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A classification of the modular transformations
of infinite dimensional Teichmüller spaces

Katsuhiko Matsuzaki

Abstract. We classify the modular transformations of infinite dimensional
Teichmüller spaces according to the behavior of their orbits. We then con-
sider two classes, stationary and asymptotically elliptic, whose elements have

a certain property similar to that of the modular transformations of finite
dimensional Teichmüller spaces.

§1. Introduction and preliminaries

We consider the Teichmüller space T (R) of an analytically infinite Riemann sur-
face R and the Teichmüller modular group Mod(R) acting on T (R), where T (R) is
not finite dimensional (moreover not separable) and Mod(R) is not finitely gener-
ated (moreover not countable in most cases). In this paper, we attempt to classify
the elements in Mod(R).

The Teichmüller space T (R) is the set of all Teichmüller equivalence classes [f ]
of quasiconformal homeomorphisms f of R. Here we say that f1 : R → R1 and
f2 : R → R2 are Teichmüller equivalent if there exists a conformal homeomorphism
h : R1 → R2 such that f2 ◦ f−1

1 is homotopic to h relative to the ideal boundary at
infinity of R1. We will use the notation o for the basepoint [id] of T (R). It is known
that T (R) is a complex Banach manifold. Also it has a metric structure such that
the distance between p1 = [f1] and p2 = [f2] is given by d(p1, p2) = log K(f), where
K(f) is the maximal dilatation of an extremal quasiconformal homeomorphism f
in the homotopy class of f2 ◦ f−1

1 . Then d is a complete metric on T (R), which is
called the Teichmüller metric. It is known that the Teichmüller metric on T (R) is
the same as its Kobayashi metric. See [9], [10], [11] and [18] for fundamental facts
on Teichmüller spaces.

A quasiconformal mapping class is a homotopy class [g] of quasiconformal au-
tomorphisms g : R → R relative to the ideal boundary at infinity of R. The
quasiconformal mapping class group MCG(R) is the group of all quasiconformal
mapping classes. Each γ = [g] ∈ MCG(R) acts on T (R) from the left such that
γ∗ : [f ] 7→ [f ◦ g−1]. It is evident from the definition that MCG(R) acts on T (R)
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isometrically with respect to the Teichmüller distance d. Also, it acts biholomor-
phically on T (R). Let ι : MCG(R) → Aut(T (R)) be the homomorphism defined
by γ 7→ γ∗, where Aut(T (R)) denotes the group of all isometric biholomorphic
automorphisms of T (R). The image Im ι ⊂ Aut(T (R)) is called the Teichmüller
modular group and is denoted by Mod(R). Each element γ∗ ∈ Mod(R) is called a
modular transformation.

For a torus R, it is known that T (R) is biholomorphically and isometrically
equivalent to the hyperbolic plane and MCG(R) is isomorphic to SL(2, Z). Then
SL(2, Z) acts on the upper half-plane model H = {z ∈ C | Im z > 0} as fractional
linear transformations and Mod(R) is identified with PSL(2, Z). This is called the
elliptic modular group. Since its elements are Möbius transformations, they can be
classified into elliptic, parabolic or hyperbolic.

Due to Bers, this classification of Mod(R) can be extended to an analytically
finite Riemann surface R in general: a modular transformation γ∗ ∈ Mod(R)−{id}
is called

• elliptic if γ∗ has a fixed point in T (R);
• parabolic if infp∈T (R) d(γ∗(p), p) = 0 but γ∗ has no fixed point in T (R);
• hyperbolic if infp∈T (R) d(γ∗(p), p) > 0.

This is closely related to Thurston’s classification of the mapping classes such as
periodic, reducible and pseudo-Anosov. See [10, §6.5] for this account.

Now we consider our case where R is analytically infinite. Then the variety
of the elements in Mod(R) becomes vast and the behavior of the orbits becomes
complicated. Here we summarize major difficulties in classifying these elements in
comparison with the analytically finite case: (1) There exists an elliptic element
γ∗ of infinite order. Actually, a mapping class γ realized as a conformal automor-
phism of infinite order gives γ∗ having a fixed point in T (R). (2) The action γ∗ is
not necessarily discontinuous and an orbit of γ∗ is not necessarily discrete. (3) A
boundary of T (R) such as Thurston’s where the action of the Teichmüller modular
group extends continuously is not yet introduced. Hence, before going to the clas-
sification like in the analytically finite case, we need to set more coarse classes just
based on the behavior of their orbits.

In Section 2, we define divergent, infinitely discrete and unbounded types ac-
cording to logical possibility of orbits. Actually, a recent result due to Markovic
[12] implies that boundedness is equivalent to ellipticity in the previous sense. An
inclusion relation between infinitely discrete and unbounded types is proved in this
section (Theorem 3). We also give some examples of elements belonging to the
differences between those classes (Theorem 4).

In the analytically finite case (finite dimensional case), elliptic modular trans-
formations are of bounded type, and parabolic and hyperbolic modular transfor-
mations are of divergent type. Namely, there are no elements of intermediate types
in this case. When a class of modular transformations has this property, we will
say that it satisfies the bounded-divergent dichotomy.

Next in Section 3, we define a class of mapping classes generalizing those for
compact Riemann surfaces. An element in this class is called stationary and has a
property that there is some compact subset in R that does not go to infinity under
the iteration of the mapping class. Of course, every mapping class of an analyt-
ically finite Riemann surface satisfies this property. Being stationary guarantees
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compactness of a family of quasiconformal automorphisms of R whose maximal di-
latations are uniformly bounded. As a consequence, we will see that the stationary
mapping classes satisfy the bounded-divergent dichotomy (Theorem 6).

Finally, in Section 4, we consider a certain analytic condition that provides
similarity to the finite dimensional case. It is given by introducing asymptotic
Teichmüller spaces.

The asymptotic Teichmüller space AT (R) of a Riemann surface R is a certain
quotient space of the Teichmüller space T (R). A quasiconformal homeomorphism
f of R is called asymptotically conformal if, for every ε > 0, there exists a compact
subset V of R such that the maximal dilatation K(f) of f is less than 1 + ε on
R−V . Asymptotic equivalence of quasiconformal homeomorphisms can be defined
similarly to Teichmüller equivalence just by replacing the word “conformal” with
“asymptotically conformal”. The asymptotic Teichmüller space AT (R) is the set
of all asymptotic equivalence classes [[f ]] of quasiconformal homeomorphisms f
of R. Hence there exists a natural projection α : T (R) → AT (R) that maps
each Teichmüller equivalence class p = [f ] ∈ T (R) to the asymptotic equivalence
class α(p) = [[f ]] ∈ AT (R). The fiber over any α(p) ∈ AT (R) is denoted by Tp,
which is a closed separable submanifold of T (R). Similar to the case of T (R),
γ = [g] ∈ MCG(R) acts on AT (R) by γ∗∗ : [[f ]] 7→ [[f ◦ g−1]]. In other words,
MCG(R) acts on T (R) by preserving the fibers over AT (R). See [1], [2], [3] and [9,
Ch.14] concerning asymptotic Teichmüller spaces.

We investigate a modular transformation γ∗ ∈ Mod(R) that fixes some point
α(p) ∈ AT (R), or more precisely, that keeps some fiber Tp ⊂ T (R) invariant. We
call such an element asymptotically elliptic. For an analytically finite Riemann sur-
face R, the asymptotic Teichmüller space AT (R) consists of one point o and hence
every modular transformation keeps the fiber To = T (R) invariant, namely, they
are all asymptotically elliptic. We will prove that the class of the asymptotically
elliptic elements also satisfies the bounded-divergent dichotomy (Theorem 10).

In this paper, we only deal with the orbit by a single modular transformation
but some of the results are also valid for certain subgroups of Mod(R) or Mod(R)
itself. Actually, a series of our papers [4], [5], [6], [7], [8], [13], [15] and [16] contain
the arguments related to this subject matter. We may say that this is an exposi-
tory paper of our works restricted to the study of the cyclic dynamics of modular
transformations. The whole project will appear in a forthcoming article [17].

§2. Classification of the modular transformations

In this section, we classify the modular transformations of the Teichmüller space
into several types according to the behavior of their orbits. Then we investigate
the relationship between these types.

Definition. A modular transformation γ∗ ∈ Mod(R) is of infinitely discrete
type if it is of infinite order and if the orbit 〈γ∗〉(p) = {γn

∗ (p)}n∈Z of each point
p ∈ T (R) has no accumulation points in T (R). Moreover, γ∗ is of divergent type if
the orbit diverges to the point at infinity of T (R) as n → ±∞. On the contrary,
γ∗ is of bounded type if the orbit is a bounded set in T (R). Otherwise, γ∗ is of
unbounded type.

It is evident from the definition that, if γ∗ is of divergent type, then it is of
infinitely discrete type. Note that the orbit {γn

∗ (p)}n∈Z is discrete if and only if it
is closed. Indeed, if the orbit is closed but not discrete, then it has an accumulation
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point in it and, by group invariance, it is a perfect set. However, in the complete
metric space T (R), it must be a uncountable set, which is impossible for {γn

∗ (p)}n∈Z.
First we remark that our classification is consistent for any non-trivial element

of the cyclic group of a modular transformation.

Proposition 1. The type of a modular transformation γ∗ ∈ Mod(R) is in-
variant in 〈γ∗〉−{id}. Namely, γ∗ is of infinitely discrete (divergent, bounded) type
if and only if so is γk

∗ for some and any k ∈ Z − {0}.

Proof. If γ∗ is of infinitely discrete type, then γk
∗ is clearly of infinitely discrete

type for any k. Conversely, if γk
∗ is of infinitely discrete type for some k, then the

orbit 〈γk
∗ 〉(p) is discrete and so is its image δ∗{〈γk

∗ 〉(p)} for every δ∗ ∈ Mod(R). By

〈γ∗〉(p) =
∪

0≤i≤|k|−1

γi
∗{〈γk

∗ 〉(p)},

we see that γ∗ is of infinitely discrete type. The arguments are the same for diver-
gent type and for bounded type. ¤

We say that a modular transformation γ∗ ∈ Mod(R) is elliptic if it has a fixed
point p in T (R). This is equivalent to saying that the mapping class γ is realized
as a conformal automorphism of the Riemann surface Rp corresponding to p. The
Nielsen realization problem for an analytically finite Riemann surface R asserts
that a finite subgroup of MCG(R) is realized as a group of conformal automor-
phisms, or equivalently, the finite subgroup of Mod(R) has a common fixed point
in T (R). Markovic [12] has extended this theorem to analytically infinite Riemann
surfaces. His result on quasisymmetric conjugacy of a uniformly quasisymmetric
group implies the following.

Theorem 2. A modular transformation γ∗ ∈ Mod(R) is of bounded type if
and only if γ∗ is elliptic.

Our first result asserts the inclusion relation between bounded and infinitely
discrete types. This result first appeared in [13] modulo the bounded-elliptic equiv-
alence as in Theorem 2.

Theorem 3. If a modular transformation γ∗ ∈ Mod(R) is of bounded type,
then it is not of infinitely discrete type.

Proof. We have only to consider the case where γ∗ is of infinite order. By
Theorem 2, there exists a point p ∈ T (R) that is fixed by γ∗. Without loss of
generality, we may assume that p is the basepoint o ∈ T (R). Then γ has a conformal
representative g : R → R. For an integer n ∈ N, consider the Teichmüller space
T (R/〈gn〉) in T (R), which is coincident with the fixed point locus of γn

∗ .
In general, if Fuchsian groups have a proper inclusion relation G1 % G2, then

the Teichmüller spaces satisfy T (H/G1) $ T (H/G2) in the universal Teichmüller
space T (H) unless G1 and G2 are exceptional pairs of Fuchsian groups. See [14].
Hence we have proper inclusion relations

T (R/〈g〉) $ T (R/〈g2〉) $ T (R/〈g4〉) $ · · · $ T (R/〈g2k

〉) $ · · ·

in T (R). The properness is also valid locally in T (R) unless the sets in question
are empty. The easiest way to see this fact is to take the Bers embedding of these
sets in a certain Banach space, where they are realized in Banach subspaces.
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Here we see that

Cl

{ ∞∪
k=0

T (R/〈g2k

〉)

}
−

∞∪
k=0

T (R/〈g2k

〉)

is not empty and hence contains a point q. Indeed, if it is empty, then the countable
union

∪∞
k=0 T (R/〈g2k〉) is complete as a metric subspace of T (R). Hence there exists

an integer k0 such that T (R/〈g2k0 〉) is coincident with the entire union. However,
this contradicts the fact that the inclusion relations are proper.

Take a point qk ∈ T (R/〈g2k〉) for each k ∈ N so that the Teichmüller distances
d(q, qk) converge to 0 as k → ∞. Then, since γ2k

∗ fixes qk, we have

d(q, γ2k

∗ (q)) ≤ d(q, qk) + d(qk, γ2k

∗ (qk)) + d(γ2k

∗ (qk), γ2k

∗ (q)) = 2d(q, qk).

Here γ2k

∗ (q) is distinct from q because q does not belong to T (R/〈g2k〉). Since
γ2k

∗ (q) converge to q, the orbit {γn
∗ (q)}n∈Z is not discrete. ¤

In the hyperbolic plane H, the orbit of an elliptic Möbius transformation of
infinite order is not discrete unless it consists only of the fixed point. The above
theorem resembles this fact.

Now we have the following inclusion relations for the classes of modular trans-
formations:

{divergent type} ⊂ {infinitely discrete type} ⊂ {unbounded type}.

We will show that these inclusions are proper by giving examples of Riemann sur-
faces.

Theorem 4. There exists a modular transformation γ∗ ∈ Mod(R) for some
Riemann surface R that is of unbounded type but not of infinitely discrete type.

Proof. The Riemann surface R is obtained from the complex plane C =
{(x, y)} by removing a countable number of points. These points are defined as
follows. Let h : R → [0, 1] be a piecewise linear function of period 2 such that
h(x) = x for 0 ≤ x ≤ 1 and h(x) = 2 − x for 1 ≤ x ≤ 2. For each positive integer
k ∈ N, set

P2k−1 = {(x, y) | x ∈ Z, y = {1 − (k + 1)−1}h(2−k(k−1)/2x) + 2k − 1}
P2k = {(x, y) | x ∈ Z, y = 2k}.

Then R = C −
∪

k∈N Pk.
Next we define a quasiconformal mapping class of R. Consider a Riemann

surface S = C−{(x, y) | x ∈ Z, y ∈ N} and a conformal automorphism gS(z) = z+1
of S. Let η : S → R be a homeomorphism (not quasiconformal) such that η
keeps the x-coordinates invariant. By this requirement, a homotopy class of the
homeomorphism η is uniquely determined. Then we define a mapping class γ of
R as γ = [η ◦ gS ◦ η−1]. Although η is not quasiconformal, we can see that γ is a
quasiconformal mapping class by choosing a piecewise linear homeomorphism in γ
whose maximal dilatation is finite.

We will prove that γ∗ ∈ Mod(R) is of unbounded type but not of infinitely
discrete type. Arguments here are also used in [6]. To see unboundedness, consider
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a sequence γ2m(m−1)/2

∗ and its orbit of the basepoint o ∈ T (R) for m ∈ N. Take
three punctures

(0, 2m − 1), (0, 2m), (1, 2m)

of R. They are mapped by γ2m(m−1)/2
to

(2m(m−1)/2, 2m − (m + 1)−1), (2m(m−1)/2, 2m), (2m(m−1)/2 + 1, 2m)

respectively. The Euclidean distance between the first and the second points
changes from 1 to (m + 1)−1 but the distance between the second and the third
points does not change. The maximal dilatation of any quasiconformal homeomor-
phism of C that sends those three points to the corresponding three points can
be estimated from below and it grows to infinity as m → ∞. This implies that
d(γ2m(m−1)/2

∗ (o), o) → ∞ and hence γ∗ is of unbounded type.
To see indiscreteness, consider a sequence γ2·2m(m−1)/2

∗ and its orbit of the base-
point o for m ∈ N. Note that P1, P2, . . . , P2m are invariant under the 2 ·2m(m−1)/2-
translation. Then P2m+1 is the first row that is not invariant under this transla-
tion and the Hausdorff distance between P2m+1 and its translation is smaller than
1/2m−1. On the other hand, the shortest distance between P2m+1 and P2(m+1) is
(m+2)−1. Then the ratio of these distances is bounded by (m+2)/2m−1. For P2k+1

with k > m, this ratio is smaller. When we realize the mapping class γ2·2m(m−1)/2

as a piecewise linear homeomorphism, the closer this value is to 0, the closer we
can make its maximal dilatation to 1. Then, by (m + 2)/2m−1 → 0 as m → ∞, we
see that d(γ2·2m(m−1)/2

∗ (o), o) → 0 and hence γ∗ is not of infinitely discrete type. ¤

Remark. Similarly, there exists a modular transformation γ∗ ∈ Mod(R′) for
some Riemann surface R′ that is of infinitely discrete type but not of divergent
type. For example, R′ is obtained by replacing the amplitude 1 − (k + 1)−1 in the
definition of P2k−1 above with 1−2−(k−3) for all sufficiently large k. The definition
of the quasiconformal mapping class γ is the same. However, since the estimates
for showing that this γ∗ has the required properties are more complicated, we omit
the details here.

We say that a modular transformation γ∗ ∈ Mod(R) is hyperbolic if there exists
a positive constant δ > 0 such that d(γ∗(p), p) ≥ δ for every p ∈ T (R). There is
a problem asking whether or not every hyperbolic modular transformation γ∗ is of
divergent type even for an analytically infinite Riemann surface R.

§3. Stationary quasiconformal mapping classes

The quasiconformal mapping classes of analytically infinite Riemann surfaces
are divided into two categories: stationary and non-stationary. A stationary map-
ping class is a generalization of a mapping class of a compact Riemann surface.

Definition. A quasiconformal mapping class γ = [g] ∈ MCG(R) is station-
ary if there exist compact subsurfaces W and W ′ such that every representative
gn : R → R of γn for every n ∈ Z satisfies gn(W ) ∩ W ′ ̸= ∅. Moreover, γ is pure
if g fixes every topological end of R except a cusp, and γ is eventually trivial if
there exists a compact subsurface W ⊂ R such that g|U : U → R restricted to each
connected component U of R−W except a cusp neighborhood is homotopic to the
inclusion map U ↪→ R in R.
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It is clear from the definition that an eventually trivial mapping class is pure
as well as stationary. Also we have the following result, which is proved in [5].

Proposition 5. If R has more than two non-cuspidal topological ends, then
every pure mapping class is stationary.

Proof. By considering a canonical exhaustion of R by a sequence of compact
subsurfaces, we have a compact subsurface W whose complement consists of more
than two connected components except cusp neighborhoods. If a mapping class γ
preserves each non-cuspidal topological end, then every representative gn of γn for
every n ∈ Z satisfies gn(U) ∩ U ̸= ∅ for at least three connected components U of
R − W . This forces W to satisfy that gn(W ) ∩ W ̸= ∅ and hence γ is stationary.¤

It is known that a sequence of normalized quasiconformal mappings in the
complex plane whose maximal dilatations are uniformly bounded is sequentially
compact in compact open topology. The stationary property of mapping classes
corresponds to the normalization in this context and hence such a sequence of
mapping classes also has the compactness property if they are uniformly bounded.

In previous works [4] and [8], it has been proved that a modular transformation
γ∗ corresponding to a stationary mapping class has discrete orbits under a certain
boundedness assumption on the hyperbolic geometry of R. We can extend this
statement completely to the following form, which is also utilized in [15].

Theorem 6. For a stationary quasiconformal mapping class γ ∈ MCG(R) of
infinite order, the modular transformation γ∗ ∈ Mod(R) is of divergent type.

Proof. Suppose that γ∗ is not of divergent type. Then there exist a constant
K ≥ 1 and an increasing sequence of integers {nk}k∈N such that d(γnk

∗ (o), o) ≤
log K for all k ∈ N. We take a representative gk : R → R for each γnk whose
maximal dilatation is not greater than K, and consider the family {gk} of quasi-
conformal automorphisms. Since γ is stationary, by passing to a subsequence, we
see that gk converge locally uniformly. In particular, for a compact subsurface W
such that the image of the homomorphism π1(W ) → π1(R) induced by the inclusion
map W ↪→ R is not cyclic, there exists some k such that g−1

k ◦ gk+1 restricted to W
is homotopic to the inclusion map in R. Consider the mapping class δ := γnk+1−nk ,
which maps W trivially. Here, δ is not a trivial element, for otherwise γ would
be of finite order. Since we assume that γ∗ is not of divergent type, δ∗ is not of
divergent type either by Proposition 1.

We represent R by a Fuchsian group H acting on the unit disk ∆ = {|z| <
1} and take a subgroup H ′ corresponding to π1(W ). The limit set Λ(H ′) is a
closed subset of ∂∆ having more than two points. To the mapping class δ, there
corresponds a quasisymmetric automorphism δ̄ ̸= id of ∂∆ = {|z| = 1} that fixes
every point of Λ(H ′). Let L be the set of all points that are fixed by δ̄. It is
a proper closed subset of ∂∆ containing Λ(H ′). Take any interval J in ∂∆ − L,
which is invariant under δ̄. Since δ̄|J is monotonous, for every point x ∈ J , the
sequence δ̄n(x) converges to j+ or j− as n → ±∞, where j+ and j− are the
end points of J . Take some y ∈ L other than {j+, j−}. Then the cross-ratio
c(δ̄n(x), y, j+, j−) ∈ (1,∞) converges to 1 or ∞ as n → ±∞. This implies that the
maximal dilatation of any representative in δn tends to ∞ and hence δn

∗ (o) → ∞
as n → ±∞, that is, δ∗ is of divergent type. However, this is a contradiction. ¤
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§4. Asymptotically elliptic modular transformations

In this section, we deal with modular transformations that have fixed points
on the asymptotic Teichmüller space.

Definition. A modular transformation γ∗ ∈ Mod(R) is called asymptotically
elliptic if it has a fixed point on the asymptotic Teichmüller space AT (R). Moreover,
γ∗ ∈ Mod(R) is called asymptotically trivial if it fixes every point of AT (R).

If a quasiconformal mapping class γ ∈ MCG(R) is eventually trivial, then the
modular transformation γ∗ ∈ Mod(R) is asymptotically trivial. The converse is not
true in general, but under the assumption that R satisfies the bounded geometry
condition, it is conjectured that the converse should be true.

An elliptic modular transformation is of course asymptotically elliptic, but it is
not asymptotically trivial [16]. An example of an asymptotically elliptic modular
transformation that is neither elliptic nor asymptotically trivial is constructed by
Petrovic [19]. However, this mapping class is stationary.

Example 7. There exists a non-stationary mapping class γ ∈ MCG(R) such
that γ∗ ∈ Mod(R) is asymptotically elliptic but is neither elliptic nor asymptotically
trivial. Indeed, in [7, §3], we have constructed an example of a non-stationary
mapping class γ such that γ∗ is of infinitely discrete type and hence it is not elliptic.
This is not asymptotically trivial either. By modifying this construction slightly as
in Remark 3.4 of that paper, we can make γ∗ asymptotically elliptic.

Hereafter, we will show the bounded-divergent dichotomy for asymptotically
elliptic modular transformations. We use two lemmas. The first one concerns the
change of the cross-ratio under an asymptotically conformal homeomorphism.

Lemma 8. Let H be a Fuchsian group acting on the unit disk ∆ and π : ∆ →
R = ∆/H the projection to the Riemann surface R. Let {(βi, β

′
i)}i∈N be a sequence

of pairs of geodesic lines in ∆ with βi ∩ β′
i ̸= ∅ and let c(βi, β

′
i) be the cross-ratio

of the four end points of βi and β′
i on ∂∆ so defined as c(βi, β

′
i) ∈ (1,∞). Assume

that the sequence {π(βi ∪ β′
i)} diverges to the point at infinity of R as i → ∞. Also

assume that {c(βi, β
′
i)} are uniformly bounded from above and away from one. Let

g : R → R be an asymptotically conformal automorphism of R and g̃ : ∆ → ∆ a
lift of g to ∆. Then

c(g̃(βi), g̃(β′
i)) − c(βi, β

′
i) → 0

as i → ∞.

Proof. For each i ∈ N, we take Möbius transformations ϕi and ψi of ∆ so
that ϕi(βi ∩ β′

i) = {0} and ψi(g̃(βi) ∩ g̃(β′
i)) = {0}. Set g̃i := ψi ◦ g̃ ◦ ϕ−1

i . Then
the complex dilatations µg̃i of g̃i satisfy ∥µg̃i∥∞ = ∥µg̃∥∞ < 1 and converge to 0
almost everywhere as i → ∞. By a property of quasiconformal mappings (cf. [11,
p.29]), we see that, for any subsequence of {g̃i}, there exists a further subsequence
that converges to a Möbius transformation of ∆ uniformly on ∆. Since Möbius
transformations preserve the cross-ratio, this implies that the difference between
c(g̃(βi), g̃(β′

i)) and c(βi, β
′
i) tends to zero. ¤

Let ℓ be a topological vector space consisting of all the sequences ξ = (ξn)n∈Z
of real numbers whose topology is induced from the supremum norm ∥ξ∥∞ =
supn∈Z |ξn|. Let σ : ℓ → ℓ be the shift operator defined by σ(ξ)n = ξn+1.
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Lemma 9. Suppose that ξ = (ξn)n∈Z ∈ ℓ satisfies the following two conditions
for a sequence of integers {ni} ⊂ Z:

(1) ∥σni(ξ) − ξ∥∞ ≤ C for some C ≥ 0 and for every i ∈ N;
(2) For every m ∈ Z, σm(ξ)ni − ξni → 0 as i → ∞.

Then |ξm − ξ0| ≤ 2C for every m ∈ Z and in particular ∥ξ∥∞ < ∞.

Proof. Set s(m) := σm(ξ)− ξ ∈ ℓ and calculate s(m + ni) = σm+ni(ξ)− ξ in
two ways. In one way, we have

s(m + ni) = σm(σni(ξ)) − ξ = σm(s(ni)) + s(m).

Since ∥σm(s(ni))∥∞ ≤ C by condition (1), we see that ∥s(m + ni) − s(m)∥∞ ≤ C.
In the other way, we have

s(m + ni) = σni(σm(ξ)) − ξ = σni(s(m)) + s(ni).

Since ∥s(ni)∥∞ ≤ C by condition (1), we see that ∥s(m + ni)− σni(s(m))∥∞ ≤ C.
From those two inequalities, we have

∥s(m) − σni(s(m))∥∞ ≤ 2C.

Here we consider the evaluation σni(s(m))0 = s(m)ni at 0 in the last inequality.
By condition (2), this converges to 0 as i → ∞. Therefore we have |s(m)0| ≤ 2C,
in other words, |ξm − ξ0| ≤ 2C for every m ∈ Z. ¤

Now we state our theorem on asymptotically elliptic modular transformations.

Theorem 10. An asymptotically elliptic modular transformation γ∗ ∈ Mod(R)
is either of bounded type (elliptic) or of divergent type.

Proof. Let γ∗ have a fixed point α(p) ∈ AT (R). Without loss of generality,
we may assume that α(p) = α(o). Suppose that γ∗ is not of divergent type. Then
there exist a positive constant C and an increasing sequence of integers {nk}k∈N
such that d(γnk

∗ (o), o) ≤ C for all k ∈ N. We represent the Riemann surface R by
a Fuchsian group H acting on ∆ with the projection π : ∆ → R.

We take geodesic lines β and β′ in ∆ such that β∩β′ ̸= ∅ and the image π(β∪β′)
restricted to the convex core of R is compact. We also take an asymptotically
conformal automorphism g of R in the mapping class γ ∈ MCG(R) and its lift
g̃ : ∆ → ∆. Consider the cross-ratio c(β, β′) ∈ (1,∞) defined by the four end
points of β and β′. For each n ∈ Z, let βn and β′

n be the geodesic lines in ∆
determined by the end points of g̃n(β) and g̃n(β′) respectively, and define also
c(βn, β′

n) ∈ (1,∞). Then set

ξn =
∫ c(βn,β′

n)

2

ρC−{0,1}(x)dx,

where ρC−{0,1}(z)|dz| is the hyperbolic metric on C − {0, 1}. This is the signed
hyperbolic distance of c(βn, β′

n) from 2.
If γ is stationary (meaning that the whole sequence {γn}n∈Z is stationary by

definition), then Theorem 6 implies that γ∗ is of finite order, for it is not of divergent
type by assumption. By applying a similar argument to the sequence of mapping
classes {γnk}, we can also show that γ∗ is of finite order and in particular of bounded
type if the sequence {γnk} is stationary. Hence we have only to consider the case
where {γnk} is not stationary. Namely, there exists a subsequence {k(i)}i∈N of
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{k} such that gk(i)(π(β ∪ β′)) diverge to the point at infinity as i → ∞ for some
representative gk(i) of γnk(i) . Hereafter, we replace the indices k(i) by i.

We will show that ξ := (ξn) ∈ ℓ together with the sequence {ni}i∈N ⊂ N satisfies
the assumptions in the statement of Lemma 9. For condition (1), we consider

ξm+ni − ξm =
∫ c(g̃ni (βm),g̃ni (β′

m))

c(βm,β′
m)

ρC−{0,1}(x)dx

for every m ∈ Z and for every i ∈ N. It is known that a K-quasiconformal automor-
phism of ∆ changes the cross-ratio by at most log K with respect to the hyperbolic
distance on C−{0, 1}. Hence the condition that d(γni

∗ (o), o) ≤ C for every i implies
that |ξm+ni − ξm| ≤ C for every m. Thus we have ∥σni(ξ) − ξ∥∞ ≤ C.

To show that condition (2) is satisfied, we use Lemma 8. From the choice of
the sequence {ni}, we see that π(βni ∪ β′

ni
) diverge to the point at infinity of R as

i → ∞. Since d(γni
∗ (o), o) ≤ C for every i, we see that {c(βni , β

′
ni

)} are uniformly
bounded from above and away from one. Note that g̃m is a lift of an asymptotically
conformal automorphism gm of R for each m ∈ Z. Then Lemma 8 can be applied
to conclude that

ξm+ni − ξni =
∫ c(g̃m(βni

),g̃m(β′
ni

))

c(βni
,β′

ni
)

ρC−{0,1}(x)dx → 0.

Thus we have σm(ξ)ni − ξni → 0 as i → ∞ for every m.
By Lemma 9, we have |ξm − ξ0| ≤ 2C for every m. This estimate implies that

g̃m changes the cross-ratio c(β, β′) by at most 2C with respect to the hyperbolic
distance on C − {0, 1}.

Next we take arbitrary four distinct points a1, a′
1, a2, a′

2 on ∂∆ in this order.
If the Fuchsian group H is of the first kind, then there exists a sequence of geodesic
lines β in ∆ whose projections π(β) are closed geodesics in R and whose end points
converge to a1 and a2 respectively. If H is of the second kind, we can choose the β
so that its end points are not in the limit set and hence π(β) restricted to the convex
core of R is compact. From this fact, we see that the cross-ratio c(a1, a2, a

′
1, a

′
2) can

be approximated by the sequence of cross-ratios {c(β, β′)} for which our estimate
can be applied. Since g̃m changes c(β, β′) by at most 2C, continuity of the cross-
ratio shows that g̃m changes c(a1, a2, a

′
1, a

′
2) by at most 2C. It is known that this

implies the boundary map g̃m|∂∆ is M -quasisymmetric, where the constant M
depends only on C. Also d(γm

∗ (o), o) is bounded by a constant depending only on
C. Since this is valid uniformly for every m, we see that the modular transformation
γ∗ is of bounded type. ¤

Ideas of the above arguments were inspired by [3] and [20, §4]. Remark that,
if γ∗ is asymptotically elliptic having a fixed point α(p), then the orbit {γn

∗ (q)}n∈Z
for any q ∈ Tp(R) is discrete. This can be seen by using a similar argument as
above. In [16], we also discuss this problem in the case where γ∗ is elliptic.
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