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maps between Riemann surfaces preserve hyperbolicity, we show that arbitrary twists along simple closed
geodesics do not preserve it, in general.

Keywords: quasiconformal maps, Riemann surfaces, Gromov hyperbolicity.

2000 Mathematics Subject Classification: 30F45; 53C23, 30C99.

Abbreviated title: TWISTS AND GROMOV HYPERBOLICITY

Date: June 15, 2010.
(1) Supported in part by two grants from Ministerio de Ciencia e Innovación (MTM 2009-07800 and MTM 2008-02829-E),

Spain.

1



2 K. MATSUZAKI AND J. M. RODRÍGUEZ

1. Introduction

In the 1980s, M. Gromov (cf. [1]) introduced a notion of abstract hyperbolic spaces, and it has thereafter
been studied and developed by many authors, e.g. [2]-[5]. Initially, the research was mainly centered on
hyperbolic group theory; lately researchers have been increasing their interest in more direct studies of
certain spaces endowed with metrics which are used in geometric function theory, e.g. [6]-[28]. A primary
question we naturally ask is whether a metric space (X, d) is hyperbolic in the sense of Gromov or not. A
classical example of a Gromov hyperbolic space is a simply connected Riemannian manifold with sectional
curvature K ≤ −k2 < 0.

One of the important problems when studying a geometric property is to consider its stability under
appropriate deformations, in other words, to determine what type of perturbations preserve this property.
Aiming this, we study the stability of Gromov hyperbolicity in this paper. In [12], the authors proved that
a certain strong change in the metric preserves hyperbolicity for Denjoy domains.

It is well known that Gromov hyperbolicity is invariant under quasi-isometries between geodesic metric
spaces; however, usual deformations in the context of Riemann surfaces are given by quasiconformal maps,
and it is natural to ask whether they preserve hyperbolicity or not.

In this paper we first notice that quasiconformal maps between Riemann surfaces preserve hyperbolicity
(see Theorem 3.2). In the context of Riemann surfaces of topologically finite type, twists along disjoint simple
closed geodesics are always realized by quasiconformal maps; however, for Riemann surfaces of topologically
infinite type, we prove that the twists do not preserve hyperbolicity in general (see Theorem 6.2), although
they preserve hyperbolicity in some cases (see Theorems 5.3 and 3.4). In order to achieve this goal and
propose further problems, we need to prove certain results about hyperbolicity of Denjoy domains (see
Theorems 4.2 and 4.4).

2. Background on Gromov spaces and previous results

For a geodesic metric space (X, d) and x1, x2, . . . , xn ∈ X , a geodesic polygon P = {x1, x2, . . . , xn} is the
union of n geodesics J1 := [x1, x2], J2 := [x2, x3], . . . , Jn := [xn, x1]. We say that P is δ-thin for a constant
δ ≥ 0 if for every x ∈ Ji we have that d(x,

⋃

j 6=i Jj) ≤ δ. The space (X, d) is Gromov δ-hyperbolic (or satisfies

the Rips condition with constant δ) if every geodesic triangle in X is δ-thin. In order to simplify the notation,
we say that X is δ-hyperbolic or just hyperbolic instead of saying that (X, d) is Gromov δ-hyperbolic.

It is easy to check that in a δ-hyperbolic space, every geodesic polygon with n sides is (n−2)δ-thin. If we
have a triangle with two identical vertices, we call it a bigon; obviously, every bigon in a δ-hyperbolic space
is δ-thin.

A function between two metric spaces f : X −→ Y is a quasi-isometry if there are constants a ≥ 1, b ≥ 0
such that

1

a
dX(x1, x2) − b ≤ dY (f(x1), f(x2)) ≤ adX(x1, x2) + b , for every x1, x2 ∈ X.

A such function is called an (a, b)-quasi-isometry. We say that the image of f is ε-full (for some ε ≥ 0) if
dY (y, f(X)) ≤ ε for every y ∈ Y .

We say that a property holds quantitatively, if it holds with a constant depending only on the constants
in the assumptions.

Theorem 2.1. ([29, p. 88]) Let us consider an (a, b)-quasi-isometry between two geodesic metric spaces

f : X −→ Y . If Y is hyperbolic, then X is hyperbolic, quantitatively. Besides, if the image of f is ε-full for

some ε ≥ 0, then X is hyperbolic if and only if Y is hyperbolic, quantitatively.

Recall that the universal cover of any domain Ω ⊂ C, with at least two finite boundary points, is the
unit disk D. In Ω we can define the Poincaré metric, i.e. the metric obtained by projecting the metric
ds = 2|dz|/(1− |z|2) of the unit disk by any universal covering map π : D −→ Ω. Alternatively, we may use
the upper half plane H with the metric ds = |dz|/y as the universal cover. Therefore, any simply connected
subset of Ω is isometric to a subset of D. With this metric, Ω is a geodesically complete Riemannian manifold
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with constant curvature −1 and, in particular, Ω is a geodesic metric space. We denote the distance on Ω
by dΩ and the length of a curve in Ω by LΩ.

The Poincaré metric is natural and useful in complex analysis; for instance, any holomorphic function
between two domains is Lipschitz with constant 1 (that is, non-expanding), when we consider the respective
Poincaré metrics.

A Denjoy domain Ω is a domain in the complex plane whose boundary is contained in the real axis. Since
Ω ∩ R is an open set in R, it is the union of pairwise disjoint open intervals; as each interval contains a
rational number, this union is countable. Hence, we can write Ω∩R =

⋃

n∈Λ(an, bn), where Λ is a countable
index set, {(an, bn)}n∈Λ are pairwise disjoint, and it is possible to have an1

= −∞ for some n1 ∈ Λ and/or
bn2

= ∞ for some n2 ∈ Λ.
In order to study Gromov hyperbolicity, we consider the case where Λ is countably infinite, since if Λ is

finite then Ω is hyperbolic by [25, Proposition 3.2] or [11, Proposition 3.5].

Definition 2.2. Let Ω be a Denjoy domain. Then we have Ω∩R =
⋃

n≥0(an, bn) for some pairwise disjoint
intervals. We say that a curve in Ω is a fundamental geodesic if it is a simple closed geodesic which just
intersects R in (a0, b0) and (an, bn) for some n > 0; we denote by γn the fundamental geodesic corresponding
to n and define its length by 2ln := LΩ(γn).

Theorem 2.3. ([18, Theorem 5.1]) Let Ω be a Denjoy domain with its Poincaré metric. Then the following

conditions are quantitatively equivalent:

(1) Ω is δ-hyperbolic.
(2) There exists a constant c1 such that dΩ(z, Ω ∩ R) ≤ c1 for every z ∈

⋃

n≥1 γn.

(3) There exists a constant c2 such that every geodesic bigon in Ω with vertices in R is c2-thin.

We need a stronger version of this result.

Theorem 2.4. Let Ω be a Denjoy with Ω ∩ R =
⋃

n≥0(an, bn). Then the following conditions are quantita-

tively equivalent:

(1) Ω is δ-hyperbolic.
(2) There exists a constant c1 such that dΩ

(

z,
⋃

n≥1(an, bn)
)

≤ c1 for every z ∈ ⋃

n≥1 γn.

Proof. Assume first (1): Ω is δ-hyperbolic. Theorem 2.3 says that there exists a constant c1 such that
dΩ

(

z,
⋃

n≥0(an, bn)
)

≤ c1 for every z ∈ ⋃

n≥1 γn. Then every z ∈ ⋃

n≥1 γn with dΩ

(

z, (a0, b0)
)

> c1 verifies

dΩ

(

z,
⋃

n≥1

(an, bn)
)

= dΩ

(

z,
⋃

n≥0

(an, bn)
)

≤ c1 .

By continuity, we have dΩ

(

z,
⋃

n≥1(an, bn)
)

≤ c1 for every z ∈ ⋃

n≥1 γn with dΩ

(

z, (a0, b0)
)

≥ c1. Now, if z ∈
γn for some n with dΩ

(

z, (a0, b0)
)

< c1 and dΩ

(

z, (an, bn)
)

> c1, then there exists z′ ∈ γn with dΩ(z, z′) ≤ c1

and dΩ

(

z′, (a0, b0)
)

= c1, and therefore dΩ

(

z,
⋃

n≥1(an, bn)
)

≤ 2c1. Consequently, dΩ

(

z,
⋃

n≥1(an, bn)
)

≤ 2c1

for every z ∈ ⋃

n≥1 γn.

Assume now (2). Then

dΩ

(

z,
⋃

n≥0

(an, bn)
)

≤ dΩ

(

z,
⋃

n≥1

(an, bn)
)

≤ c1

for every z ∈ ⋃

n≥1 γn, and Theorem 2.3 implies that Ω is δ-hyperbolic, quantitatively. �

Definition 2.5. A train is a Denjoy domain Ω with Ω ∩ R =
⋃∞

n=0(an, bn), such that −∞ ≤ a0 and
bn ≤ an+1 for every n and limn→∞ an = ∞. We say that a train is tight if bn = an+1 for every n.

A curve in a train Ω is a second fundamental geodesic if it is a simple closed geodesic which just intersects R

in (an, bn) and (an+1, bn+1) for some n ≥ 0; we denote by σn the second fundamental geodesic corresponding
to n and define its length by 2rn := LΩ(σn) (see figure below). If bn = an+1, we define σn as the puncture
at this point and rn = 0.
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σ3

(a) Train seen as a subset of the complex plane.

a0b0

a1

b1 a2 b2 a3 b3 a4 b4

γ2
γ3

σ3

(b) The same train seen with “Euclidean eyes”.

Remark 2.6. (1) We can also define a train to be a Denjoy domain Ω such that R\Ω consists of an “increasing”
sequence of closed intervals or punctures.

(2) Recall that in every free homotopy class there exists a single simple closed geodesic, assuming that
punctures are simple closed geodesics with length equal to zero. That is why both the fundamental geodesic
and the second fundamental geodesic are unique for every n.

A train is tight if and only if every second fundamental geodesic is a puncture. Tight trains are important
since they are the simplest examples of infinite ends; furthermore, in a tight train it is possible to give a
fairly precise description of the ending geometry. See, e.g. [30], [31], [32], where they call a similar but more
general surface (allowing twists) a flute space.

Definition 2.7. A Y -piece is a bordered non-exceptional Riemann surface which is conformally equivalent
to a sphere from which three open disks are removed and whose boundary curves are simple closed geodesics.
A generalized Y -piece is a non-exceptional Riemann surface (with or without boundary) which is conformally
equivalent to a sphere from which n open disks and m points are removed (n + m = 3) such that the n
boundary curves are simple closed geodesics and the m deleted points are punctures.

Given three non-negative numbers a, b, c, there is a unique (up to conformal mapping) generalized Y -
piece such that their boundary curves have lengths a, b, c (see e.g. [33, p.109]). They are standard pieces for
constructing Riemann surfaces. A clear description of these Y -pieces and their use are given in [34, Chapter
X.3] and [33, Chapter 3].

If a0 = −∞, then the fundamental geodesics {γn} and {σn} of a train Ω divide it into generalized Y -pieces
and annuli beyond the second fundamental geodesics called funnels. However, when a0 6= −∞, we need one
more piece for this decomposition, which is a simply connected domain around the interval (−∞, a0] called
a half-disk. See [35]. A train is determined by the values of their lengths {ln}n>0 and {rn}n≥0.

In [23] the authors prove that it is possible to obtain a similar decomposition (as a union generalized
Y -pieces, annuli and half-disks) of any complete surface with arbitrary curvature.

Here we introduce a powerful and simple characterization for a train to be hyperbolic. In particular, this
can be applied to the case where ln is a non-decreasing sequence.
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Theorem 2.8. ([22, Theorem 3.18]) Let us consider a train Ω with lm ≤ ln + c1 for some c1 ≥ 0 and for

every positive integer numbers m ≤ n.

(1) If {ln} is a bounded sequence, then Ω is hyperbolic.

(2) If limn→∞ ln = ∞, then Ω is hyperbolic if and only if {rn} is a bounded sequence and

(2.9)
∞
∑

k=n

e−lk ≤ c2 e−ln , for every n > 1 .

holds for some constant c2.

Remark 2.10. Note that the hypothesis “lm ≤ ln + c1 for m ≤ n” in Theorem 2.8 implies that {ln} is either
a bounded sequence or a sequence with limit ∞.

Finally in this section, we give a criterion of hyperbolicity for geodesic metric spaces in general which can
be easily applied to Riemann surfaces.

Definition 2.11. Let (X, d) be a geodesic metric space, and let {Xn}n ⊆ X be a family of geodesic metric
subspaces such that X =

⋃

n Xn and that ηn,m := Xn ∩Xm are compact sets. Further, assume that the set
X \ ηn,m for any n and m is not connected, and that any a ∈ Xn \ ηn,m and b ∈ Xm \ ηn,m are in different
components of X \ ηn,m for m 6= n. If there exists positive constants c1 and c2 such that diamXn

(ηn,m) ≤ c1

for every n, m, and dXn
(ηn,m, ηn,k) ≥ c2 for every n and m 6= k, we say that {Xn}n is a (c1, c2)-tree

decomposition of X .

Theorem 2.12. ([25, Theorem 2.4]) Let us consider a geodesic metric space X and a family of geodesic

metric subspaces {Xn}n ⊆ X which is a (c1, c2)-tree decomposition of X. Then X is δ-hyperbolic if and only

if there exists a constant δ′ such that Xn is δ′-hyperbolic for every n.

See Theorems 2.9 and 2.19 in [19] for further results.

3. Quasiconformal maps preserve Gromov hyperbolicity

In this section, we will show that any quasiconformal homeomorphism between Riemann surfaces preserves
their Gromov hyperbolicity. Actually, it is well-known that any bi-Lipschitz map in the following sense
preserves the hyperbolicity.

Definition 3.1. Let f : R −→ R′ be a surjective homeomorphism between Riemann surfaces with the
Poincaré metric and dR and dR′ are the distances on R and R′, respectively. If there exists a constant a ≥ 1
such that

1

a
dR(x, y) ≤ dR′(f(x), f(y)) ≤ adR(x, y)

for any x and y in R, then f is called a bi-Lipschitz homeomorphism. Assume further that f is a diffeomor-
phism and let ds and ds′ be the line elements of the Poincaré metric on R and R′, respectively. If there
exists a constant a ≥ 1 such that

1

a
ds(x) ≤ ds′(f(x)) ≤ ads(x)

for any x in R, then f is called a bi-Lipschitz diffeomorphism.

Note that if f : R −→ R′ is an isometry, then it is a bi-Lipschitz diffeomorphism. Also a bi-Lipschitz
homeomorphism is a quasi-isometry. Any quasi-isometry preserves hyperbolicity.

We consider the universal covering maps π : D −→ R and π′ : D −→ R with the covering transformation
groups (Fuchsian groups) G and G′, respectively. Any homeomorphism f : R −→ R′ lifts to an automorphism

f̃ of D satisfying f ◦ π = π′ ◦ f̃ , or equivalently f̃Gf̃−1 = G′. Then f is bi-Lipschitz if and only if f̃ is
bi-Lipschitz.

Any quasiconformal automorphism f̃ of D extends to the boundary ∂D as a quasisymmetric automorphism
f̄ . If f̃ satisfies the compatibility condition f̃Gf̃−1 = G′ for the Fuchsian groups, then f̄Gf̄−1 = G′ on ∂D.
Conversely, there is a way of extending a quasisymmetric automorphism f̄ of ∂D to D. The conformal
barycentric extension due to Douady and Earle [36] gives such an extension E(f̄) which is a bi-Lipschitz
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diffeomorphism of D onto itself. Moreover, if f̄ is compatible with the Fuchsian groups G and G′, then so is
E(f̄) for G and G′. The bi-Lipschitz constant a for E(f̄) can be taken depending only on the quasisymmetric
constant m(f̄) of f̄ . Here m(f̄) can be defined as the infimum of the maximal dilatations k of quasiconformal
automorphisms D that have the boundary value f̄ (see [36]).

In virtue of the conformal barycentric extension, we can prove the required result.

Theorem 3.2. Assume that there is a k-quasiconformal homeomorphism f of a Riemann surface R onto

another Riemann surface R′. Then R is hyperbolic if and only if R′ is hyperbolic, quantitatively.

Proof. We take a lift f̃ : D −→ D of f : R −→ R′ and then the quasisymmetric extension f̄ : ∂D −→ ∂D.
This satisfies the compatibility condition f̄Gf̄−1 = G′ for the Fuchsian groups of R and R′. The barycentric
extension E(f̄) of f̄ is a bi-Lipschitz diffeomorphism of D satisfying E(f̄)GE(f̄ )−1 = G′. As is mentioned

above, the bi-Lipschitz constant a for E(f̄) depends only on the maximal dilatation of f̃ , which is the
constant k for the quasiconformal homeomorphism f . Hence it projects to a bi-Lipschitz diffeomorphism of
R onto R′ with the same constant a. This in particular implies that R and R′ are quasi-isometric and hence
they are hyperbolic at the same time. Moreover, by Theorem 2.1, the constants δ for the hyperbolicity of R
and R′ are depending on a, and hence on k. �

Here we illustrate a concrete example of twists on Riemann surfaces which preserve the hyperbolicity.

Definition 3.3. We say that a Riemann surface S has an l-decomposition for a constant l > 0 if there exist
generalized Y -pieces {Yn}n∈N and funnels {Fm}m∈M having pairwise disjoint interiors such that:

• S =
(
⋃

n∈N Yn

)

∪
(
⋃

m∈M Fm

)

,
• LS(γ) ≤ l for every simple closed geodesic γ ⊂ ⋃

n∈N ∂Yn \ ⋃

m∈M ∂Fm.

Theorem 3.4. Let us consider a Riemann surface S with an l-decomposition for l > 0. Denote by S′ a

Riemann surface obtained from S by any amount of twist around the boundary geodesics of {Yn}n∈N , which

are the generalized Y -pieces corresponding to the l-decomposition of S. Then S is hyperbolic if and only if

S′ is hyperbolic, quantitatively.

Proof. By [27, Theorem 3.7] there exists a graph G related to S (an l-skeleton of S, with the notation in
[27]), such that S is hyperbolic if and only if G is hyperbolic (with control on the hyperbolicity constants).
We obtain the same result for S′ with a graph G′. This finishes the proof since, by construction, G′ = G
(the graph depends on the lengths of {∂Yn}n∈N , but not on the twist). �

Actually, we can prove that there exists a quasiconformal homeomorphism between the Riemann surfaces
S and S′ in Theorem 3.4 whose quasiconformal constant is estimated by l. See, e.g. [37, Theorem 3.1].
Basically, the reason of this fact is as follows. If the lengths of simple closed geodesics are uniformly bounded,
the collar lemma implies that there are annular neighborhoods of the simple closed geodesics whose conformal
moduli are uniformly large. Then the twists can be realized on these annuli by quasiconformal maps with
uniformly bounded dilatations.

On the other hand, we will construct later an example of a Gromov hyperbolic Riemann surface S such
that another Riemann surface S0 obtained from S by giving certain twists along mutually disjoint simple
closed geodesics {γn} is not hyperbolic. If the lengths of {γn} were uniformly bounded, then this defor-
mation of hyperbolic structure would be given quasiconformally, namely, there would be a quasiconformal
homeomorphism of S onto S0. However, Theorem 3.2 implies that such a deformation cannot break Gro-
mov hyperbolicity and hence we must seek the example of the above S and S0 beyond this uniform twist
deformation.

4. On Gromov hyperbolicity of bitrains

Definition 4.1. A bitrain Ω is a Denjoy domain with Ω ∩ R =
⋃

n∈Z∗(an, bn) for some pairwise disjoint
intervals, such that bm ≤ an for every m < n (here Z∗ := Z \ {0}).

We denote by ωn the simple closed geodesic which just intersects R in (a−n, b−n) and (an, bn) for some
n > 0; we define 2hn := LΩ(ωn).
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We denote by ηn the simple closed geodesic which just intersects R in (an, bn) and (an+sgn n, bn+sgn n) for
some n ∈ Z∗; we define 2sn := LΩ(ηn). If [an, bn] ∩ [an+sgn n, bn+sgn n] 6= ∅, we define ηn as the puncture at
this intersection point.

The purpose of this section is to develop criteria which allow to decide or discard the hyperbolicity of a
bitrain.

Theorem 4.2. Let Ω be a bitrain with its Poincaré metric, such that sn ≤ c1 for every n > 0. Then the

following conditions are quantitatively equivalent:

(1) Ω is δ-hyperbolic.
(2) There exists a constant c2 such that dΩ(z, Ω ∩ R) ≤ c2 for every z ∈ ∪n≥1ωn.

Proof. Assume first (1): Ω is δ-hyperbolic. Fix n > 0 and z ∈ ωn. Denote by z1, z2 the points in ωn ∩ R;
then ωn is a geodesic bigon with vertices z1, z2. By symmetry, we have only to consider the case z ∈ Ω ∩ H.
Since ωn is δ-thin, we have dΩ(z, Ω ∩ R) ≤ dΩ(z, ωn ∩ {C \ H}) ≤ δ.

Assume now (2). Let us define (α0, β0) = (a−1, b−1), (α2k, β2k) = (ak, bk) for k > 0, (α2k+1, β2k+1) =
(a−k−2, b−k−2) for k ≥ 0. Then Ω ∩ R =

⋃

n≥0(αn, βn). Let γn be the simple closed geodesic in Ω which

intersects R just in (α0, β0) and (αn, βn). By Theorem 2.3, we just need to show that there exists a constant
c3 such that dΩ(z, Ω ∩ R) ≤ c3 for every z ∈ ⋃

n≥1 γn.

We first consider the case that z ∈ ⋃

k≥1 γ2k. If z ∈ γ2 = ω1, we have directly dΩ(z, Ω ∩ R) ≤ c2. Hence
we assume that z ∈ γ2k for k > 1 and fix this integer k. Without loss of generality, we may assume that
z ∈ H. Hereafter, for a Jordan curve g in Ω, we denote by int g the bounded connected component of Ω \ g
(i.e., the set of points surrounded by g) in the relative topology of C.

If z ∈ intω2, let us consider the geodesic heptagon P1 contained in the closure of intω2 ∩ H, with sides
contained in γ2k, ω2, (a2, b2), η1, (a1, b1), ω1 and (a−1, b−1). (When k = 2, γ4 does not intersect ω2.
In this case, we assume P1 to be a hexagon and modify the argument below.) The heptagon P1 bounds
a simply connected domain in Ω, and therefore it can be lifted to the unit disk, which is δ0-hyperbolic
for δ0 := log(1 +

√
2 ) (see [38, p. 130]). Hence, P1 is 5δ0-thin in Ω and there exists w ∈ P1 \ γ2k with

dΩ(z, w) ≤ 5δ0. Then the argument is divided into the following cases:

• If w ∈ (a2, b2) ∪ (a1, b1) ∪ (a−1, b−1), then dΩ(z, Ω ∩ R) ≤ 5δ0;
• If w ∈ ω1 ∪ ω2, then dΩ(z, Ω ∩ R) ≤ dΩ(z, w) + dΩ(w, Ω ∩ R) ≤ 5δ0 + c2;
• If w ∈ η1, then dΩ(w, Ω ∩ R) ≤ c1/2 (since LΩ(η1 ∩ H) = s1 ≤ c1) and dΩ(z, Ω ∩ R) ≤ 5δ0 + c1/2.

Then we conclude dΩ(z, Ω ∩ R) ≤ 5δ0 + c2 + c1/2 for every z ∈ intω2.
If z ∈ intωk \ intωk−1 with k > 2, let us consider the geodesic pentagon P2 contained in the closure of

{intωk \ intωk−1}∩H, with sides contained in γ2k, (ak, bk), ηk−1, (ak−1, bk−1) and ωk−1. Since P2 is 3δ0-thin
in Ω, a similar argument to the previous one gives that dΩ(z, Ω∩R) ≤ 3δ0 + c2 + c1/2. If z ∈ intωj+1 \ intωj

with 1 < j < k−1, let us consider the geodesic hexagon P3 contained in the closure of {intωj+1 \ intωj}∩H,
with sides contained in γ2k, ωj+1, (aj+1, bj+1), ηj , (aj , bj) and ωj . Since P3 is 4δ0-thin in Ω, a similar
argument to the previous one gives that dΩ(z, Ω ∩ R) ≤ 4δ0 + c2 + c1/2.

If z ∈ ⋃

k≥0 γ2k+1, then we also obtain from a similar argument that dΩ(z, Ω ∩ R) ≤ 5δ0 + c2 + c1/2.
Therefore, Theorem 2.3 implies that Ω is hyperbolic, quantitatively. �

Definition 4.3. We say that a bitrain is symmetric if (a−n, b−n) = (−bn,−an) for every n > 0.

Note that, by symmetry, the imaginary axis minus {0} consists of two geodesic lines in every symmetric
bitrain.

A symmetric bitrain is determined by the values of the sequences {hn}n>0 and {sn}n>0.

Theorem 4.4. A symmetric bitrain with sn ≤ c for every n is hyperbolic if and only if the train with

parameters ln := hn/2 and rn := sn is hyperbolic, quantitatively.

Proof. Denote by Ω a symmetric bitrain and define Ω+ := Ω ∩ H. A Riemann surface Ω1 obtained from
Ω+ by identifying the point iy with −iy for every y > 0 can be conformally (and isometrically) mapped
onto a train Ω2 by f : Ω1 −→ Ω2. If Ω ∩ R =

⋃

n∈Z∗(αn, βn), we can write Ω2 ∩ R =
⋃

n≥0(an, bn), where

(an, bn) = f
(

(αn, βn)
)

for n > 0, and (a0, b0) is the image of the imaginary axis minus {0} by f . Since Ω
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is symmetric, the geodesics ωn meet orthogonally the imaginary axis. Therefore, for each n > 0, the image
by f of ωn ∩ {z ∈ C : ℜz ≥ 0} is a (smooth) simple closed geodesic in Ω2 joining (a0, b0) with (an, bn), and
therefore it is the geodesic γn in Ω2. Furthermore, the parameters of Ω and Ω2 correspond as ln = hn/2 and
rn = sn.

By Theorem 4.2, Ω is hyperbolic if and only if dΩ

(

z,
⋃

Z∗(αn, βn)
)

≤ c1 for every z ∈
⋃

n≥1 ωn; by

symmetry, this is equivalent to that dΩ

(

z,
⋃

n>0(αn, βn)
)

≤ c1 for every z ∈ ⋃

n≥1 ωn with ℜz ≥ 0. This

is also equivalent to that dΩ2

(

w,
⋃

n>0(an, bn)
)

≤ c1 for every w ∈
⋃

n≥1 γn, and by Theorem 2.4, this is
equivalent to the hyperbolicity of Ω2, quantitatively. �

5. Twists and hyperbolicity of trains

We will show later that infinite twists, in general, do not preserve hyperbolicity (see Theorem 6.2).
However, in this section, we prove that they do preserve hyperbolicity for a large class of examples constructed
by trains (Theorems 5.3).

First of all, we need a technical lemma.

Lemma 5.1. If {xn} is a sequence with xn ≥ 0 and

∞
∑

k=n

xk ≤ c xn

for every n ≥ 1, then
∞
∑

k=n

xp
k ≤ cpx

p
n,

for every n ≥ 1 and p > 0, where cp := 1 if c ≤ 1; cp := cp/(1 − cp
0) and c0 := (c − 1)/c if c > 1.

Proof. Assume first that c ≤ 1; then
∑∞

k=1 xk ≤ x1 and, consequently, xn = 0 for every n ≥ 2; therefore,
the result is direct.

Assume now that c > 1. If we define zn :=
∑∞

k=n xk, then xn = zn − zn+1 and zn ≤ c(zn − zn+1), for
every n ≥ 1, and we just need to prove that

∞
∑

k=n

(zk − zk+1)
p ≤ cp(zn − zn+1)

p,

for every n ≥ 1 and p > 0. We have

c zn+1 ≤ c zn − zn , zn+1 ≤ c0zn .

Then
∞
∑

k=n

(zk − zk+1)
p ≤

∞
∑

k=n

zp
k ≤

∞
∑

k=n

(ck−n
0 zn)p =

1

1 − cp
0

zp
n ≤ cp(zn − zn+1)

p,

for every n ≥ 1 and p > 0, and the lemma is proved. �

Now we define the twists which are interesting for us.

Definition 5.2. Given a bitrain Ω and n > 0, we denote by µn the simple closed geodesic which just
intersects R in (an, bn) and (a−n−1, b−n−1). Let us define 2jn := LΩ(µn). Denote by Yn the generalized
Y -piece in Ω bounded by ωn, µn and η−n, and by Y ′

n the generalized Y -piece in Ω bounded by µn, ωn+1,
and ηn We denote by Ω∗ the canonical twist of Ω, defined as the train obtained from Ω by twisting angle π
the generalized Y -pieces Yn for every n ≥ 1.

If Ω is a symmetric bitrain, then Ω∗ is the train with parameters l2k−1 := hk, l2k := jk, r2k−1 := sk and
r2k := sk for every k > 0.

Theorem 5.3. Let us consider any symmetric bitrain Ω such that sn ≤ c0 for some c0 ≥ 0 and for every n,

and hm ≤ hn + c1 for some c1 ≥ 0 and for every m ≤ n. Then Ω is hyperbolic if and only if Ω∗ is hyperbolic.
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Proof. First of all, let us note that the hypothesis hm ≤ hn + c1 for every m ≤ n implies that we have either
supn hn < ∞ or limn→∞ hn = ∞.

Assume first that hn ≤ c for every n and for some constant c. By Theorem 4.4, Ω is hyperbolic if and
only if the train Ω1 with parameters ln := hn/2 ≤ c/2 and rn := sn is hyperbolic. Theorem 2.8 gives that
Ω1 is hyperbolic, and hence Ω is hyperbolic.

If we denote by {l∗n}n>0 and {r∗n}n≥0 the parameters of the train Ω∗, then l∗2k−1 = hk ≤ c, l∗2k = jk,
r∗2k−1 = sk ≤ c0 and r∗2k = sk ≤ c0 for every k > 0. Let us consider Xn = Yn ∪ Y ′

n in Ω, called a generalized
X-piece, which is bounded by ωn, ωn+1, ηn and η−n. Since these 4 outer loops of Xn have lengths less than
or equal to max{2c, 2c0}, Bers’ Theorem (see [39]) implies that there exists a simple closed geodesic in in
Xn that is not an outer loop with LΩ(in) ≤ c∗, where c∗ is a constant depending only on c and c0. By the
symmetry of Xn, we see that in and µn have the same length, and hence 2jn = LΩ(µn) ≤ c∗. Consequently,
l∗n ≤ max{c, c∗/2} for every n > 0, and Theorem 2.8 gives that Ω∗ is hyperbolic.

Assume now that limn→∞ hn = ∞. By Theorem 4.4, Ω is hyperbolic if and only if the train Ω1 with
parameters ln := hn/2 and rn := sn ≤ c0 is hyperbolic. Since limn→∞ ln = ∞ and lm ≤ ln + c1/2 for every
m ≤ n, Theorem 2.8 gives that Ω1 is hyperbolic if and only if

∞
∑

k=n

e−hk/2 ≤ c2 e−hn/2, for every n > 1 .

By Lemma 5.1 (with p = 2 and p = 1/2), this is equivalent to

(5.4)

∞
∑

k=n

e−hk ≤ c3 e−hn , for every n > 1 .

If we denote by {l∗n}n>0 and {r∗n}n≥0 the parameters of the train Ω∗, then l∗2k−1 = hk, l∗2k = jk, r∗2k−1 =
sk ≤ c0 and r∗2k = sk ≤ c0 for every k > 0.

We claim now that l∗m ≤ l∗n + c4 for every m ≤ n, and that (5.4) is equivalent to

(5.5)

∞
∑

k=n

e−l∗
k ≤ c5 e−l∗

n , for every n > 1 .

Since l∗m ≤ l∗n + c4 for every m ≤ n and limk→∞ l∗2k−1 = ∞, we deduce that limn→∞ l∗n = ∞. Then Theorem
2.8 gives that (5.5) is equivalent to the hyperbolicity of Ω∗.

We first prove the equivalence of (5.4) and (5.5). It is clear that (5.5) implies (5.4) with c3 = c5.
Conversely, assume that (5.4) holds.

For each n > 0, let us consider the geodesic octagon On in Ω ∩ H with sides ωn ∩ H, ωn+1 ∩ H, ηn ∩ H,
η−n ∩ H, and the four segments joining their endpoints contained in (an, bn), (an+1, bn+1), (a−n, b−n) and
(a−n−1, b−n−1). Since Ω is a symmetric bitrain, the shortest geodesic gn in On joining ωn and ωn+1 splits
On into two isometric hexagons Hn and H ′

n.
Since µn ∩ H is the shortest geodesic in On joining (an, bn) and (a−n−1, b−n−1), we have for every n > 0

hn + hn+1

2
≤ jn ≤ hn + hn+1

2
+ LΩ(gn) .

Hyperbolic trigonometry for the hexagon Hn (see e.g. [40, p. 161]) gives

coshLΩ(gn) =
cosh sn + cosh(hn/2) cosh(hn+1/2)

sinh(hn/2) sinh(hn+1/2)
.

Since infn hn > 0 and sn ≤ c2 for every n, there exist a constant c6 such that LΩ(gn) ≤ c6. Consequently,
we have for every n > 0

hn + hn+1

2
≤ jn ≤ hn + hn+1

2
+ c6 .

Then, we also have jn ≤ hn+1 + c6 + c1/2.
Therefore, for every n > 1,

(5.6)

∞
∑

k=n

e−jk ≤
∞
∑

k=n

e−(hk+hk+1)/2 ≤ ec1/2
∞
∑

k=n

e−hk ≤ c3 ec1/2e−hn ,
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and hence

(5.7)
∞
∑

k=n

(

e−hk + e−jk

)

≤ c3

(

1 + ec1/2
)

e−hn .

We also have
∞
∑

k=n+1

e−hk ≤ c3 e−hn+1 ≤ c3 ec1/2e−(hn+hn+1)/2 ≤ c3 ec6+c1/2e−jn ,

and using (5.6)
∞
∑

k=n+1

e−jk ≤ c3 ec1/2e−hn+1 ≤ c3 ec1+c6e−jn .

Therefore,

(5.8) e−jn +
∞
∑

k=n+1

(

e−jk + e−hk

)

≤
(

1 + 2 c3 ec1+c6
)

e−jn .

Finally, using (5.7) and (5.8), we deduce (5.5) with c5 = 1 + 2 c3 ec1+c6 .
We then prove l∗m ≤ l∗n + c4 for every m ≤ n. Fix m ≤ n. We have

hm ≤ hn + c1 ,

hm =
hm − c1 + hm − c1

2
+ c1 ≤ hn + hn+1

2
+ c1 ≤ jn + c1 ,

jm ≤ hm + hm+1

2
+ c6 ≤ hn + hn+1

2
+ c1 + c6 ≤ jn + c1 + c6 ,

jm ≤ hm + hm+1

2
+ c6 ≤ hn+1 + hn+1

2
+ c1 + c6 = hn+1 + c1 + c6 ,

and thus conclude l∗m ≤ l∗n + c1 + c6 for every m ≤ n. �

6. An example of infinite twists not preserving hyperbolicity

In this section, we give an example of infinite twists of a Riemann surface which do not preserve the
Gromov hyperbolicity. First, we need a criterion which tells that a Riemann surface is not hyperbolic. The
following theorem is a useful one.

Theorem 6.1. ([21, Theorem 5.2]) Let us consider a non-exceptional Riemann surface S, and X1
n, X2

n ⊂ S
bordered surfaces such that X1

n ∩ X2
n = ∂X1

n ∩ ∂X2
n = η1

n ∪ η2
n, and dX2

n
(η1

n, η2
n) ≥ kn for every n. If

limn→∞ kn = ∞, then S is not hyperbolic.

Then we can construct our example from Theorems 2.12 and 6.1.

Theorem 6.2. There exist a hyperbolic Riemann surface S and a non-hyperbolic Riemann surface S0, such

that S0 can be obtained by twisting some Y -pieces of S.

Proof. For each n ≥ 1 let us consider two (isometric) Y -pieces Yn and Y ′
n such that the lengths of the

three simple closed geodesics γn,1, γn,2, γn,3 ⊂ ∂Yn (respectively, γ′
n,1, γ

′
n,2, γ

′
n,3 ⊂ ∂Y ′

n) are LYn
(γn,1) =

LYn
(γn,2) = 2 and LYn

(γn,3) = 2n (respectively, LY ′

n
(γ′

n,1) = LY ′

n
(γ′

n,2) = 2 and LY ′

n
(γ′

n,3) = 2n). Define the
bordered Riemann surface Zn as the surface obtained by pasting γn,3 and γ′

n,3 “in a symmetric way”, which
means that the shortest geodesic in Zn joining γn,1 and γ′

n,1 meets orthogonally γn,3 = γ′
n,3. Now, Xn is the

bordered Riemann surface obtained by attaching to Zn two funnels with boundary length 2, identifying the
boundaries of the funnels with γn,2 and γ′

n,2.
Let us consider a sequence of (isometric) Y -pieces {Y0,n}n≥1 such that the lengths of the three simple

closed geodesics in ∂Y0,n are all 2. Define the bordered Riemann surface Z0 as the surface obtained by
pasting {Y0,n}n≥1 in the following way: we identify a simple closed geodesic in ∂Y0,n with a simple closed
geodesic in ∂Y0,n+1 for every n ≥ 1 in the symmetric way as above. Now, X0 is the bordered Riemann
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surface obtained by attaching to Z0 a funnel with boundary length 2, identifying the boundary of the funnel
with a simple closed geodesic ∂Z0 ∩ Y0,1.

We construct our Riemann surface S by identifying, for every n ≥ 1, γn,1 with the simple closed geodesic
∂X0 ∩ Y0,2n−1 and γ′

n,1 with the simple closed geodesic ∂X0 ∩ Y0,2n.
We are going to prove that {Xn}n≥0 is a (c1, c2)-tree decomposition of S. Note first that ηn,m = ∅ for

every n, m ≥ 1, and ηn,0 = γn,1 ∪ γ′
n,1 for every n ≥ 1.

We have dXn
(γn,1, γ

′
n,1) = 2 dYn

(γn,1, γn,3). Hyperbolic trigonometry (see e.g. [40, p. 161]) gives

coshdYn
(γn,1, γn,3) =

cosh 1 + cosh 1 coshn

sinh 1 sinhn
.

Hence, there exists a constant c0 such that dXn
(γn,1, γ

′
n,1) ≤ c0 for every n ≥ 1. We also have dX0

(γn,1, γ
′
n,1) ≤

c0 for every n ≥ 1. Consequently,

diamXn
(ηn,0) ≤ diamXn

(γn,1) + dXn
(γn,1, γ

′
n,1) + diamXn

(γn,1) ≤ 2 + c0 =: c1

for every n ≥ 1 and, in a similar way, diamX0
(ηn,0) ≤ c1 for every n ≥ 1. Furthermore,

dX0
(ηn,0, ηm,0) ≥ dX0

(ηn,0, ηn+1,0) = 2 Arccosh
cosh 1 + cosh21

sinh21
=: c2

for every m, n ≥ 1 with m 6= n. Then, we have proved that {Xn}n≥0 is a (c1, c2)-tree decomposition of S.
Note that, for every n ≥ 1, the four outer loops of Xn have length 2. Therefore, by [27, Theorem 3.4] (see

[21, Theorem 5.6] for further results), there exists a constant δ′ such that Xn is δ′-hyperbolic for every n ≥ 1.
On the other hand, since X0 is a train such that the lengths of the fundamental geodesics are bounded, it is
hyperbolic by Theorem 2.8. Hence, Theorem 2.12 gives that S is hyperbolic.

Let us define S0 as the Riemann surface obtained from S by twisting angle π/2 along the geodesic γ′
n,3

(with respect to γn,3) for every n ≥ 1. Denote by pn, qn the points in γn,1, γ
′
n,1 (respectively) satisfying

dXn
(γn,1, γ

′
n,1) = dXn

(pn, qn) = 2 Arccosh
cosh 1 + cosh 1 coshn

sinh 1 sinhn
.

For each n ≥ 1, denote by X0
n the X-piece obtained from Xn by twisting angle π/2 along the geodesic γ′

n,3.
Triangle inequality gives that

dX0
n
(pn, qn) ≥ n

2
− 2 Arccosh

cosh 1 + cosh 1 coshn

sinh 1 sinhn
≥ n

2
− c0

for every n ≥ 1, and consequently,

dX0
n
(γn,1, γ

′
n,1) ≥ dX0

n
(pn, qn) − 2 ≥ n

2
− c0 − 2 =: kn

for every n ≥ 1.
For each n ≥ 1, let us consider X2

n := X0
n, and let X1

n be the closure of S0 \ X2
n. Define η1

n := γn,1 and
η2

n := γ′
n,1. Since limn→∞ kn = ∞, Theorem 6.1 gives that S0 is not hyperbolic. �

7. Problems on trains

In this section, we raise a problem asking whether certain twists on a train preserve its hyperbolicity or
not. The train in question is constructed as follows.

Let Ω be a train such that the lengths of the fundamental geodesics are ln for n ≥ 1 and the lengths of
the second fundamental geodesics satisfy rn = 0 for n ≥ 1. We assume that {ln} is an increasing sequence
and diverges to ∞ as n tends to ∞. This is a tight train which is a union of generalized Y -pieces {Yn}n≥1

and possibly a half-disk, where each Yn has one puncture pn and two geodesic boundary components γn and
γn+1. By Theorem 2.8 (see also [18, Theorem 5.12]), we see that if ln = an for a constant a > 0, then Ω is
hyperbolic.

We define a pentagon Y +
n = Yn ∩ Ω+ for each n ≥ 1, where Ω+ = Ω ∩ H. Set γ+

n = γn ∩ Y +
n and denote

the two end points of γ+
n by qn (the closer one to pn) and on. We have two sides γ+

n and γ+
n+1 of Y +

n . The



12 K. MATSUZAKI AND J. M. RODRÍGUEZ

side of Y +
n in R opposite to the vertex pn is denoted by λn. The vertices of Y +

n are pn, qn, on, on+1 and
qn+1.

For the hyperbolic length LΩ(λn) of the arc λn, we know from a formula on pentagon (cf. [40, Theorem
7.18.1]) that

cosh LΩ(λn) =
cosh ln cosh ln+1 + 1

sinh ln sinh ln+1
,

which gives that

1 +
2

sinh2 ln+1

< cosh LΩ(λn) < 1 +
2

sinh2 ln
for all n large enough. From this, we have an estimate 1/ sinh ln+1 < LΩ(λn) < 2/ sinh ln for all sufficiently
large n. Hence, if ln = an, then the sum

∑∞
n=1 LΩ(λn) converges. This implies that a half-disk is necessary

for the above decomposition of Ω. This condition is also equivalent to that the Denjoy domain Ω can be
represented by the unit disk D from which a countably many points on R are removed.

The shortest geodesic arc in Y +
n from the vertex qn to the side γ+

n+1 is denoted by αn and its other

endpoint in γ+
n+1 is denoted by q′n+1. Also the subarc of γ+

n+1 between q′n+1 and on+1 is denoted by γ′
n+1.

To estimate the length LΩ(αn), we consider a quadrilateral with the sides αn, γ+
n , λn and γ′

n+1. Let φn

be the angle at the vertex qn in this quadrilateral. From hyperbolic trigonometry on quadrilateral (cf. [40,
Theorem 7.17.1]), we obtain that

cosh LΩ(αn) =
coshLΩ(λn)

sinφn
=

√

1 + cosh2 ln sinh2 LΩ(λn) .

Here we have

sinh2 LΩ(λn) = cosh2 LΩ(λn) − 1

=
(cosh ln cosh ln+1 + 1)2 − (cosh2 ln − 1)(cosh2 ln+1 − 1)

sinh2 ln sinh2 ln+1

=

(

cosh ln + cosh ln+1

sinh ln sinh ln+1

)2

,

and by using this equality we also have

1 +

(

cosh ln cosh ln+1

sinh ln sinh ln+1

)2

< 1 + cosh2 ln sinh2 LΩ(λn) < 1 + 4

(

cosh ln cosh ln+1

sinh ln sinh ln+1

)2

.

Then coshLΩ(αn) >
√

2 for all n ≥ 1 and limn→∞ coshLΩ(αn) ≤
√

5. This implies that there are constants
c1, c

′
1 > 0 such that c1 < LΩ(αn) < c′1 for all n ≥ 1. Moreover, since limn→∞ cosh LΩ(λn) = 1, we see that

sin φn is uniformly bounded away from 0 and π/2.
We also estimate the length of γ′

n+1. Again the formula for the quadrilateral gives that

cosh ln
coshLΩ(γ′

n+1)
=

coshLΩ(αn)

cosh LΩ(λn)
.

Since
√

2 ≤ limn→∞ coshLΩ(αn) ≤
√

5, we see that the value of this ratio is uniformly bounded from above
and below. This implies that there are constants c2, c

′
2 > 0 such that c2 < ln − LΩ(γ′

n+1) < c′2 for all n ≥ 1.
In fact, for the two right-angled triangles made of γ+

n , αn and γ′
n+1, we see that ln is asymptotically equal

to LΩ(αn) + LΩ(γ′
n+1) as n → ∞, and thus

lim
n→∞

ln − LΩ(γ′
n+1)

LΩ(αn)
= 1 .

We give certain amount of twists along the fundamental geodesics of Ω. The twist along each γn+1 for
n ≥ 1 is given in such a way that the vertex qn+1 ∈ Yn+1 meets the point q′n+1 ∈ Y +

n . Namely, the length
of the twist along γn+1 is tn+1 = ln+1 − LΩ(γ′

n+1). The resulting surface is denoted by Ω′.
The sequence of the simple closed geodesics {γn}n≥1 escapes from any compact subset of Ω′. Otherwise,

it would converge to a geodesic line that is the boundary of a half-disk. To see this fact, we apply [41,
Lemma 2]. Since

∑∞
n=1 LΩ′(αn) =

∑∞
n=1 LΩ(αn) = ∞, we can show that there is no such geodesic line as
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a limit of the sequence {γn}. In particular, for any fixed n0 ≥ 1, the distance dΩ′(γn, γn0
) between γn and

γn0
grows to ∞ as n → ∞. In the case where ln = an for some a > 0, we expect that dΩ′ (γn, γn0

) grows
linearly with respect to n (or faster than nε for some ε with 0 < ε < 1). We hope that this would be verified

by showing that dΩ′(γn, γn0
) is comparable with

∑n−1
i=n0

LΩ′(αi) for sufficiently large n.

Since there is no half-disk in Ω′, we see that either Ω′ is represented by D minus countably many points
which are accumulated on the entire circle ∂D or Ω′ is represented by C from which countably many points
are removed.

Now we formulate our problem. This would give us another example showing that hyperbolicity is not
preserved by twists if it were verified.

Conjecture 7.1. If ln = an for a constant a > 0, then the twisted surface Ω′ is not hyperbolic, whereas the
original tight train Ω is hyperbolic.

To see this claim, we may consider the order of divergence for non-asymptotic geodesic rays on Ω′.
Furthermore, we may ask whether Ω′ is represented by C from which countably many points are removed.
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[23] Portilla, A., Rodŕıguez, J. M., Touŕıs, E., Structure Theorem for Riemannian surfaces with arbitrary curvature. Preprint.
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