
Contemporary Mathematics

The Petersson series vanishes at infinity

Katsuhiko Matsuzaki

Abstract. The Petersson series with respect to a simple closed geodesic c on
a hyperbolic Riemann surface R is the relative Poincaré series of the canonical
holomorphic quadratic differential on the annular cover of R and it defines a

holomorphic quadratic differential ϕc(z)dz2 on R. For the hyperbolic metric
ρ(z)|dz| on R, we give an upper estimate of ρ−2(z(p))|ϕc(z(p))| in terms of
the hyperbolic length of c and the distance of p ∈ R from c.

1. Introduction

Let Γ be a torsion-free Fuchsian group acting on a upper half-plane model
H = {ζ = ξ + iη | η > 0} of the hyperbolic plane. Throughout this paper, we
always assume that a Riemann surface R is represented by H/Γ. A holomorphic
quadratic differential ϕ(z)dz2 on R can be identified with a holomorphic function
ϕ(ζ) on H that satisfies ϕ(γ(ζ)) = ϕ(ζ)γ′(ζ)2 for every γ ∈ Γ. We call such a holo-
morphic function (2, 0)-automorphic form for Γ. A holomorphic (2, 0)-automorphic
form ϕ(ζ) is integrable if the integral of |ϕ(ζ)| over a fundamental domain of Γ is
finite. This is equivalent to saying that the integral

∫
R
|ϕ(z)|dxdy is finite. We

denote the space of all integrable holomorphic (2, 0)-automorphic form on H for
Γ by Q1(H, Γ). This can be identified with the space of all integrable holomor-
phic quadratic differentials on R which is a complex Banach space with the norm
‖ϕ‖1 =

∫
R
|ϕ(z)|dxdy. If Γ is the trivial group 1, then Q1(H, 1) is nothing but the

Banach space of all integrable holomorphic functions on H.
An integrable holomorphic (2, 0)-automorphic form for Γ is produced from an

integrable holomorphic function f by the Poincaré series

ΘΓ(f(ζ)) =
∑
γ∈Γ

f(γ(ζ))γ′(ζ)2.

It is known that ΘΓ : Q1(H, 1) → Q1(H, Γ) is a surjective bounded linear operator
with the operator norm not greater than 1 for every Fuchsian group Γ. See Kra [7]
for details on automorphic forms and the Poincaré series.
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Let ρ(ζ) = 1/Im ζ be the hyperbolic density on H. It induces the hyperbolic
metric ρ(z)|dz| on a Riemann surface R = H/Γ. For a hyperbolic element γc ∈ Γ
corresponding to a simple closed geodesic c on the hyperbolic Riemann surface
R, we consider the annulus A = H/〈γc〉 which covers R. We may assume that
γc(ζ) = e`(c)ζ where `(c) denotes the hyperbolic length of c.

For an integrable holomorphic (2, 0)-automorphic form φ for 〈γc〉, the relative
Poincaré series

Θ〈γc〉\Γ(φ(ζ)) =
∑

[γ]∈〈γc〉\Γ

φ(γ(ζ)γ′(ζ)2

also defines an integrable holomorphic (2, 0)-automorphic form for Γ. Here the sum
is taken over all representatives of the cosets 〈γc〉\Γ. Then Θ〈γc〉\Γ : Q1(H, 〈γc〉) →
Q1(H, Γ) is also a surjective bounded linear operator with norm not greater than
1.

We choose φ(ζ) = ζ−2, which is an integrable holomorphic (2, 0)-automorphic
form for 〈γc〉. The polar coordinates (l, t) ∈ R>0 × (0, π) for ζ = exp(l + it) ∈ H
induce an euclidean metric

√
dl2 + dt2 on the annulus A = H/〈γc〉 and this coincides

with the euclidean metric |dζ/ζ| induced by the holomorphic quadratic differential
on A corresponding to φ(ζ) = ζ−2. In particular, the area form |φ(ζ)|dξdη is equal
to dldt and hence

∫
A
|φ(ζ)|dξdη = π`(c). The relative Poincaré series

ϕc(ζ) = Θ〈γc〉\Γ(φ(ζ)) =
∑

[γ]∈〈γc〉\Γ

γ′(ζ)2

γ(ζ)2

is called the Petersson series with respect to c, which defines the holomorphic
quadratic differential ϕc(z)dz2 on R. The norm ‖ϕc‖1 is bounded by ‖φ‖1 =
π`(c). This plays an important role on the variation of the hyperbolic length `(c)
under a quasiconformal deformation of R (cf. Gardiner [5]) and the Weil-Petersson
geometry on Teichmüller spaces (cf. Wolpert [15]).

For a quadratic differential ϕ(z)dz2 on R, ρ−2(z(p))|ϕ(z(p)| is well-defined for
p ∈ R independent of a local parameter z around p and hence ρ−2|ϕ| gives a function
on R. For the (2, 0)-automorphic form ϕ(ζ) and for a point ζ ∈ H over p ∈ R, the
function ρ−2(ζ)|ϕ(ζ)| is the lift of ρ−2|ϕ| to the universal cover H. We provide the
supremum norm ‖ϕ‖∞ = supζ∈H ρ−2(ζ)|ϕ(ζ)| for a holomorphic (2, 0)-automorphic
form ϕ(ζ) for Γ (and for a holomorphic quadratic differential) and call it bounded if
‖ϕ‖∞ is finite. The space of all bounded holomorphic (2, 0)-automorphic forms for
Γ is denoted by Q∞(H, Γ). This is a complex Banach space with the norm ‖ϕ‖∞.

In this paper, we will give an estimate of the function ρ−2|ϕc| of p ∈ R for
ϕc(z)dz2 defined by the Petersson series with respect to a simple closed geodesic c
on R in terms of the hyperbolic distance d(p, c) of p from c. Our main theorem can
be stated as follows.

The Main Theorem. Let ϕc(z)dz2 be a holomorphic quadratic differential
on a hyperbolic Riemann surface R given by the Petersson series with respect to
a simple closed geodesic c on R. Then, for a sufficiently small r0 > 0, there is a
positive constant B depending only on r0 such that

ρ(z(p))−2|ϕc(z(p))| ≤ B `(c)e−d(p,c)/3

for every p ∈ R with d(p, c) > r0 such that there is no closed curve based at p and
freely homotopic to c with length less than 2r0. In particular, ϕc(z)dz2 is bounded
and it vanishes at infinity.
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Here we say that a holomorphic quadratic differential ϕ(z)dz2 on R van-
ishes at infinity if, for every ε > 0, there is a compact subset V of R such
that supp∈R−V ρ(z(p))−2|ϕ(z(p))| < ε. The corresponding holomorphic (2, 0)-auto-
morphic form on H is called similarly. We denote the subspace of Q∞(H,Γ) consist-
ing of all holomorphic (2, 0)-automorphic forms vanishing at infinity by Q∞

0 (H, Γ).
This space has an importance in the theory of asymptotic Teichmüller spaces de-
veloped by Earle, Gardiner and Lakic (see [6] and [3]).

The assumption on the point p ∈ R in the statement of the Main Theorem
eliminates the case where c is very short and p is in a collar neighborhood of c. An
estimate of ρ(z(p))−2|ϕc(z(p))| in this case has been given in [9].

We remark that, if the injectivity radii of R are uniformly bounded away from
zero, then the conclusion of the Main Theorem easily follows from a basic estimate
given in the next section. For a point p on R, the injectivity radius r(p) is defined
to be the radius of a maximal hyperbolic open disk centered at p that is embedded
in R. However, the existence of a cusp does not make the problem difficult even
if r(p) tends to zero as p gets closer to a cusp; the essential problem occurs in the
case where R has a sequence of simple closed geodesics whose lengths tend to zero.

Note that, it has been proved by Niebur and Sheingorn [10] that Q1(H, Γ) is
contained in Q∞(H, Γ) if and only if R = H/Γ has no such sequence of short simple
closed geodesics whose lengths tend to zero. Moreover, it is shown in [8] that the
operator norm of the inclusion map Q1(H, Γ) ↪→ Q∞(H,Γ) is given in terms of the
infimum of the lengths of simple closed geodesics on R (see also Sugawa [14]). On
the other hand, when R has a sequence of simple closed geodesics whose lengths tend
to zero, examples of integrable but not bounded holomorphic quadratic differentials
have been constructed in Pommerenke [12] and Ohsawa [11] as well as in [9].

We further remark that, only to show that ϕc(z)dz2 vanishes at infinity in the
Main Theorem, there is a simpler argument. This can be done by transferring the
Petersson series to the unit disk D by biholomorphic conjugation and relying on a
technique due to Ahlfors [1]. These arguments as well as the density of Q∞

0 (H, Γ)
in Q1(H, Γ) will be discussed in the last section.

2. Basic estimate

We will review an integral estimate of the hyperbolic supremum norm of a
holomorphic function and apply it to the Poincaré series. This also shows that
injectivity radius is the issue that we should manage.

Proposition 2.1. Let ϕ(z)dz2 be a holomorphic quadratic differential on a
hyperbolic Riemann surface R, r(p) the injectivity radius at p ∈ R and U(p, r(p))
the hyperbolic disk of radius r(p) centered at p. Then

ρ−2(z(p))|ϕ(z(p))| ≤ 1
4π tanh2(r(p)/2)

∫
U(p,r(p))

|ϕ(z)| dxdy

for a local coordinate z = x + iy around p.

Proof. By lifting ϕ(z)dz2 to the unit disk D, we have a holomorphic (2, 0)-
automorphic form ϕ(ζ) on D. We may assume that p ∈ R corresponds to the
origin 0 ∈ D, that is, ζ = ξ + iη gives a local coordinate such that ζ(p) = 0. Let
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ρD(ζ) = 2/(1 − |ζ|2) denote the hyperbolic density on D. Then

ρ−2(z(p))|ϕ(z(p))| = ρ−2
D (0)|ϕ(0)| =

|ϕ(0)|
4

and

ϕ(0) =
1

πa2

∫
|ζ|≤a

ϕ(ζ) dξdη,

where U(p, r(p)) lifts to the euclidean disk {|ζ| ≤ a} of radius a = tanh(r(p)/2).
Hence

|ϕ(0)| ≤ 1
πa2

∫
|ζ|≤a

|ϕ(ζ)| dξdη =
1

π tanh2(r(p)/2)

∫
U(p,r(p))

|ϕ(z)| dxdy,

which yields the desired inequality. �

It is well known that there is a constant r0 > 0 (related to the Margulis con-
stant) independent of the choice of a hyperbolic Riemann surface R such that if
r(p) < r0 then the disk neighborhood U(p, r(p)) of p is entirely contained either in
the canonical cusp neighborhood or in the canonical collar of a short simple closed
geodesic on R. Here the canonical cusp neighborhood is a horocyclic cusp neigh-
borhood of hyperbolic area 2 and the canonical collar of a simple closed geodesic α
is its neighborhood of width

ω = arcsinh
1

sinh(`(α)/2)
.

Note that, in this latter case, ω ≥ r(p) and 2r(p) ≥ `(α) are satisfied. From these
conditions, the upper bound of the hyperbolic length of α is known as `(α) ≤
2 arcsinh 1.

Fix such a constant r0 > 0. We define the cut-off injectivity radius at p ∈ R as
r(p) = min{r(p), r0}. Then Proposition 2.1 implies that

ρ−2(z(p))|ϕ(z(p))| ≤ r2
0

4π tanh2(r0/2) r(p)2

∫
U(p,r(p))

|ϕ(z)| dxdy

for any holomorphic quadratic differential ϕ(z)dz2 on R. We apply this formula
for the quadratic differential ϕc(z)dz2 on R induced by the Petersson series with
respect to a simple closed geodesic c. By setting b(r0) = r2

0/{4 tanh2(r0/2)}, we
have

ρ−2(z(p))|ϕc(z(p))| ≤ b(r0)
πr(p)2

∑
[γ]∈〈γc〉\Γ

∫
U(ζ(p),r(p))

|γ′(ζ)2|
|γ(ζ)2|

dξdη

=
b(r0)

πr(p)2
∑

[γ]∈〈γc〉\Γ

∫
γ(U(ζ(p),r(p)))

1
|ζ2|

dξdη.

Lemma 2.2. For every p with d(p, c) > r0,

ρ−2(z(p))|ϕc(z(p))| ≤ 2er0b(r0)
r(p)2

`(c) e−d(p,c)

is satisfied.
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Proof. Since d(p, c) > r0 ≥ r(p), we see in the previous inequality that
γ(U(ζ(p), r(p))) are away from the imaginary axis by d(p, c) − r0. This distance
corresponds to the angle t = arctan(sinh{d(p, c) − r0}) from the imaginary axis.
Then ∑

[γ]∈〈γc〉\Γ

∫
γ(U(ζ(p),r(p)))

1
|ζ2|

dξdη ≤ `(c)[π − 2 arctan(sinh{d(p, c) − r0})].

Finally we use an inequality

πe−x ≤ π − 2 arctan(sinh x) ≤ 4e−x

for x ≥ 0 to obtain the required inequality. �

Suppose that the point p ∈ R satisfies r(p) ≥ r0. Then, by r(p) = r0, Lemma
2.2 immediately shows that

ρ−2(z(p))|ϕc(z(p))| ≤ 2er0b(r0)
r2
0

`(c) e−d(p,c).

Hence the Main Theorem is verified in this case.
Now we investigate the case where r(p) < r0. Then r(p) = r(p) and p is either

in the canonical cusp neighborhood or in the canonical collar. For the moment,
suppose that p is in the canonical cusp neighborhood Ω ⊂ R. Note that Ω is
disjoint from c. We can represent Ω as a quotient space of {ζ ∈ H | Im ζ > 1/2}
by the parabolic element ζ 7→ ζ + 1; we may assume that Γ contains this element.
Then Ω = {0 < |w| < e−π} by using the local parameter w = exp(2πiζ). Also the
hyperbolic density is given by ρ(w) = (−|w| log |w|)−1. It is known that a larger
punctured disk Ω̃ = {0 < |w| < e−π/2} is also embedded in R (see Seppälä and
Sorvali [13]).

Proposition 2.3. Let ϕ(z)dz2 be an integrable holomorphic quadratic differ-
ential on R and p a point in the canonical cusp neighborhood Ω ⊂ R with the local
parameter w = exp(2πiζ). Then

ρ−2(w(p))|ϕ(w(p))| ≤ 2eπ|w(p)|(log |w(p)|)2

π
‖ϕ‖1

is satisfied.

Proof. It is easy to see that ϕ(w) has at most a simple pole at the puncture
w = 0. Hence wϕ(w) is a holomorphic function of w = u + iv and satisfies

w(p)ϕ(w(p)) =
1

πa2

∫
|w−w(p)|≤a

wϕ(w) dudv

for a = e−π. Then

ρ−2(w(p))|ϕ(w(p))| ≤ |w(p)|(log |w(p)|)2

πa2

∫
|w−w(p)|≤a

|w||ϕ(w)| dudv

≤ 2|w(p)|(log |w(p)|)2

πa

∫
R

|ϕ(z)|dxdy,

which is the desired inequality. �
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Assume that p ∈ Ω is at distance d ≥ d(p, c) from the boundary ∂Ω. Then
Im ζ(p) = ed/2 and hence

|w(p)| = exp(−πed) ≤ exp(−π(1 + d)).

Recall that the quadratic differential ϕc(z)dz2 on R determined by the Petersson
series satisfies ‖ϕc‖1 ≤ π`(c). From Proposition 2.3, we have

ρ−2(w(p))|ϕc(w(p))| ≤ 2π2`(c) exp(π + 2d − π(1 + d)).

In particular,
ρ−2(w(p))|ϕc(w(p))| ≤ 2π2`(c)e−d(p,c),

which satisfies the condition of the Main Theorem. This means that we do not
have to take care of the case where p with r(p) < r0 is in the canonical cusp
neighborhood.

3. Comparison of euclidean areas

In what follows, we investigate the case where the point p satisfying r(p) < r0

is in the canonical collar of some short simple closed geodesic α. Recall that `(α) ≤
2 arcsinh 1 is satisfied in this case. Since we assume in the Main Theorem that there
is no closed curve based at p that is freely homotopic to c with its length less than
2r0, we know that α is distinct from c. Moreover, we see that α is disjoint from c.
Indeed, if not, then every point of injectivity radius less than r0 in the collar of α
is within distance r0 from c, but this violates the assumption d(p, c) > r0.

Since we assume that Γ contains the element γc(ζ) = e`(c)ζ corresponding
to c, every element γα ∈ Γ corresponding to a simple closed geodesic α different
from c has the axis α̃ in H whose end points are on the real axis R. We take
the neighborhood C̃(α̃) of α̃ that is the lift of the canonical collar C(α) of α and
consider a part of C̃(α̃) that contains the lifts of U(p, r(p)). In this section, we
compare the euclidean areas of these regions as subsets of R2. To describe a signed
distance from α̃, we use an angle parameter θ ∈ (−π/2, π/2) representing the sector
angle, which is given by θ = arctan sinhω for the signed distance ω from α̃.

Proposition 3.1. Let α̃ be a hyperbolic geodesic line in H which is a semi-
circle of euclidean radius h > 0. Then the signed euclidean area of the one-sided
neighborhood of α̃ within angle θ ∈ (−π/2, π/2) is given by

S(θ) = h2
{π

2
tan2 θ + θ tan2 θ + θ + tan θ

}
.

Here we assume that the one-sided neighborhood is outside the semicircle and its
area is positive if θ > 0 and it is inside the semicircle and its area is negative if
θ < 0.

Proof. We assume θ > 0. The one-sided neighborhood of α̃ in question is
the crescent-shaped region in the euclidean disk D of radius h/ cos θ as in Figure 1.
The area of the sector in D with angle π + 2θ is (h/ cos θ)2(π + 2θ)/2 and the area
of the triangle with base length 2h is h2 tan θ. Since S(θ) is the area of the chordal
region in D over R minus the area πh2/2 of the semi-disk of radius h, we have

S(θ) =
(

h

cos θ

)2 (π

2
+ θ

)
+ h2 tan θ − πh2

2
.
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Figure 1. Crescent

This is equivalent to the required formula above. The case where θ < 0 can be
treated similarly and we obtain the same formula. �

An easy computation (omitted) also gives the derivative of S(θ) as follows.

Proposition 3.2. The derivative of the function S(θ) is given by

S′(θ) =
h2

cos3 θ
{(π + 2θ) sin θ + 2 cos θ},

which satisfies

0 < S′(θ) <
2πh2

cos3 θ
for −π/2 < θ < π/2.

We are dealing with the case where r(p) < r0 and U(p, r(p)) is contained in the
canonical collar C(α) of some simple closed geodesic α of R. The width of C(α) is
arcsinh(sinh(`(α)/2))−1, which is represented by an angle

θ̄ = arctan
1

sinh(`(α)/2)
> 0.

Then a connected component of the inverse image of C(α) under the universal cover
H → R is the two-sided neighborhood C̃(α̃) of a geodesic line α̃ within the angle θ̄.
By Proposition 3.1, its euclidean area is given by

S(θ̄) − S(−θ̄) = 2h2(θ̄ tan2 θ̄ + tan θ̄ + θ̄),

where h is the euclidean radius of the semicircle α̃. Here, we note that the condition
`(α) ≤ 2 arcsinh 1 is equivalent to θ̄ ≥ π/4. Then the euclidean area of C̃(α̃) is
estimated from below by

2h2(θ̄ tan2 θ̄ + tan θ̄ + θ̄) ≥ 2h2(π/4) tan2 θ̄ =
πh2

2
1

sinh2(`(α)/2)
.

Assume that the point p is on the level curve of angle θ0 in the collar C(α) and
U(p, r(p)) is between θ1 and θ2 for θ1 < θ0 < θ2. Since U(p, r(p)) is contained in
C(α), we have −θ̄ ≤ θ1 and θ2 ≤ θ̄. Lifting C(α) to H, we consider a subregion
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C̃[θ1,θ2](α̃) of C̃(α̃) between the angles θ1 and θ2 and estimate its euclidean area
S(θ2) − S(θ1) from above. By Proposition 3.2, we have

S(θ2) − S(θ1) =
∫ θ2

θ1

S′(θ) dθ ≤ 2πh2

∫ θ2

θ1

dθ

cos3 θ
.

We assume that θ0 ≥ 0 for the sake of simplicity. The case where θ0 < 0 can
be treated similarly. Since cos θ1 ≥ cos θ2 under this assumption, we have∫ θ2

θ1

dθ

cos3 θ
≤ 1

cos2 θ2

∫ θ2

θ1

dθ

cos θ
=

2r(p)
cos2 θ2

.

Here the last equality is a consequence from the following formula between the
hyperbolic distance ω from the core geodesic α and the angle parameter θ:

ω = arcsinh(tan θ) =
∫ θ

0

dθ

cos θ
.

0
θ1

θ0

θ2

p
α

r(p)
r(p)

{ {
・

Figure 2. Level curves

To proceed the estimate of the area of C̃[θ1,θ2](α̃), we use the following:

Claim.
1

cos θ2
≤ 6r(p)

`(α)
.

Proof. Set θ∗ = max{θ1, 0}. Then we have

`(α)
cos θ2

≤ 2
∫ θ2

θ∗

dθ

cos θ
+

`(α)
cos θ∗

.

Indeed, consider a function

g(θ) = 2
∫ θ

θ∗

dθ

cos θ
− `(α)

(
1

cos θ
− 1

cos θ∗

)
for θ∗ ≤ θ ≤ θ̄. Then g(θ∗) = 0 and g′(θ) = 2/ cos θ − `(α) tan θ/ cos θ. By using

`(α) tan θ ≤ `(α) tan θ̄ =
`(α)

sinh(`(α)/2)
≤ 2,
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we have g′(θ) ≥ 0 and hence g(θ) ≥ 0. In particular, g(θ2) ≥ 0, which yields the
above inequality.

If θ1 ≥ 0, then `(α)/ cos θ∗ is the length of the level curve of angle θ1, which
is bounded by 2r(p). Indeed, since U(p, r(p)) is located outside the level curve
of angle θ1, there is a length decreasing homeomorphism from the shortest closed
curve of length 2r(p) based at p freely homotopic to α onto the level curve of angle
θ1. See Figure 2. If θ1 ≤ 0, then `(α)/ cos θ∗ = `(α), which is also bounded by
2r(p). Therefore we have

2
∫ θ2

θ∗

dθ

cos θ
+

`(α)
cos θ∗

≤ 2
∫ θ2

θ1

dθ

cos θ
+ 2r(p) = 6r(p),

from which the claimed inequality follows. �

As a consequence, we see that the euclidean area S(θ2) − S(θ1) of C̃[θ1,θ2](α̃)
is bounded above by 144πh2r(p)3/`(α)2. Recall that we have already obtained the
estimate of the euclidean area of C̃(α̃) from below.

Proposition 3.3. The ratio of the euclidean area of the region C̃[θ1,θ2](α̃) to
the euclidean area of C̃(α̃) is bounded above by 288 r(p)3 if `(α) ≤ 2 arcsinh 1.

Proof. The two estimates above yield

S(θ2) − S(θ1)
S(θ̄) − S(−θ̄)

≤ 144πh2r(p)3/`(α)2

πh2/{2 sinh2(`(α)/2)}
= 288 r(p)3

(
sinh(`(α)/2)

`(α)

)2

.

If `(α) ≤ 2 arcsinh 1, then sinh(`(α)/2)/`(α) ≤ 1/(2 arcsinh 1) < 1. Hence the last
term of the above inequality is bounded by 288 r(p)3. �

4. Proof of the main theorem

Let γc(ζ) = e`(c)ζ and consider the annulus A = H/〈γc〉. The euclidean metric
on A is the projection of the euclidean metric on the universal cover H defined by the
polar coordinates (l, t) with 0 < l < ∞ and 0 < t < π satisfying ξ + iη = exp(l + it)
in H. Then the Jacobian matrix of the coordinate change map (l, t) 7→ (ξ, η) is

∂(ξ, η)
∂(l, t)

=
(

el cos t −el sin t
el sin t el cos t

)
,

and its determinant is J(ζ) = e2l = |ζ2| for ζ = ξ + iη ∈ H. This shows that
dξdη/|ζ2| = dldt.

By Proposition 3.3, we have an estimate of the ratio of areas of C̃[θ1,θ2](α̃)
and C̃(α̃) measured by the euclidean area element dξdη. Next we consider the
ratio of areas of their projections onto the annulus A which are measured by the
euclidean area element dldt. Since the Jacobian is |ζ2|, we have only to look at
the minimal and maximal distances m and M of C̃(α̃) from the origin 0. Since
d(p, c) > r0 > r(p), the simple closed geodesic α is disjoint from c. This implies
that the neighborhood C̃(α̃) of the geodesic line α̃ is disjoint from the imaginary
axis in H. Note also that the angle of C̃(α̃) is not less than π/4. Then Figure 3
illustrates the extremal situation where the ratio M/m should be the largest, and
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an elementary geometric calculus gives that M/m = (
√

3+
√

2)2 in this case. From
this observation, we see that

maxζ∈ eC(α̃) J(ζ)

minζ∈ eC(α̃) J(ζ)
≤ (

√
3 +

√
2)4.

α̃

・ ・
α̃

R0 M1

π
4

π
4

1√
2

C̃(α̃)

m

Figure 3. Extremal situation

Merging the above arguments into Proposition 3.3, we summarize a claim for
proving the Main Theorem.

Lemma 4.1. The ratio of the area of C̃[θ1,θ2](α̃) to the area of C̃(α̃) measured
by the euclidean metric with respect to the polar coordinates (l, t) is bounded above
by Kr(p)3 for K = 288 (

√
3 +

√
2)4 if α ∩ c = ∅ and if the width of C̃(α̃) measured

by the angle θ is not less than π/4.

Now we are ready to complete our arguments.

Proof of the Main Theorem. We have only to consider the case where r(p) < r0

and p is in the canonical collar of some short simple closed geodesic α. The other
cases have been already discussed in Section 2. By Lemma 4.1, we have∑

[γ]∈〈γc〉\Γ

∫
γ(U(ζ(p),r(p)))

1
|ζ2|

dξdη ≤
∑

[γ]∈〈γc〉\Γ

∫
γ( eC[θ1,θ2](α̃))

1
|ζ2|

dξdη

=
∑

[γ]∈〈γc〉\Γ

Area(γ(C̃[θ1,θ2](α̃)))

≤ Kr(p)3
∑

[γ]∈〈γc〉\Γ

Area(γ(C̃(α̃)))

≤ Kr(p)3 Area(A) = Kπ`(c)r(p)3.
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This yields one inequality

ρ−2(z(p))|ϕc(z(p))| ≤ b(r0)
πr(p)2

∑
[γ]∈〈γc〉\Γ

∫
γ(U(ζ(p),r(p)))

1
|ζ2|

dξdη

≤ Kb(r0)`(c)r(p).

On the other hand, Lemma 2.2 gives another inequality

ρ−2(z(p))|ϕc(z(p))| ≤ 2er0b(r0)`(c)e−d(p,c)r(p)−2.

We have obtained two estimates as

ρ−2(z(p))|ϕc(z(p))| ≤
{

Kb(r0)`(c)r(p)
2er0b(r0)`(c)e−d(p,c)r(p)−2.

Now we consider the maximum of the smaller one of these values when r(p) varies
in (0, r0]:

max
r(p)∈(0,r0]

min {Kr(p), 2er0e−d(p,c)r(p)−2} b(r0)`(c)

≤ K2/3(2er0)1/3b(r0)`(c)e−d(p,c)/3.

This eliminates r(p) from the formula. By setting B = K2/3(2er0)1/3b(r0), we have

ρ−2(z(p))|ϕc(z(p))| ≤ B`(c)e−d(p,c)/3,

which completes the proof of the Main Theorem. �

5. Application to the variation of length functions

For a Beltrami differential µ = µ(z)dz̄/dz on a hyperbolic Riemann surface R,
consider a quasiconformal deformation Rµ of R given by µ and denote the geodesic
length of the free homotopy class of c on Rµ by `µ(c). Then a variational formula
due to Gardiner [5] asserts that

d`tµ(c)
dt

∣∣∣∣
t=0

=
2
π

Re
∫

R

µ(z)ϕc(z) dxdy.

The Main Theorem can be applied to an estimate of the derivative d`tµ(c)/dt|t=0

through this formula.
We say that a Beltrami differential µ(z)dz̄/dz on R vanishes at infinity if, for

every ε > 0, there exists a compact subset V of R such that |µ(z(p))| < ε for
almost every p ∈ R− V . A quasiconformal homeomorphism f of R whose complex
dilatation is a Beltrami differential vanishing at infinity is called asymptotically
conformal.

Theorem 5.1. Let µ(z)dz̄/dz be a Beltrami differential on a hyperbolic Rie-
mann surface R that vanishes at infinity. Let {cn}∞n=1 be a sequence of simple
closed geodesics on R escaping to the infinity. Then

1
`(cn)

· d`tµ(cn)
dt

∣∣∣∣
t=0

−→ 0

as n → ∞.



12 K. MATSUZAKI

Proof. For arbitrary ε > 0, we take a compact subset V of R such that
|µ(z(p))| < ε for almost every p ∈ R−V . Let Area(V ) be the hyperbolic area of V
and d(V, cn) the hyperbolic distance between V and cn. Then, by using the Main
Theorem for the integral on V , we have∫

R

|µ(z)ϕcn(z)| dxdy =
∫

R−V

|µ(z)ϕcn(z)| dxdy +
∫

V

|µ(z)ϕcn(z)| dxdy

< ε‖ϕcn‖1 + Area(V ) ‖µ‖∞B`(cn)e−d(V,cn)/3

≤ `(cn){επ + Area(V ) Be−d(V,cn)/3}.
Since d(V, cn) → ∞ as n → ∞, this inequality shows that

1
`(cn)

∫
R

|µ(z)ϕcn(z)| dxdy → 0

as n → ∞. Then the Gardiner variation formula yields the statement of the theo-
rem. �

Note that it has been shown by Earle, Markovic and Saric [3] that an asymptot-
ically conformal homeomorphism f of R with the complex dilatation µ(z)dz̄/dz has
an asymptotically isometric homeomorphism in its homotopy class. In particular,
the ratios `µ(cn)/`(cn) for a sequence of simple closed geodesics {cn}∞n=1 escaping
to the infinity tend to 1 as n → ∞. See also [4]. Theorem 5.1 can be regarded as
an infinitesimal version of this property.

6. Remarks on vanishing at infinity

It was noticed by Drasin and Earle [2] that, for an arbitrary Fuchsian group Γ,
the Banach space Q1(H, Γ) of the integrable holomorphic (2, 0)-automorphic forms
has a dense linear subspace consisting of bounded holomorphic (2, 0)-automorphic
forms in Q∞(H, Γ). Actually, this claim was given for holomorphic (2, 0)-automorphic
forms for a Fuchsian group G on the unit disk D by using the fact that poly-
nomials {f(z)} are dense in the Banach space Q1(D, 1) of all integrable holo-
morphic functions on D. Then the surjectivity of the Poincaré series operator
ΘG : Q1(D, 1) → Q1(D, G) yields that {ΘG(f(z))} are dense in Q1(D, G). Also, the
technique introduced by Ahlfors [1] proves that ΘG(zn) for all n ≥ 0 are bounded
holomorphic (2, 0)-automorphic forms in Q∞(D, G).

In fact, Ahlfors’ argument further shows that ΘG(zn) are vanishing at infinity,
namely, they belong to Q∞

0 (D, G). We will explain this method below. Then, after
the conjugation to the upper half-plane H, we can summarize the result as follows.

Proposition 6.1. For every Fuchsian group Γ, Q∞
0 (H, Γ)∩Q1(H,Γ) is dense

in the Banach space Q1(H,Γ) with the integrable norm.

For a Fuchsian group G acting on D, we consider

J(z) = ρ−2
D (z)

∑
g∈G

|g′(z)|2 =
1
4

∑
g∈G

(1 − |g(z)|2)2,

where ρD(z) = 2/(1 − |z|2) is the hyperbolic density on D. Then, as in [1], J(z)
is a subharmonic function outside the images of a certain disk under G. Also this
is an automorphic function for G and thus regarded as a function on the Riemann
surface R = D/G. Because of the subharmonicity, the function J on R vanishes at
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infinity. See [9]. However, this method does not always tell the order of its decay
in terms of the hyperbolic distance.

Let f(z) be an integrable holomorphic function on D with |f(z)| ≤ M for some
positive constant M . Its Poincaré series satisfies

ρ−2
D (z)|ΘG(f(z))| ≤ MJ(z).

We apply this estimate for f(z) = zn. Then we see that ΘG(zn) vanishes at infinity.
In addition, we look at the holomorphic (2, 0)-automorphic form φ(ζ) = 1/ζ2

for 〈γc〉 on H, where γc(ζ) = e`(c)ζ is a hyperbolic element of a Fuchsian group
Γ. By a biholomorphic map D → H, we pull back φ to D, which we denote by
φ̃(z). This also gives the conjugation of Γ with γc to a Fuchsian group G with
the corresponding element gc acting on D. We can verify that there is a positive
constant L depending on `(c) such that

|φ̃(z)| ≤ L`(c)
∑
n∈Z

|(gn
c )′(z)|2.

See [9]. Then
ρ−2

D (z)|Θ〈gc〉\G(φ̃(z))| ≤ L`(c)J(z).

This implies that the pull-back Θ〈gc〉\G(φ̃) of the Petersson series vanishes at infinity
and so does the Petersson series ϕc = Θ〈γc〉\Γ(φ). Further arguments are necessary
to obtain a quantitative estimate of the decay order for ϕc.
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[13] M. Seppälä and T. Sorvali, Horocycles on Riemann surfaces, Proc. Amer. Math. Soc. 118

(1993), 109–111.
[14] T. Sugawa, A conformally invariant metric on Riemann surfaces associated with integrable

holomorphic quadratic differentials, Math. Z. 266 (2010), 645–664.

[15] S. Wolpert, On the symplectic geometry of deformations of a hyperbolic surface, Ann. of
Math. 117 (1983), 207–234.



14 K. MATSUZAKI

[16] S. Wolpert, Spectral limits for hyperbolic surfaces, II, Invent. Math. 108 (1992), 91–129.

Department of Mathematics, School of Education, Waseda University, Shinjuku,
Tokyo 169-8050, Japan

E-mail address: matsuzak@waseda.jp


