µ(ζ)|

for every Beltrami coefficient µ on D and for every τ ∈ (0, 1). The following result was
first proved by Carleson [4] for an asymptotically conformal automorphism of the upper
half-plane H where the boundary is restricted to R and not including ∞. The case of the
unit disk D was treated by Anderson, Becker and Lesley [1].

Theorem 5.2. If the complex dilatation µ(ζ) of a quasiconformal automorphism of D
satisfies ∫ 1

0

κµ(τ)

τ
dτ <∞,

then it extends to a quasisymmetric automorphism g of S that is continuously differen-
tiable. On the other hand, if ∫ 1

0

κµ(τ)2

τ
dτ <∞,

then g is absolutely continuous with local Lq-derivatives (q <∞).

Our second application is concerning the integrability of the complex dilatation with
respect to the hyperbolic metric ρD(ζ)|dζ| on D when we assume that an asymptotically
conformal automorphism satisfies the condition as in Theorem 5.2 in addition to the
integrability of the Liouville cocycle for its boundary extension.
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Theorem 5.3. Suppose that a bi-Lipschitz automorphism g of S satisfies ‖c(g)‖1 < ∞
and has a quasiconformal extension to D whose complex dilatation µ satisfies∫ 1

0

κµ(τ)β

τ
dτ <∞

for some β > 0. Then µ satisfies∫
D
|µ(ζ)|pρ2

D(ζ)dξdη <∞

for every p ≥ 1 + β.

Proof. By Theorem 4.1, there is a constant a > 0 such that∫ 2π

0

|µ((1− τ)eix)|dx ≤ aτ.

Replacing |µ((1− τ)eix)| to the power p− 1 ≥ β with its supremum, we have∫ 2π

0

|µ((1− τ)eix)|pdx ≤ sup
0≤x<2π

|µ((1− τ)eix)|p−1

∫ 2π

0

|µ((1− τ)eix)|dx ≤ aτκµ(τ)β.

Therefore ∫
D
|µ(ζ)|pρ2

D(ζ)dξdη =

∫ 1

0

∫ 2π

0

|µ((1− τ)eix)|p 4(1− τ)

τ 2(2− τ)2
dxdτ

≤
∫ 1

0

∫ 2π

0

|µ((1− τ)eix)|pτ−2dxdτ

≤ a

∫ 1

0

κµ(τ)βτ−1dτ <∞.

This proves the statement. �

It is easy to check that if g be a diffeomorphism of S with an α-Hölder continuous
derivative for some α ∈ (0, 1), then the quasisymmetric quotient mg̃(x, t) for the lift
g̃ : R→ R satisfies mg̃(x, t) = 1 +O(tα) uniformly as t→ 0 (see [12]). Then by Theorem
2.2 we have a quasiconformal automorphism of H extending g̃ whose complex dilatation
µ̃(z) satisfies |µ̃(z)| = O(yα) uniformly as y = Im z → 0. By projecting down this by
the holomorphic universal covering ζ = eiz : H → D \{0} and filling 0 as its fixed point,
we have a quasiconformal automorphism of D extending g whose complex dilatation µ(ζ)
satisfies |µ(ζ)| = O(τα) uniformly as τ = 1− |ζ| → 0. In particular, it satisfies∫ 1

0

κµ(τ)β

τ
dτ <∞

for any β > 0. Hence the next corollary immediately follows from Theorem 5.3.
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Corollary 5.4. Let g be a diffeomorphism of S with an α-Hölder continuous derivative
for some α ∈ (0, 1) and with ‖c(g)‖1 <∞. Then there is a quasiconformal automorphism
of D that is the extension of g whose complex dilatation µ satisfies∫

D
|µ(ζ)|pρ2

D(ζ)dξdη <∞

for every p > 1.

Integrable complex dilatations with respect to the hyperbolic metric and subspaces of
the universal Teichmüller space defined by such complex dilatations were first studied by
Cui [5] for the case p = 2 and then extended by Takhtajan and Teo [15]. Generalization
to the case p > 2 was done by Guo [8] and Tang [16]. The paper, Hu and Shen [9] and
Wu [17] also contain certain characterizations of quasisymmetric automorphisms whose
quasiconformal extensions have integrable complex dilatations.
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