The Petersson series vanishes at infinity

Katsuhiko Matsuzaki

ABSTRACT. The Petersson series with respect to a simple closed geodesic c on a hyperbolic Riemann surface R is the relative Poincaré series of the canonical holomorphic quadratic differential on the annular cover of R and it defines a holomorphic quadratic differential $\varphi_c(z)dz^2$ on R. For the hyperbolic metric $\rho(z)|dz|$ on R, we give an upper estimate of $\rho^{-2}(z(p))|\varphi_c(z(p))|$ in terms of the hyperbolic length of c and the distance of $p \in R$ from c.

1. Introduction

Let Γ be a torsion-free Fuchsian group acting on a upper half-plane model $\mathbb{H} = \{\zeta = \xi + i\eta \mid \eta > 0\}$ of the hyperbolic plane. Throughout this paper, we always assume that a Riemann surface R is represented by \mathbb{H}/Γ . A holomorphic quadratic differential $\varphi(z)dz^2$ on R can be identified with a holomorphic function $\varphi(\zeta)$ on \mathbb{H} that satisfies $\varphi(\gamma(\zeta)) = \varphi(\zeta)\gamma'(\zeta)^2$ for every $\gamma \in \Gamma$. We call such a holomorphic function (2, 0)-automorphic form for Γ . A holomorphic (2, 0)-automorphic form $\varphi(\zeta)$ is integrable if the integral of $|\varphi(\zeta)|$ over a fundamental domain of Γ is finite. This is equivalent to saying that the integral $\int_R |\varphi(z)| dxdy$ is finite. We denote the space of all integrable holomorphic (2, 0)-automorphic form on \mathbb{H} for Γ by $Q^1(\mathbb{H}, \Gamma)$. This can be identified with the space of all integrable holomorphic quadratic differentials on R which is a complex Banach space with the norm $\|\varphi\|_1 = \int_R |\varphi(z)| dxdy$. If Γ is the trivial group 1, then $Q^1(\mathbb{H}, 1)$ is nothing but the Banach space of all integrable holomorphic functions on \mathbb{H} .

An integrable holomorphic (2, 0)-automorphic form for Γ is produced from an integrable holomorphic function f by the *Poincaré series*

$$\Theta_{\Gamma}(f(\zeta)) = \sum_{\gamma \in \Gamma} f(\gamma(\zeta)) \gamma'(\zeta)^2.$$

It is known that $\Theta_{\Gamma} : Q^1(\mathbb{H}, 1) \to Q^1(\mathbb{H}, \Gamma)$ is a surjective bounded linear operator with the operator norm not greater than 1 for every Fuchsian group Γ . See Kra [7] for details on automorphic forms and the Poincaré series.

©2011 American Mathematical Society

¹⁹⁹¹ Mathematics Subject Classification. Primary 30F35, 30F60, Secondary 32G15.

 $Key\ words\ and\ phrases.$ Fuchsian group, Poincaré series, quadratic differential, automorphic form, hyperbolic distance, injectivity radius.

This work was supported by JSPS KAKENHI 20340030.

Let $\rho(\zeta) = 1/\text{Im }\zeta$ be the hyperbolic density on \mathbb{H} . It induces the hyperbolic metric $\rho(z)|dz|$ on a Riemann surface $R = \mathbb{H}/\Gamma$. For a hyperbolic element $\gamma_c \in \Gamma$ corresponding to a simple closed geodesic c on the hyperbolic Riemann surface R, we consider the annulus $A = \mathbb{H}/\langle \gamma_c \rangle$ which covers R. We may assume that $\gamma_c(\zeta) = e^{\ell(c)}\zeta$ where $\ell(c)$ denotes the hyperbolic length of c.

For an integrable holomorphic (2, 0)-automorphic form ϕ for $\langle \gamma_c \rangle$, the relative Poincaré series

$$\Theta_{\langle \gamma_c \rangle \backslash \Gamma}(\phi(\zeta)) = \sum_{[\gamma] \in \langle \gamma_c \rangle \backslash \Gamma} \phi(\gamma(\zeta) \gamma'(\zeta)^2$$

also defines an integrable holomorphic (2, 0)-automorphic form for Γ . Here the sum is taken over all representatives of the cosets $\langle \gamma_c \rangle \backslash \Gamma$. Then $\Theta_{\langle \gamma_c \rangle \backslash \Gamma} : Q^1(\mathbb{H}, \langle \gamma_c \rangle) \to Q^1(\mathbb{H}, \Gamma)$ is also a surjective bounded linear operator with norm not greater than 1.

We choose $\phi(\zeta) = \zeta^{-2}$, which is an integrable holomorphic (2,0)-automorphic form for $\langle \gamma_c \rangle$. The polar coordinates $(l,t) \in \mathbb{R}_{>0} \times (0,\pi)$ for $\zeta = \exp(l + it) \in \mathbb{H}$ induce an euclidean metric $\sqrt{dl^2 + dt^2}$ on the annulus $A = \mathbb{H}/\langle \gamma_c \rangle$ and this coincides with the euclidean metric $|d\zeta/\zeta|$ induced by the holomorphic quadratic differential on A corresponding to $\phi(\zeta) = \zeta^{-2}$. In particular, the area form $|\phi(\zeta)|d\xi d\eta$ is equal to dldt and hence $\int_A |\phi(\zeta)|d\xi d\eta = \pi \ell(c)$. The relative Poincaré series

$$\varphi_c(\zeta) = \Theta_{\langle \gamma_c \rangle \setminus \Gamma}(\phi(\zeta)) = \sum_{[\gamma] \in \langle \gamma_c \rangle \setminus \Gamma} \frac{\gamma'(\zeta)^2}{\gamma(\zeta)^2}$$

is called the *Petersson series* with respect to c, which defines the holomorphic quadratic differential $\varphi_c(z)dz^2$ on R. The norm $\|\varphi_c\|_1$ is bounded by $\|\phi\|_1 = \pi \ell(c)$. This plays an important role on the variation of the hyperbolic length $\ell(c)$ under a quasiconformal deformation of R (cf. Gardiner [5]) and the Weil-Petersson geometry on Teichmüller spaces (cf. Wolpert [15]).

For a quadratic differential $\varphi(z)dz^2$ on R, $\rho^{-2}(z(p))|\varphi(z(p))|$ is well-defined for $p \in R$ independent of a local parameter z around p and hence $\rho^{-2}|\varphi|$ gives a function on R. For the (2,0)-automorphic form $\varphi(\zeta)$ and for a point $\zeta \in \mathbb{H}$ over $p \in R$, the function $\rho^{-2}(\zeta)|\varphi(\zeta)|$ is the lift of $\rho^{-2}|\varphi|$ to the universal cover \mathbb{H} . We provide the supremum norm $\|\varphi\|_{\infty} = \sup_{\zeta \in \mathbb{H}} \rho^{-2}(\zeta)|\varphi(\zeta)|$ for a holomorphic (2,0)-automorphic form $\varphi(\zeta)$ for Γ (and for a holomorphic quadratic differential) and call it *bounded* if $\|\varphi\|_{\infty}$ is finite. The space of all bounded holomorphic (2,0)-automorphic forms for Γ is denoted by $Q^{\infty}(\mathbb{H}, \Gamma)$. This is a complex Banach space with the norm $\|\varphi\|_{\infty}$.

In this paper, we will give an estimate of the function $\rho^{-2}|\varphi_c|$ of $p \in R$ for $\varphi_c(z)dz^2$ defined by the Petersson series with respect to a simple closed geodesic c on R in terms of the hyperbolic distance d(p,c) of p from c. Our main theorem can be stated as follows.

THE MAIN THEOREM. Let $\varphi_c(z)dz^2$ be a holomorphic quadratic differential on a hyperbolic Riemann surface R given by the Petersson series with respect to a simple closed geodesic c on R. Then, for a sufficiently small $r_0 > 0$, there is a positive constant B depending only on r_0 such that

$$\rho(z(p))^{-2}|\varphi_c(z(p))| \le B\,\ell(c)e^{-d(p,c)/3}$$

for every $p \in R$ with $d(p,c) > r_0$ such that there is no closed curve based at p and freely homotopic to c with length less than $2r_0$. In particular, $\varphi_c(z)dz^2$ is bounded and it vanishes at infinity.

 $\mathbf{2}$

Here we say that a holomorphic quadratic differential $\varphi(z)dz^2$ on R vanishes at infinity if, for every $\varepsilon > 0$, there is a compact subset V of R such that $\sup_{p \in R-V} \rho(z(p))^{-2} |\varphi(z(p))| < \varepsilon$. The corresponding holomorphic (2,0)-automorphic form on \mathbb{H} is called similarly. We denote the subspace of $Q^{\infty}(\mathbb{H}, \Gamma)$ consisting of all holomorphic (2,0)-automorphic forms vanishing at infinity by $Q_0^{\infty}(\mathbb{H}, \Gamma)$. This space has an importance in the theory of asymptotic Teichmüller spaces developed by Earle, Gardiner and Lakic (see [6] and [3]).

The assumption on the point $p \in R$ in the statement of the Main Theorem eliminates the case where c is very short and p is in a collar neighborhood of c. An estimate of $\rho(z(p))^{-2}|\varphi_c(z(p))|$ in this case has been given in [9].

We remark that, if the injectivity radii of R are uniformly bounded away from zero, then the conclusion of the Main Theorem easily follows from a basic estimate given in the next section. For a point p on R, the *injectivity radius* r(p) is defined to be the radius of a maximal hyperbolic open disk centered at p that is embedded in R. However, the existence of a cusp does not make the problem difficult even if r(p) tends to zero as p gets closer to a cusp; the essential problem occurs in the case where R has a sequence of simple closed geodesics whose lengths tend to zero.

Note that, it has been proved by Niebur and Sheingorn [10] that $Q^1(\mathbb{H}, \Gamma)$ is contained in $Q^{\infty}(\mathbb{H}, \Gamma)$ if and only if $R = \mathbb{H}/\Gamma$ has no such sequence of short simple closed geodesics whose lengths tend to zero. Moreover, it is shown in [8] that the operator norm of the inclusion map $Q^1(\mathbb{H}, \Gamma) \hookrightarrow Q^{\infty}(\mathbb{H}, \Gamma)$ is given in terms of the infimum of the lengths of simple closed geodesics on R (see also Sugawa [14]). On the other hand, when R has a sequence of simple closed geodesics whose lengths tend to zero, examples of integrable but not bounded holomorphic quadratic differentials have been constructed in Pommerenke [12] and Ohsawa [11] as well as in [9].

We further remark that, only to show that $\varphi_c(z)dz^2$ vanishes at infinity in the Main Theorem, there is a simpler argument. This can be done by transferring the Petersson series to the unit disk \mathbb{D} by biholomorphic conjugation and relying on a technique due to Ahlfors [1]. These arguments as well as the density of $Q_0^{\infty}(\mathbb{H},\Gamma)$ in $Q^1(\mathbb{H},\Gamma)$ will be discussed in the last section.

2. Basic estimate

We will review an integral estimate of the hyperbolic supremum norm of a holomorphic function and apply it to the Poincaré series. This also shows that injectivity radius is the issue that we should manage.

PROPOSITION 2.1. Let $\varphi(z)dz^2$ be a holomorphic quadratic differential on a hyperbolic Riemann surface R, r(p) the injectivity radius at $p \in R$ and U(p, r(p)) the hyperbolic disk of radius r(p) centered at p. Then

$$\rho^{-2}(z(p))|\varphi(z(p))| \le \frac{1}{4\pi \tanh^2(r(p)/2)} \int_{U(p,r(p))} |\varphi(z)| \, dx \, dy$$

for a local coordinate z = x + iy around p.

PROOF. By lifting $\varphi(z)dz^2$ to the unit disk \mathbb{D} , we have a holomorphic (2,0)automorphic form $\varphi(\zeta)$ on \mathbb{D} . We may assume that $p \in R$ corresponds to the origin $0 \in \mathbb{D}$, that is, $\zeta = \xi + i\eta$ gives a local coordinate such that $\zeta(p) = 0$. Let $\rho_{\mathbb{D}}(\zeta) = 2/(1 - |\zeta|^2)$ denote the hyperbolic density on \mathbb{D} . Then

$$\rho^{-2}(z(p))|\varphi(z(p))| = \rho_{\mathbb{D}}^{-2}(0)|\varphi(0)| = \frac{|\varphi(0)|}{4}$$

and

$$\varphi(0) = \frac{1}{\pi a^2} \int_{|\zeta| \le a} \varphi(\zeta) \, d\xi d\eta,$$

where U(p, r(p)) lifts to the euclidean disk $\{|\zeta| \le a\}$ of radius $a = \tanh(r(p)/2)$. Hence

$$|\varphi(0)| \leq \frac{1}{\pi a^2} \int_{|\zeta| \leq a} |\varphi(\zeta)| \, d\xi d\eta = \frac{1}{\pi \tanh^2(r(p)/2)} \int_{U(p,r(p))} |\varphi(z)| \, dx dy,$$

which yields the desired inequality.

It is well known that there is a constant $r_0 > 0$ (related to the Margulis constant) independent of the choice of a hyperbolic Riemann surface R such that if $r(p) < r_0$ then the disk neighborhood U(p, r(p)) of p is entirely contained either in the canonical cusp neighborhood or in the canonical collar of a short simple closed geodesic on R. Here the canonical cusp neighborhood is a horocyclic cusp neighborhood of hyperbolic area 2 and the canonical collar of a simple closed geodesic α is its neighborhood of width

$$\omega = \operatorname{arcsinh} \frac{1}{\sinh(\ell(\alpha)/2)}.$$

Note that, in this latter case, $\omega \ge r(p)$ and $2r(p) \ge \ell(\alpha)$ are satisfied. From these conditions, the upper bound of the hyperbolic length of α is known as $\ell(\alpha) \le 2 \operatorname{arcsinh} 1$.

Fix such a constant $r_0 > 0$. We define the cut-off injectivity radius at $p \in R$ as $\underline{r}(p) = \min\{r(p), r_0\}$. Then Proposition 2.1 implies that

$$\rho^{-2}(z(p))|\varphi(z(p))| \le \frac{r_0^2}{4\pi \tanh^2(r_0/2)\,\underline{r}(p)^2} \int_{U(p,\underline{r}(p))} |\varphi(z)|\,dxdy$$

for any holomorphic quadratic differential $\varphi(z)dz^2$ on R. We apply this formula for the quadratic differential $\varphi_c(z)dz^2$ on R induced by the Petersson series with respect to a simple closed geodesic c. By setting $b(r_0) = r_0^2/\{4 \tanh^2(r_0/2)\}$, we have

$$\begin{split} \rho^{-2}(z(p))|\varphi_{c}(z(p))| &\leq \frac{b(r_{0})}{\pi \underline{r}(p)^{2}} \sum_{[\gamma] \in \langle \gamma_{c} \rangle \backslash \Gamma} \int_{U(\zeta(p),\underline{r}(p))} \frac{|\gamma'(\zeta)^{2}|}{|\gamma(\zeta)^{2}|} d\xi d\eta \\ &= \frac{b(r_{0})}{\pi \underline{r}(p)^{2}} \sum_{[\gamma] \in \langle \gamma_{c} \rangle \backslash \Gamma} \int_{\gamma(U(\zeta(p),\underline{r}(p)))} \frac{1}{|\zeta^{2}|} d\xi d\eta. \end{split}$$

LEMMA 2.2. For every p with $d(p,c) > r_0$,

$$\rho^{-2}(z(p))|\varphi_c(z(p))| \le \frac{2e^{r_0}b(r_0)}{\underline{r}(p)^2}\ell(c)\,e^{-d(p,c)}$$

is satisfied.

PROOF. Since $d(p,c) > r_0 \geq \underline{r}(p)$, we see in the previous inequality that $\gamma(U(\zeta(p),\underline{r}(p)))$ are away from the imaginary axis by $d(p,c) - r_0$. This distance corresponds to the angle $t = \arctan(\sinh\{d(p,c) - r_0\})$ from the imaginary axis. Then

$$\sum_{[\gamma]\in\langle\gamma_c\rangle\setminus\Gamma}\int_{\gamma(U(\zeta(p),\underline{r}(p)))}\frac{1}{|\zeta^2|}\,d\xi d\eta\leq\ell(c)[\pi-2\arctan(\sinh\{d(p,c)-r_0\})].$$

Finally we use an inequality

$$\pi e^{-x} \le \pi - 2 \arctan(\sinh x) \le 4 e^{-x}$$

for $x \ge 0$ to obtain the required inequality.

Suppose that the point $p \in R$ satisfies $r(p) \ge r_0$. Then, by $\underline{r}(p) = r_0$, Lemma 2.2 immediately shows that

$$\rho^{-2}(z(p))|\varphi_c(z(p))| \le \frac{2e^{r_0}b(r_0)}{r_0^2}\ell(c)\,e^{-d(p,c)}.$$

Hence the Main Theorem is verified in this case.

Now we investigate the case where $r(p) < r_0$. Then $\underline{r}(p) = r(p)$ and p is either in the canonical cusp neighborhood or in the canonical collar. For the moment, suppose that p is in the canonical cusp neighborhood $\Omega \subset R$. Note that Ω is disjoint from c. We can represent Ω as a quotient space of $\{\zeta \in \mathbb{H} \mid \text{Im } \zeta > 1/2\}$ by the parabolic element $\zeta \mapsto \zeta + 1$; we may assume that Γ contains this element. Then $\Omega = \{0 < |w| < e^{-\pi}\}$ by using the local parameter $w = \exp(2\pi i \zeta)$. Also the hyperbolic density is given by $\rho(w) = (-|w| \log |w|)^{-1}$. It is known that a larger punctured disk $\widetilde{\Omega} = \{0 < |w| < e^{-\pi/2}\}$ is also embedded in R (see Seppälä and Sorvali [13]).

PROPOSITION 2.3. Let $\varphi(z)dz^2$ be an integrable holomorphic quadratic differential on R and p a point in the canonical cusp neighborhood $\Omega \subset R$ with the local parameter $w = \exp(2\pi i \zeta)$. Then

$$\rho^{-2}(w(p))|\varphi(w(p))| \le \frac{2e^{\pi}|w(p)|(\log|w(p)|)^2}{\pi} \|\varphi\|_1$$

is satisfied.

PROOF. It is easy to see that $\varphi(w)$ has at most a simple pole at the puncture w = 0. Hence $w\varphi(w)$ is a holomorphic function of w = u + iv and satisfies

$$w(p)\varphi(w(p)) = \frac{1}{\pi a^2} \int_{|w-w(p)| \le a} w\varphi(w) \, du dv$$

for $a = e^{-\pi}$. Then

$$\begin{split} \rho^{-2}(w(p))|\varphi(w(p))| &\leq \frac{|w(p)|(\log|w(p)|)^2}{\pi a^2} \int_{|w-w(p)|\leq a} |w||\varphi(w)| \, du dv \\ &\leq \frac{2|w(p)|(\log|w(p)|)^2}{\pi a} \int_R |\varphi(z)| \, dx \, dy, \end{split}$$

which is the desired inequality.

Assume that $p \in \Omega$ is at distance $d \ge d(p,c)$ from the boundary $\partial \Omega$. Then $\operatorname{Im} \zeta(p) = e^d/2$ and hence

$$|w(p)| = \exp(-\pi e^d) \le \exp(-\pi (1+d)).$$

Recall that the quadratic differential $\varphi_c(z)dz^2$ on R determined by the Petersson series satisfies $\|\varphi_c\|_1 \leq \pi \ell(c)$. From Proposition 2.3, we have

$$\rho^{-2}(w(p))|\varphi_c(w(p))| \le 2\pi^2 \ell(c) \exp(\pi + 2d - \pi(1+d)).$$

In particular,

$$\rho^{-2}(w(p))|\varphi_c(w(p))| \le 2\pi^2 \ell(c) e^{-d(p,c)}$$

which satisfies the condition of the Main Theorem. This means that we do not have to take care of the case where p with $r(p) < r_0$ is in the canonical cusp neighborhood.

3. Comparison of euclidean areas

In what follows, we investigate the case where the point p satisfying $r(p) < r_0$ is in the canonical collar of some short simple closed geodesic α . Recall that $\ell(\alpha) \leq 2 \operatorname{arcsinh} 1$ is satisfied in this case. Since we assume in the Main Theorem that there is no closed curve based at p that is freely homotopic to c with its length less than $2r_0$, we know that α is distinct from c. Moreover, we see that α is disjoint from c. Indeed, if not, then every point of injectivity radius less than r_0 in the collar of α is within distance r_0 from c, but this violates the assumption $d(p,c) > r_0$.

Since we assume that Γ contains the element $\gamma_c(\zeta) = e^{\ell(c)}\zeta$ corresponding to c, every element $\gamma_{\alpha} \in \Gamma$ corresponding to a simple closed geodesic α different from c has the axis $\tilde{\alpha}$ in \mathbb{H} whose end points are on the real axis \mathbb{R} . We take the neighborhood $\widetilde{C}(\tilde{\alpha})$ of $\tilde{\alpha}$ that is the lift of the canonical collar $C(\alpha)$ of α and consider a part of $\widetilde{C}(\tilde{\alpha})$ that contains the lifts of U(p, r(p)). In this section, we compare the euclidean areas of these regions as subsets of \mathbb{R}^2 . To describe a signed distance from $\tilde{\alpha}$, we use an angle parameter $\theta \in (-\pi/2, \pi/2)$ representing the sector angle, which is given by $\theta = \arctan \sinh \omega$ for the signed distance ω from $\tilde{\alpha}$.

PROPOSITION 3.1. Let $\tilde{\alpha}$ be a hyperbolic geodesic line in \mathbb{H} which is a semicircle of euclidean radius h > 0. Then the signed euclidean area of the one-sided neighborhood of $\tilde{\alpha}$ within angle $\theta \in (-\pi/2, \pi/2)$ is given by

$$S(\theta) = h^2 \left\{ \frac{\pi}{2} \tan^2 \theta + \theta \tan^2 \theta + \theta + \tan \theta \right\}.$$

Here we assume that the one-sided neighborhood is outside the semicircle and its area is positive if $\theta > 0$ and it is inside the semicircle and its area is negative if $\theta < 0$.

PROOF. We assume $\theta > 0$. The one-sided neighborhood of $\tilde{\alpha}$ in question is the crescent-shaped region in the euclidean disk D of radius $h/\cos\theta$ as in Figure 1. The area of the sector in D with angle $\pi + 2\theta$ is $(h/\cos\theta)^2(\pi + 2\theta)/2$ and the area of the triangle with base length 2h is $h^2 \tan \theta$. Since $S(\theta)$ is the area of the chordal region in D over \mathbb{R} minus the area $\pi h^2/2$ of the semi-disk of radius h, we have

$$S(\theta) = \left(\frac{h}{\cos\theta}\right)^2 \left(\frac{\pi}{2} + \theta\right) + h^2 \tan\theta - \frac{\pi h^2}{2}.$$

THE PETERSSON SERIES VANISHES AT INFINITY

FIGURE 1. Crescent

This is equivalent to the required formula above. The case where $\theta < 0$ can be treated similarly and we obtain the same formula.

An easy computation (omitted) also gives the derivative of $S(\theta)$ as follows.

PROPOSITION 3.2. The derivative of the function $S(\theta)$ is given by

$$S'(\theta) = \frac{h^2}{\cos^3 \theta} \{ (\pi + 2\theta) \sin \theta + 2\cos \theta \},\$$

which satisfies

$$0 < S'(\theta) < \frac{2\pi h^2}{\cos^3 \theta}$$

for $-\pi/2 < \theta < \pi/2$.

We are dealing with the case where $r(p) < r_0$ and U(p, r(p)) is contained in the canonical collar $C(\alpha)$ of some simple closed geodesic α of R. The width of $C(\alpha)$ is $\operatorname{arcsinh}(\sinh(\ell(\alpha)/2))^{-1}$, which is represented by an angle

$$\bar{\theta} = \arctan \frac{1}{\sinh(\ell(\alpha)/2)} > 0$$

Then a connected component of the inverse image of $C(\alpha)$ under the universal cover $\mathbb{H} \to R$ is the two-sided neighborhood $\widetilde{C}(\tilde{\alpha})$ of a geodesic line $\tilde{\alpha}$ within the angle $\bar{\theta}$. By Proposition 3.1, its euclidean area is given by

$$S(\bar{\theta}) - S(-\bar{\theta}) = 2h^2(\bar{\theta}\tan^2\bar{\theta} + \tan\bar{\theta} + \bar{\theta}).$$

where h is the euclidean radius of the semicircle $\tilde{\alpha}$. Here, we note that the condition $\ell(\alpha) \leq 2 \operatorname{arcsinh} 1$ is equivalent to $\bar{\theta} \geq \pi/4$. Then the euclidean area of $\tilde{C}(\tilde{\alpha})$ is estimated from below by

$$2h^2(\bar{\theta}\tan^2\bar{\theta} + \tan\bar{\theta} + \bar{\theta}) \ge 2h^2(\pi/4)\tan^2\bar{\theta} = \frac{\pi h^2}{2}\frac{1}{\sinh^2(\ell(\alpha)/2)}.$$

Assume that the point p is on the level curve of angle θ_0 in the collar $C(\alpha)$ and U(p, r(p)) is between θ_1 and θ_2 for $\theta_1 < \theta_0 < \theta_2$. Since U(p, r(p)) is contained in $C(\alpha)$, we have $-\bar{\theta} \leq \theta_1$ and $\theta_2 \leq \bar{\theta}$. Lifting $C(\alpha)$ to \mathbb{H} , we consider a subregion

 $\widetilde{C}_{[\theta_1,\theta_2]}(\widetilde{\alpha})$ of $\widetilde{C}(\widetilde{\alpha})$ between the angles θ_1 and θ_2 and estimate its euclidean area $S(\theta_2) - S(\theta_1)$ from above. By Proposition 3.2, we have

$$S(\theta_2) - S(\theta_1) = \int_{\theta_1}^{\theta_2} S'(\theta) \, d\theta \le 2\pi h^2 \int_{\theta_1}^{\theta_2} \frac{d\theta}{\cos^3 \theta}$$

We assume that $\theta_0 \ge 0$ for the sake of simplicity. The case where $\theta_0 < 0$ can be treated similarly. Since $\cos \theta_1 \ge \cos \theta_2$ under this assumption, we have

$$\int_{\theta_1}^{\theta_2} \frac{d\theta}{\cos^3 \theta} \le \frac{1}{\cos^2 \theta_2} \int_{\theta_1}^{\theta_2} \frac{d\theta}{\cos \theta} = \frac{2r(p)}{\cos^2 \theta_2}.$$

Here the last equality is a consequence from the following formula between the hyperbolic distance ω from the core geodesic α and the angle parameter θ :

$$\omega = \operatorname{arcsinh}(\tan \theta) = \int_0^\theta \frac{d\theta}{\cos \theta}.$$

FIGURE 2. Level curves

To proceed the estimate of the area of $\widetilde{C}_{[\theta_1,\theta_2]}(\tilde{\alpha})$, we use the following:

CLAIM.
$$\frac{1}{\cos \theta_2} \le \frac{6r(p)}{\ell(\alpha)}$$
.

PROOF. Set $\theta_* = \max\{\theta_1, 0\}$. Then we have

$$\frac{\ell(\alpha)}{\cos\theta_2} \le 2\int_{\theta_*}^{\theta_2} \frac{d\theta}{\cos\theta} + \frac{\ell(\alpha)}{\cos\theta_*}.$$

Indeed, consider a function

$$g(\theta) = 2 \int_{\theta_*}^{\theta} \frac{d\theta}{\cos \theta} - \ell(\alpha) \left(\frac{1}{\cos \theta} - \frac{1}{\cos \theta_*} \right)$$

for $\theta_* \leq \theta \leq \overline{\theta}$. Then $g(\theta_*) = 0$ and $g'(\theta) = 2/\cos\theta - \ell(\alpha)\tan\theta/\cos\theta$. By using

$$\ell(\alpha) \tan \theta \le \ell(\alpha) \tan \overline{\theta} = \frac{\ell(\alpha)}{\sinh(\ell(\alpha)/2)} \le 2,$$

we have $g'(\theta) \ge 0$ and hence $g(\theta) \ge 0$. In particular, $g(\theta_2) \ge 0$, which yields the above inequality.

If $\theta_1 \geq 0$, then $\ell(\alpha)/\cos\theta_*$ is the length of the level curve of angle θ_1 , which is bounded by 2r(p). Indeed, since U(p, r(p)) is located outside the level curve of angle θ_1 , there is a length decreasing homeomorphism from the shortest closed curve of length 2r(p) based at p freely homotopic to α onto the level curve of angle θ_1 . See Figure 2. If $\theta_1 \leq 0$, then $\ell(\alpha)/\cos\theta_* = \ell(\alpha)$, which is also bounded by 2r(p). Therefore we have

$$2\int_{\theta_*}^{\theta_2} \frac{d\theta}{\cos\theta} + \frac{\ell(\alpha)}{\cos\theta_*} \le 2\int_{\theta_1}^{\theta_2} \frac{d\theta}{\cos\theta} + 2r(p) = 6r(p)$$

from which the claimed inequality follows.

As a consequence, we see that the euclidean area
$$S(\theta_2) - S(\theta_1)$$
 of $\tilde{C}_{[\theta_1,\theta_2]}(\tilde{\alpha})$ is bounded above by $144 \pi h^2 r(p)^3 / \ell(\alpha)^2$. Recall that we have already obtained the estimate of the euclidean area of $\tilde{C}(\tilde{\alpha})$ from below.

PROPOSITION 3.3. The ratio of the euclidean area of the region $\widetilde{C}_{[\theta_1,\theta_2]}(\tilde{\alpha})$ to the euclidean area of $\widetilde{C}(\tilde{\alpha})$ is bounded above by $288 r(p)^3$ if $\ell(\alpha) \leq 2 \operatorname{arcsinh} 1$.

PROOF. The two estimates above yield

$$\frac{S(\theta_2) - S(\theta_1)}{S(\bar{\theta}) - S(-\bar{\theta})} \le \frac{144 \pi h^2 r(p)^3 / \ell(\alpha)^2}{\pi h^2 / \{2 \sinh^2(\ell(\alpha)/2)\}} = 288 r(p)^3 \left(\frac{\sinh(\ell(\alpha)/2)}{\ell(\alpha)}\right)^2.$$

If $\ell(\alpha) \leq 2 \operatorname{arcsinh} 1$, then $\sinh(\ell(\alpha)/2)/\ell(\alpha) \leq 1/(2 \operatorname{arcsinh} 1) < 1$. Hence the last term of the above inequality is bounded by $288 r(p)^3$.

4. Proof of the main theorem

Let $\gamma_c(\zeta) = e^{\ell(c)}\zeta$ and consider the annulus $A = \mathbb{H}/\langle \gamma_c \rangle$. The euclidean metric on A is the projection of the euclidean metric on the universal cover \mathbb{H} defined by the polar coordinates (l, t) with $0 < l < \infty$ and $0 < t < \pi$ satisfying $\xi + i\eta = \exp(l + it)$ in \mathbb{H} . Then the Jacobian matrix of the coordinate change map $(l, t) \mapsto (\xi, \eta)$ is

$$\frac{\partial(\xi,\eta)}{\partial(l,t)} = \begin{pmatrix} e^l \cos t & -e^l \sin t \\ e^l \sin t & e^l \cos t \end{pmatrix},$$

and its determinant is $J(\zeta) = e^{2l} = |\zeta^2|$ for $\zeta = \xi + i\eta \in \mathbb{H}$. This shows that $d\xi d\eta/|\zeta^2| = dl dt$.

By Proposition 3.3, we have an estimate of the ratio of areas of $\widetilde{C}_{[\theta_1,\theta_2]}(\tilde{\alpha})$ and $\widetilde{C}(\tilde{\alpha})$ measured by the euclidean area element $d\xi d\eta$. Next we consider the ratio of areas of their projections onto the annulus A which are measured by the euclidean area element dldt. Since the Jacobian is $|\zeta^2|$, we have only to look at the minimal and maximal distances m and M of $\widetilde{C}(\tilde{\alpha})$ from the origin 0. Since $d(p,c) > r_0 > r(p)$, the simple closed geodesic α is disjoint from c. This implies that the neighborhood $\widetilde{C}(\tilde{\alpha})$ of the geodesic line $\tilde{\alpha}$ is disjoint from the imaginary axis in \mathbb{H} . Note also that the angle of $\widetilde{C}(\tilde{\alpha})$ is not less than $\pi/4$. Then Figure 3 illustrates the extremal situation where the ratio M/m should be the largest, and

an elementary geometric calculus gives that $M/m=(\sqrt{3}+\sqrt{2})^2$ in this case. From this observation, we see that

$$\frac{\max_{\zeta \in \widetilde{C}(\tilde{\alpha})} J(\zeta)}{\min_{\zeta \in \widetilde{C}(\tilde{\alpha})} J(\zeta)} \le (\sqrt{3} + \sqrt{2})^4.$$

FIGURE 3. Extremal situation

Merging the above arguments into Proposition 3.3, we summarize a claim for proving the Main Theorem.

LEMMA 4.1. The ratio of the area of $\widetilde{C}_{[\theta_1,\theta_2]}(\tilde{\alpha})$ to the area of $\widetilde{C}(\tilde{\alpha})$ measured by the euclidean metric with respect to the polar coordinates (l,t) is bounded above by $Kr(p)^3$ for $K = 288 (\sqrt{3} + \sqrt{2})^4$ if $\alpha \cap c = \emptyset$ and if the width of $\widetilde{C}(\tilde{\alpha})$ measured by the angle θ is not less than $\pi/4$.

Now we are ready to complete our arguments.

Proof of the Main Theorem. We have only to consider the case where $r(p) < r_0$ and p is in the canonical collar of some short simple closed geodesic α . The other cases have been already discussed in Section 2. By Lemma 4.1, we have

$$\sum_{[\gamma]\in\langle\gamma_c\rangle\setminus\Gamma}\int_{\gamma(U(\zeta(p),r(p)))}\frac{1}{|\zeta^2|}d\xi d\eta \leq \sum_{[\gamma]\in\langle\gamma_c\rangle\setminus\Gamma}\int_{\gamma(\widetilde{C}_{[\theta_1,\theta_2]}(\widetilde{\alpha}))}\frac{1}{|\zeta^2|}d\xi d\eta$$
$$=\sum_{[\gamma]\in\langle\gamma_c\rangle\setminus\Gamma}\operatorname{Area}(\gamma(\widetilde{C}_{[\theta_1,\theta_2]}(\widetilde{\alpha})))$$
$$\leq Kr(p)^3\sum_{[\gamma]\in\langle\gamma_c\rangle\setminus\Gamma}\operatorname{Area}(\gamma(\widetilde{C}(\widetilde{\alpha})))$$
$$\leq Kr(p)^3\operatorname{Area}(A) = K\pi\ell(c)r(p)^3.$$

This yields one inequality

$$\begin{split} \rho^{-2}(z(p))|\varphi_{c}(z(p))| &\leq \frac{b(r_{0})}{\pi r(p)^{2}} \sum_{[\gamma] \in \langle \gamma_{c} \rangle \backslash \Gamma} \int_{\gamma(U(\zeta(p), r(p)))} \frac{1}{|\zeta^{2}|} d\xi d\eta \\ &\leq Kb(r_{0})\ell(c)r(p). \end{split}$$

On the other hand, Lemma 2.2 gives another inequality

$$\rho^{-2}(z(p))|\varphi_c(z(p))| \le 2e^{r_0}b(r_0)\ell(c)e^{-d(p,c)}r(p)^{-2}.$$

We have obtained two estimates as

$$\rho^{-2}(z(p))|\varphi_c(z(p))| \le \begin{cases} Kb(r_0)\ell(c)r(p)\\ 2e^{r_0}b(r_0)\ell(c)e^{-d(p,c)}r(p)^{-2}. \end{cases}$$

Now we consider the maximum of the smaller one of these values when r(p) varies in $(0, r_0]$:

$$\max_{\substack{r(p)\in(0,r_0]}} \min\left\{Kr(p), 2e^{r_0}e^{-d(p,c)}r(p)^{-2}\right\}b(r_0)\ell(c)$$

$$\leq K^{2/3}(2e^{r_0})^{1/3}b(r_0)\ell(c)e^{-d(p,c)/3}.$$

This eliminates r(p) from the formula. By setting $B = K^{2/3}(2e^{r_0})^{1/3}b(r_0)$, we have

$$\rho^{-2}(z(p))|\varphi_c(z(p))| \le B\ell(c)e^{-d(p,c)/3},$$

which completes the proof of the Main Theorem.

5. Application to the variation of length functions

For a Beltrami differential $\mu = \mu(z)d\bar{z}/dz$ on a hyperbolic Riemann surface R, consider a quasiconformal deformation R_{μ} of R given by μ and denote the geodesic length of the free homotopy class of c on R_{μ} by $\ell_{\mu}(c)$. Then a variational formula due to Gardiner [5] asserts that

$$\left. \frac{d\ell_{t\mu}(c)}{dt} \right|_{t=0} = \frac{2}{\pi} \operatorname{Re} \int_{R} \mu(z) \varphi_{c}(z) \, dx dy.$$

The Main Theorem can be applied to an estimate of the derivative $d\ell_{t\mu}(c)/dt|_{t=0}$ through this formula.

We say that a Beltrami differential $\mu(z)d\bar{z}/dz$ on R vanishes at infinity if, for every $\varepsilon > 0$, there exists a compact subset V of R such that $|\mu(z(p))| < \varepsilon$ for almost every $p \in R - V$. A quasiconformal homeomorphism f of R whose complex dilatation is a Beltrami differential vanishing at infinity is called *asymptotically* conformal.

THEOREM 5.1. Let $\mu(z)d\bar{z}/dz$ be a Beltrami differential on a hyperbolic Riemann surface R that vanishes at infinity. Let $\{c_n\}_{n=1}^{\infty}$ be a sequence of simple closed geodesics on R escaping to the infinity. Then

$$\left. \frac{1}{\ell(c_n)} \cdot \left. \frac{d\ell_{t\mu}(c_n)}{dt} \right|_{t=0} \longrightarrow 0$$

as $n \to \infty$.

PROOF. For arbitrary $\varepsilon > 0$, we take a compact subset V of R such that $|\mu(z(p))| < \varepsilon$ for almost every $p \in R - V$. Let Area(V) be the hyperbolic area of V and $d(V, c_n)$ the hyperbolic distance between V and c_n . Then, by using the Main Theorem for the integral on V, we have

$$\begin{split} \int_{R} |\mu(z)\varphi_{c_{n}}(z)| \, dxdy &= \int_{R-V} |\mu(z)\varphi_{c_{n}}(z)| \, dxdy + \int_{V} |\mu(z)\varphi_{c_{n}}(z)| \, dxdy \\ &< \varepsilon \|\varphi_{c_{n}}\|_{1} + \operatorname{Area}(V) \, \|\mu\|_{\infty} B\ell(c_{n})e^{-d(V,c_{n})/3} \\ &\leq \ell(c_{n})\{\varepsilon\pi + \operatorname{Area}(V) \, Be^{-d(V,c_{n})/3}\}. \end{split}$$

Since $d(V, c_n) \to \infty$ as $n \to \infty$, this inequality shows that

$$\frac{1}{\ell(c_n)} \int_R |\mu(z)\varphi_{c_n}(z)| \, dx dy \to 0$$

as $n \to \infty$. Then the Gardiner variation formula yields the statement of the theorem.

Note that it has been shown by Earle, Markovic and Saric [3] that an asymptotically conformal homeomorphism f of R with the complex dilatation $\mu(z)d\bar{z}/dz$ has an asymptotically isometric homeomorphism in its homotopy class. In particular, the ratios $\ell_{\mu}(c_n)/\ell(c_n)$ for a sequence of simple closed geodesics $\{c_n\}_{n=1}^{\infty}$ escaping to the infinity tend to 1 as $n \to \infty$. See also [4]. Theorem 5.1 can be regarded as an infinitesimal version of this property.

6. Remarks on vanishing at infinity

It was noticed by Drasin and Earle [2] that, for an arbitrary Fuchsian group Γ , the Banach space $Q^1(\mathbb{H}, \Gamma)$ of the integrable holomorphic (2, 0)-automorphic forms has a dense linear subspace consisting of bounded holomorphic (2, 0)-automorphic forms in $Q^{\infty}(\mathbb{H}, \Gamma)$. Actually, this claim was given for holomorphic (2, 0)-automorphic forms for a Fuchsian group G on the unit disk \mathbb{D} by using the fact that polynomials $\{f(z)\}$ are dense in the Banach space $Q^1(\mathbb{D}, 1)$ of all integrable holomorphic functions on \mathbb{D} . Then the surjectivity of the Poincaré series operator $\Theta_G: Q^1(\mathbb{D}, 1) \to Q^1(\mathbb{D}, G)$ yields that $\{\Theta_G(f(z))\}$ are dense in $Q^1(\mathbb{D}, G)$. Also, the technique introduced by Ahlfors [1] proves that $\Theta_G(z^n)$ for all $n \ge 0$ are bounded holomorphic (2, 0)-automorphic forms in $Q^{\infty}(\mathbb{D}, G)$.

In fact, Ahlfors' argument further shows that $\Theta_G(z^n)$ are vanishing at infinity, namely, they belong to $Q_0^{\infty}(\mathbb{D}, G)$. We will explain this method below. Then, after the conjugation to the upper half-plane \mathbb{H} , we can summarize the result as follows.

PROPOSITION 6.1. For every Fuchsian group Γ , $Q_0^{\infty}(\mathbb{H},\Gamma) \cap Q^1(\mathbb{H},\Gamma)$ is dense in the Banach space $Q^1(\mathbb{H},\Gamma)$ with the integrable norm.

For a Fuchsian group G acting on \mathbb{D} , we consider

$$J(z) = \rho_{\mathbb{D}}^{-2}(z) \sum_{g \in G} |g'(z)|^2 = \frac{1}{4} \sum_{g \in G} (1 - |g(z)|^2)^2,$$

where $\rho_{\mathbb{D}}(z) = 2/(1-|z|^2)$ is the hyperbolic density on \mathbb{D} . Then, as in [1], J(z) is a subharmonic function outside the images of a certain disk under G. Also this is an automorphic function for G and thus regarded as a function on the Riemann surface $R = \mathbb{D}/G$. Because of the subharmonicity, the function J on R vanishes at

infinity. See [9]. However, this method does not always tell the order of its decay in terms of the hyperbolic distance.

Let f(z) be an integrable holomorphic function on \mathbb{D} with $|f(z)| \leq M$ for some positive constant M. Its Poincaré series satisfies

$$\rho_{\mathbb{D}}^{-2}(z)|\Theta_G(f(z))| \le MJ(z).$$

We apply this estimate for $f(z) = z^n$. Then we see that $\Theta_G(z^n)$ vanishes at infinity.

In addition, we look at the holomorphic (2, 0)-automorphic form $\phi(\zeta) = 1/\zeta^2$ for $\langle \gamma_c \rangle$ on \mathbb{H} , where $\gamma_c(\zeta) = e^{\ell(c)}\zeta$ is a hyperbolic element of a Fuchsian group Γ . By a biholomorphic map $\mathbb{D} \to \mathbb{H}$, we pull back ϕ to \mathbb{D} , which we denote by $\tilde{\phi}(z)$. This also gives the conjugation of Γ with γ_c to a Fuchsian group G with the corresponding element g_c acting on \mathbb{D} . We can verify that there is a positive constant L depending on $\ell(c)$ such that

$$|\tilde{\phi}(z)| \le L\ell(c) \sum_{n \in \mathbb{Z}} |(g_c^n)'(z)|^2.$$

See [9]. Then

$$\rho_{\mathbb{D}}^{-2}(z)|\Theta_{\langle g_c\rangle\backslash G}(\tilde{\phi}(z))| \leq L\ell(c)J(z).$$

This implies that the pull-back $\Theta_{\langle g_c \rangle \setminus G}(\phi)$ of the Petersson series vanishes at infinity and so does the Petersson series $\varphi_c = \Theta_{\langle \gamma_c \rangle \setminus \Gamma}(\phi)$. Further arguments are necessary to obtain a quantitative estimate of the decay order for φ_c .

References

- [1] L. V. Ahlfors, Eine Bemerkung über Fuchssche Gruppen, Math. Z. 82 (1964), 244–245.
- [2] D. Drasin and C. J. Earle, On the boundedness of automorphic forms, Proc. Amer. Math. Soc. 19 (1968), 1039–1042.
- [3] C. J. Earle, V. Markovic and D. Saric, Barycentric extension and the Bers embedding for asymptotic Teichmüller space, Complex manifolds and hyperbolic geometry, Contemporary Math. vol. 311, pp. 87–105, Amer. Math. Soc., 2002.
- [4] E. Fujikawa, The action of geometric automorphisms of asymptotic Teichmüller spaces, Michigan Math. J. 54 (2006), 269–282.
- [5] F. Gardiner, Schiffer's interior variation and quasiconformal mapping, Duke Math. J. 42 (1975), 371–380.
- [6] F. P. Gardiner and N. Lakic, *Quasiconformal Teichmüller Theory*, Mathematical Surveys and Monographs vol. 76, Amer. Math. Soc., 2000.
- [7] I. Kra, Automorphic forms and Kleinian groups, Mathematics Lecture Note Series, W. A. Benjamin, 1972.
- [8] K. Matsuzaki, Bounded and integrable quadratic differentials: hyperbolic and extremal lengths on Riemann surfaces, Geometric Complex Analysis, pp.443-450, World Scientific, 1996.
- [9] K. Matsuzaki, The Petersson series for short geodesics, Proceedings of the XVI Rolf Nevanlinna Colloquium, Walter de Gruyter, pp.143-150, 1996.
- [10] D. Niebur and M. Sheingorn, Characterization of Fuchsian groups whose integrable forms are bounded, Ann. of Math. 106 (1977), 239–258.
- [11] T. Ohsawa, A remark on the integrability and boundedness of automorphic forms, Analysis and Topology, pp. 561–567, World Scientific, 1998.
- [12] C. Pommerenke, On inclusion relations for spaces of automorphic forms, Advances in Complex Function Theory, Lecture Notes in Math. vol. 505, pp. 92–100, Springer-Verlag, 1976.
- [13] M. Seppälä and T. Sorvali, *Horocycles on Riemann surfaces*, Proc. Amer. Math. Soc. 118 (1993), 109–111.
- [14] T. Sugawa, A conformally invariant metric on Riemann surfaces associated with integrable holomorphic quadratic differentials, Math. Z. 266 (2010), 645–664.
- [15] S. Wolpert, On the symplectic geometry of deformations of a hyperbolic surface, Ann. of Math. 117 (1983), 207–234.

[16] S. Wolpert, Spectral limits for hyperbolic surfaces, II, Invent. Math. 108 (1992), 91–129.

Department of Mathematics, School of Education, Waseda University, Shinjuku, Tokyo 169-8050, Japan

 $E\text{-}mail\ address: \verb"matsuzak@waseda.jp" }$