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No proper conjugation for quasiconvex cocompact groups of
Gromov hyperbolic spaces

Katsuhiko Matsuzaki and Yasuhiro Yabuki

Abstract. We prove that, if a quasiconvex cocompact subgroup of the isom-
etry group of a Gromov hyperbolic space has a conjugation into itself, then it
is onto itself.

1. Introduction

Let G be an abstract group and θ : G → G an injective homomorphism of
G into itself. There have been various studies on the conditions under which θ is
an automorphism of G, which is the so called co-Hopf problem. A variant of this
problem can be formulated by restricting θ to a conjugation in an ambient group
H containing G.

Definition 1.1. Let H be an arbitrary abstract group. For a subgroup G of
H and an element α of H, if αGα−1 is strictly contained in G, we say that G has
a proper conjugation in H by α.

Here are some examples of groups which admit proper conjugation.

Example 1.2. (1) Let H be the Baumslag-Solitar group B(m, n) for m, n ∈ N:

B(m, n) = 〈g, h | gmh = hgn〉.

For instance, we consider H = B(2, 1) and its subgroup G = 〈g〉. Then hGh−1 =
〈g2〉 $ G, which means that G has a proper conjugation in H by h.

(2) Let H be the free group F2 = 〈α, β〉 of rank 2. We take a subgroup G
generated by infinitely many elements:

G = 〈αnβα−n〉n≥0.

Then αGα−1 = 〈αnβα−n〉n≥1 does not contain β. Since β ∈ G, we see that G has
a proper conjugation in H by α.
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The problem of proper conjugation has been studied for several special cases,
in particular for the case where H = Isom(Hn+1) is the group of all orientation-
preserving isometries of the hyperbolic space Hn+1 of dimension n + 1 and G is
a discrete subgroup of H which is also known as a Kleinian group. We can refer
a history of this problem to Ohshika and Potyagailo [13]. Examples of proper
conjugation of Kleinian groups were given in Jørgensen, Marden and Pommerenke
[8].

Our previous theorem in [11] gave the following necessary condition for G to
have a proper conjugation. Note that this can be regarded as a generalization of
the theorem by Heins [4] in the case of n = 1.

Theorem 1.3. If a Kleinian group G ⊂ Isom(Hn+1) is of divergence type, then
G admits no proper conjugation in Isom(Hn+1).

The divergence type means that the Poincaré series of G diverges at the critical
exponent. If G is convex cocompact, or more generally geometrically finite, then
G is of divergence type (Sullivan [20]). The proof utilized the Patterson-Sullivan
measure on the limit set of G.

Here we mention the relationship between the divergence type condition and
certain conditions known to be avoiding proper conjugation. A geometrically finite
Kleinian group G ⊂ Isom(Hn+1) has no proper conjugation, which was shown by
Wang and Zhou [23]. Theorem 1.3 extends this result. In the case of n = 2, if
G ⊂ Isom(H3) is topologically tame (which is equivalent to being finitely generated
by the solution of the tameness conjecture), then G is of divergence type. Ohshika
and Potyagailo [13] proved that a geometrically tame Kleinian group has no proper
conjugation, which is also in the scope of Theorem 1.3. In arbitrary dimension n, it
was also proved in [13] that, if a Kleinian group G ⊂ Isom(Hn+1) is isomorphic to a
geometrically finite group and does not split over virtually abelian subgroups, then
G does not admit proper conjugation. We do not know whether such a Kleinian
group G is always of divergence type or not. It is possible to construct infinitely
generated Kleinian groups of divergence type. For example, a normal subgroup of
a convex cocompact Kleinian group of infinite cyclic quotient is of divergence type
by Rees [16]. However, when n ≥ 3, we have no example of a finitely generated
but geometrically infinite Kleinian group of divergence type.

In this paper, we will give a certain generalization of these proper conjugation
theorems to isometry groups of Gromov hyperbolic spaces. Let X = (X, d) be a
δ-hyperbolic geodesic metric space for some δ ≥ 0 with distance d. Moreover,
we assume that X is proper, in other words, X is complete and locally compact.
When we call X a Gromov hyperbolic space, we assume that X satisfies all the
above requirements. The group of all isometric automorphisms of X is denoted
by Isom(X). We consider the problem on proper conjugation for a subgroup G in
H = Isom(X) that acts properly discontinuously on X.

The limit set Λ(G) of G is the set of all accumulation points of the orbit of G,
which is in the boundary ∂X of X. The hull Q(Λ(G)) for the limit set is the union
of all geodesic lines connecting any two points of Λ(G). This is a G-invariant closed
quasiconvex subset of X. In general, a subset A of X is called quasiconvex if any
geodesic segment connecting any two points in A is within a uniformly bounded
distance of A. If the quotient Q(Λ(G))/G is non-empty and compact, we say that
G is quasiconvex cocompact or more precisely G acts quasiconvex cocompactly on
X. This is equivalent to the condition that the orbit G(x) of some point x is
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quasiconvex in X. See Swenson [21] for this and other equivalent conditions for
quasiconvex cocompactness.

As in the case of Kleinian groups, we can think of the critical exponent of the
Poincaré series for G, which will be defined later. Then our main theorem is stated
as follows.

Theorem 1.4. If G ⊂ Isom(X) is quasiconvex cocompact with finite critical
exponent, then G has no proper conjugation in Isom(X).

In the case where Isom(X) acts on X properly discontinuously or the conjuga-
tion of G is restricted in some subgroup H ⊂ Isom(X) that acts properly discontin-
uously, the statement of Theorem 1.4 has been already given by Ranjbar-Motlagh
[15]. In this direction, Yang [24] recently proved that, if H is a discrete conver-
gence group acting on some compact metrizable space and G is a non-parabolic
dynamically quasiconvex subgroup of H, then G has no proper conjugation in H.

In Theorem 1.3, we have only to assume that the group G ⊂ Isom(Hn+1) is
of divergence type whereas G ⊂ Isom(X) need to be quasiconvex cocompact in
Theorem 1.4. We want to extend Theorem 1.4 to the case where G is of divergence
type, but it is not so easy to formulate uniqueness of Patterson-Sullivan measure
in this setting. This is continued to our ongoing research.

Instead of pursuing the general result, we put a further assumption on X to
ensure the uniqueness. For instance, if X is a tree, in other words, X is 0-hyperbolic,
then the Patterson-Sullivan measure is unique for a divergence type group G, which
has been proved by Coornaert [3]. More generally, when X is a CAT(−1) space,
this property is also satisfied as in Burger and Mozes [1] and Roblin [17]. Then we
have the following claim.

Theorem 1.5. For a CAT(−1) space X, if G ⊂ Isom(X) is uniformly properly
discontinuous and is of divergence type, then G has no proper conjugation.

Here, we say that G acts on X uniformly properly discontinuously if there are
r > 0 and N < ∞ such that the number of elements g ∈ G satisfying g(U(x, r)) ∩
U(x, r) 6= ∅ is bounded by N for every x ∈ X. Here U(x, r) denotes the open ball of
radius r centered at x. This assumption is necessary to ensure that the geometric
limit Γ∞ defined in Section 4 acts properly discontinuously on X. Once we have Γ∞
with desired properties, then the proof of Theorem 1.5 can be obtained by almost
line-by-line replication of the arguments for the proof of Theorem 1.3 in [11]. We
will omit the detail.

2. The action of isometry groups

A geodesic metric space (X, d) is called δ-hyperbolic for δ ≥ 0 if, for every
geodesic triangle (α, β, γ) in X, any edge, say α is contained in the closed δ-
neighborhood of the union β ∪ γ of the other edges. Let (X, d) be a proper δ-
hyperbolic geodesic metric space for some δ ≥ 0 with a fixed base point x0 ∈ X.
We consider geodesic rays σ : [0,∞) → X starting from x0 = σ(0) and regard
σ1 and σ2 asymptotically equivalent if there is some constant K < ∞ such that
d(σ1(t), σ2(t)) ≤ K for all t ≥ 0. Then the space of all geodesic rays based at x0

modulo the asymptotic equivalence defines a boundary ∂X of X, which gives the
compactification X = X∪∂X by providing the compact-open topology on the space
of geodesic rays. We see that X is a compact Hausdorff space satisfying the second
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countability axiom. Let Isom(X) denote the group of all isometric automorphisms
of X. Then every element γ of Isom(X) extends to a self-homeomorphism of X.

For a subgroup G ⊂ Isom(X) acting on X properly discontinuously, we define
the limit set Λ(G) of G as the set of all accumulation points of the orbit G(x0) in
X. Then Λ(G) is a G-invariant closed subset in ∂X. If #Λ(G) ≥ 3, then we say
that G is non-elementary. Let Ω(G) denote the complement of the limit set Λ(G)
in ∂X, which we call the region of discontinuity of G.

The isometry group Isom(X) acts on X as a convergence group. This has been
shown by Tukia [22]. Note that X is a compact metrizable space. Then, by the
convergence property, we see that a subgroup G ⊂ Isom(X) acting on X properly
discontinuously satisfies similar properties to Kleinian groups concerning the limit
set and the region of discontinuity. For instance, if G is non-elementary, then Λ(G)
is the smallest G-invariant closed subset of X. As another nature, we see the
following, which has been also shown by Coornaert [2] in a different way.

Proposition 2.1. If G ⊂ Isom(X) acts on X properly discontinuously, then
it also acts on X ∪ Ω(G) properly discontinuously.

For a subgroup G ⊂ Isom(X) acting on X properly discontinuously and for a
point x0, we define a Dirichlet domain as

DG(x0) = {x ∈ X | d(x, x0) ≤ d(x, gx0) for all g ∈ G}.
In the case where no element of G fixes x0, in other words, the stabilizer subgroup
Stab(x0) in G is trivial, DG(x0) is a fundamental domain, but in general, DG(x0) is
the union of the images of a fundamental domain by Stab(x0). Actually, DG(x0) =⋂

g∈G−Stab(x0)
Dg(x0) for

Dg(x0) = {x ∈ X | d(x, x0) ≤ d(x, gx0)}.
Let G be a subgroup of Isom(X) that acts on X properly discontinuously. The

hull Q(Λ(G)) of the limit set of G is the union of all geodesic lines connecting
any two points in Λ(G), which is a G-invariant quasiconvex closed set in X. If the
quotient space Q(Λ(G))/G is non-empty and compact, then G is called quasiconvex
cocompact.

We use the following property of the Dirichlet domain for a quasiconvex co-
compact group. This follows from a characterization of quasiconvexity by Swenson
[21], but we give a rather direct proof for it here.

Lemma 2.2. If G ⊂ Isom(X) is quasiconvex cocompact, then the closure DG(x0)
⊂ X of the Dirichlet domain DG(x0) ⊂ X does not intersect the limit set Λ(G).

Proof. Assume that there is a point ξ in DG(x0)∩Λ(G). We choose a sequence
{xn} ⊂ DG(x0) that converges to ξ. Then there is a geodesic segment [x0, xn] for
each n ∈ N such that [x0, xn] converge to a geodesic ray [x0, ξ) as n → ∞. Since G
is quasiconvex cocompact, there is a constant L < ∞ such that, for every point y on
[x0, ξ), there exists an element gy ∈ G with d(y, gyx0) ≤ L. We choose y ∈ [x0, ξ)
so that d(y, x0) > L + 2δ. Here we use the following fact.

Claim: For any distinct points a and a′ in X, set

D = {x ∈ X | d(x, a) ≤ d(x, a′)}.
Then every geodesic segment [x1, x2] with x1 and x2 in D is contained in the closed
δ-neighborhood NδD of D. Proof: We first note that any geodesic segment [a, xi]
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is contained in D for i = 1, 2. Indeed, for every point z ∈ [a, xi], we have

d(z, a) = d(xi, a) − d(z, xi) ≤ d(xi, a
′) − d(z, xi) ≤ d(z, a′).

Next consider a triangle 4ax1x2. The δ-hyperbolicity implies that [x1, x2] is in the
closed δ-neighborhood of [a, x1] ∪ [a, x2]. Since [a, x1] and [a, x2] are contained in
D, we have [x1, x2] ⊂ NδD.

Now, since xn belongs to DG(x0) ⊂ Dgy (x0), the above claim implies that the
geodesic segment [x0, xn] is contained in the closed δ-neighborhood of Dgy (x0) for
all n. Taking the limit as n → ∞, we have [x0, ξ) ⊂ NδDgy (x0). Since y ∈ [x0, ξ),
we conclude

d(y, x0) ≤ d(y, gyx0) + 2δ ≤ L + 2δ.
However, this contradicts the choice of y so that d(y, x0) > L + 2δ. ¤

By this lemma, we have an expected property of quasiconvex cocompact groups
as follows.

Proposition 2.3. If G ⊂ Isom(X) is quasiconvex cocompact, then it acts
uniformly properly discontinuously on X.

Proof. Suppose to the contrary that G does not act uniformly properly dis-
continuously on X. Then we can find a sequence of points {xn} ⊂ X such that

#{g ∈ G | g(U(xn, 1/n)) ∩ U(xn, 1/n) 6= ∅} ≥ n.

We may assume that all xn belong to some Dirichlet domain D ⊂ X of G and
xn converge to some point x∞ of the closure D taken in X. However, G acts
properly discontinuously at every point in D by Proposition 2.1 and Lemma 2.2.
This implies that G acts uniformly properly discontinuously on some neighborhood
of x∞, which contradicts the property of the sequence {xn}. ¤

For a sequence of subgroups {Gn} of Isom(X), we define the envelop denoted by
Env{Gn} to be the subgroup of Isom(X) consisting of all elements g = limn→∞ gn

given for some sequence gn ∈ Gn. For a sequence of closed subsets {Λn} of ∂X, we
define the envelop denoted by Env{Λn} to be the closed subset of ∂X consisting of
all points x = limn→∞ xn given for some sequence xn ∈ Λn.

Proposition 2.4. Let {Gn} be a sequence of subgroups of Isom(X) that act
uniformly properly discontinuously on X where the uniformity is also independent
of n. Then Env{Gn} also acts uniformly properly discontinuously on X.

Proof. By assumption, there are constants r > 0 and N < ∞ such that

#{g ∈ Gn | g(U(x, r)) ∩ U(x, r) 6= ∅} ≤ N

for every x ∈ X and for every n ∈ N. Then we will prove the uniform proper
discontinuity of Env{Gn} for these constants r and N . Suppose that this is not
true. Then there are some x ∈ X and distinct elements

g(1), . . . , g(N), g(N+1) ∈ Env{Gn}
such that g(i)(U(x, r)) ∩ U(x, r) 6= ∅ for all i = 1, . . . , N + 1. For each i, we choose
a sequence g

(i)
n ∈ Gn such that limn→∞ g

(i)
n = g(i). Then there is some ni ≥ 1

such that g
(i)
n (U(x, r)) ∩ U(x, r) 6= ∅ for all n ≥ ni. However, considering Gn

for n = max {n1, . . . , nN+1}, we have a contradiction to the assumption on the
boundedness by N . ¤
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Proposition 2.5. Let {Gn} be a sequence of subgroups of Isom(X) acting
properly discontinuously on X such that Env{Gn} is a non-elementary subgroup of
Isom(X) acting properly discontinuously on X. Assume further that the limit sets
Λ(Gn) for all n together with Λ(Env{Gn}) share a common limit point x. Then
Λ(Env{Gn}) is contained in Env{Λ(Gn)}.

Proof. Since Env{Gn} is non-elementary, the limit set Λ(Env{Gn}) coincides
with the closure of the orbit of x under Env{Gn}. Take any orbit point g(x) given by
g ∈ Env{Gn}. We can choose a sequence of elements gn ∈ Gn with limn→∞ gn = g.
Then gn(x) ∈ Λ(Gn) converge to g(x) as n → ∞. This implies that g(x) belongs
to Env{Λ(Gn)}, and hence Λ(Env{Gn}) is contained in Env{Λ(Gn)}. ¤

3. Quasiconformal measure on the boundary of hyperbolic space

In this section, we introduce the Patterson-Sullivan theory on the boundary of
a Gromov hyperbolic space according to the pioneer work due to Coornaert [3].

Let (X, d) be a proper δ-hyperbolic geodesic metric space for some δ ≥ 0 with
a fixed base point x0 ∈ X. We choose a so-called visual parameter a ∈ (1, a0(δ))
where a0(δ) is some constant depending only on δ. Then there is a visual metric da

on X = X ∪ ∂X with respect to x0 and a which satisfies the following properties.
(1) The topology on X induced by the visual metric da coincides with the

topology of the compactification of (X, d).
(2) There exists a constant λ = λ(δ, a) ≥ 1 such that, for any geodesic line

(ξ, η) connecting any ξ, η ∈ ∂X,

λ−1 a−d(x0,(ξ,η)) ≤ da(ξ, η) ≤ λa−d(x0,(ξ,η))

is satisfied.
This is an analog of the euclidean metric for the ball model (Bn+1, dh) of the
hyperbolic space of constant curvature −1.

Definition 3.1. For a subgroup G ⊂ Isom(X) acting on X properly discon-
tinuously, let

ny(R) = #{g ∈ G | d(gy, x0) ≤ R}
be the number of orbits of some y ∈ X within distance R > 0 from x0. Then the
critical exponent e = ea(G) of G with respect to the visual parameter a is defined
to be

ea(G) = lim sup
R→∞

loga ny(R)
R

.

The Poincaré series P s
G(y, x0) for G of dimension (or exponent) s > 0 is given by

P s
G(y, x0) =

∑
g∈G

a−sd(gy,x0).

This also yields the critical exponent of G by

ea(G) = inf {s > 0 | P s
G(y, x0) < ∞}.

For a Kleinian group G ⊂ Isom(Bn+1, dh), a positive finite Borel measure µ on
the boundary Sn = ∂Bn+1 at infinity is G-conformal measure of dimension s > 0 if

d(g∗µ)
dµ

(ξ) = k(g−1(0), ξ)s
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for every g ∈ G and µ-a.e. ξ ∈ Sn. Here k(z, ξ) = (1 − |z|2)/|ξ − z|2 is the Poisson
kernel, and in particular,

k(g−1(0), ξ) = |g′(ξ)|euc = exp(−dξ(g−1(0), 0)),

where |g′(ξ)|euc is the linear stretching factor of the conformal map g with respect
to the euclidean metric on Bn+1. Also, dξ is the horospherical signed distance at ξ
defined as follows. Let Sξ(z) be the horosphere tangent at ξ ∈ Sn passing through
z ∈ Bn+1. Then dξ(z, z′) = dh(Sξ(z), Sξ(z′)) if Sξ(z) is outside of Sξ(z′) and
dξ(z, z′) = −dh(Sξ(z), Sξ(z′)) if Sξ(z) is inside of Sξ(z′).

For a Gromov hyperbolic space X, we can define an analogue of horosphere as
the level set of the Busemann function and hence the horospherical signed distance.
For a given point ξ ∈ ∂X, let σ : [0,∞) → X be a geodesic ray such that σ(0) = x0

and σ(∞) = limt→∞ σ(t) = ξ. Then the Busemann function at ξ is defined to be

hξ(x) = lim
t→∞

(d(x, σ(t)) − d(x0, σ(t))).

This depends on the choice of the geodesic ray σ but the difference is uniformly
bounded by some constant depending only on δ. The analogue of the linear stretch-
ing factor of g ∈ Isom(X) at ξ ∈ ∂X is given by

jg(ξ) = a−hξ(g−1x0).

Definition 3.2. For a proper δ-hyperbolic geodesic metric space X, we fix
a base point x0 and a visual parameter a. Let G be a subgroup of Isom(X). A
positive finite Borel measure µ on the boundary ∂X is called a G-quasiconformal
measure of dimension s > 0 if there exists a constant C ≥ 1 such that

C−1 jg(ξ)s ≤ d(g∗µ)
dµ

(ξ) ≤ C jg(ξ)s

for every g ∈ G and for µ-a.e. ξ ∈ ∂X.

Similarly to the case of Kleinian groups, a G-quasiconformal measure of the
critical exponent ea(G) plays an important role.

Definition 3.3. For a subgroup G ⊂ Isom(X) acting on a proper δ-hyperbolic
geodesic metric space X properly discontinuously, a G-quasiconformal measure µ of
the critical exponent ea(G) with support in the limit set Λ(G) is called a Patterson-
Sullivan measure for G. Here the support of µ, denoted by supp(µ), refers to the
smallest closed subset whose complement has null measure for µ.

The existence of Patterson-Sullivan measure is guaranteed in a similar manner
to the Patterson construction for Kleinian groups. Also, as in the case of Kleinian
groups, the lower bound of the dimensions of quasiconformal measures is equal to
the critical exponent, which is a consequence of the shadow lemma. These results
were proved by Coornaert [3] as follows.

Theorem 3.4. Assume that a subgroup G ⊂ Isom(X) acts on X properly
discontinuously and the critical exponent ea(G) is finite. Then

(1) a Patterson-Sullivan measure for G exists;
(2) the exponent s of any G-quasiconformal measure is not less than ea(G).

In the classical case, a Kleinian group of divergence type has a special property
for its Patterson-Sullivan measure. We introduce this class also in our present case.
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Definition 3.5. Let G ⊂ Isom(X) act on X properly discontinuously. If the
critical exponent ea(G) is finite and the Poincaré series P s

G(y, x0) of dimension
s = ea(G) diverges, then G is said to be of divergence type.

As an application of the covering theorem, Coornaert [3] obtained the same
consequence as the Kleinian case for the property of quasiconvex cocompact groups.

Theorem 3.6. If G ⊂ Isom(X) is quasiconvex cocompact with ea(G) < ∞,
then it is of divergence type.

Next we will see that, for G of divergence type, every G-quasiconformal measure
µ of the critical exponent ea(G) is actually a Patterson-Sullivan measure. For this
claim, we have only to show that µ has no mass on Ω(G), which implies that the
support of µ is in Λ(G). This is a new ingredient of this paper which supplements
[3].

Lemma 3.7. Assume that a subgroup G ⊂ Isom(X) is of divergence type. If µ
is a G-quasiconformal measure of exponent e = ea(G), then the support of µ is in
the limit set Λ(G), which means that µ is a Patterson-Sullivan measure for G.

Proof. Suppose to the contrary that µ has a positive measure on Ω(G) =
∂X − Λ(G). Then there is a compact subset B ⊂ Ω(G) with µ(B) > 0. Since
G acts on Ω(G) properly discontinuously by Proposition 2.1, the number M of
elements g ∈ G satisfying g(B) ∩ B 6= ∅ is finite. This implies that∑

g∈G

µ(g(B)) ≤ Mµ(Ω(G)) < ∞.

On the other hand, for the constant C ≥ 1 of the quasiconformality of µ, we
have

µ(g(B)) =
∫

B

d(g∗µ)(ξ) ≥ C−1

∫
B

jg(ξ)edµ(ξ).

Plugging the second inequality in the first and exchanging the sum and the integral,
we have

∫
B

∑
g∈G jg(ξ)edµ(ξ) < ∞, and hence there is some ξ ∈ B such that∑

g∈G jg(ξ)e < ∞. Then, since

jg(ξ) = a−hξ(g−1x0) ≥ a−d(g−1x0,x0),

we conclude that
∑

g∈G a−ed(g−1x0,x0) < ∞. However, this contradicts the assump-
tion that G is of divergence type. ¤

For a G-quasiconformal measure µ of dimension s with G quasiconvex cocom-
pact, Theorem 3.6 combined with Lemma 3.7 asserts that, if the dimension s is
equal to ea(G), then µ is nothing but a Patterson-Sullivan measure.

Remark 3.8. We also see that, for G-quasiconformal measure µ of dimension
s with G quasiconvex cocompact, if the support of µ is contained in Λ(G), then µ
must be a Patterson-Sullivan measure (that is, s = ea(G)). This is given in [3].
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4. Proof of the main theorem

Suppose that G ⊂ Isom(X) is quasiconvex cocompact with ea(G) < ∞ and
that there exists α ∈ Isom(X) such that the conjugate Γ = αGα−1 is contained in
G. Set Γn = α−nΓαn for every integer n ≥ 0. Then we have an increasing sequence
of quasiconvex cocompact groups

Γ = Γ0 ⊂ G = Γ1 ⊂ Γ2 ⊂ · · ·

with the same critical exponent e = ea(G).

Proposition 4.1. The limit sets Λ(Γ) and Λ(G) coincides. Moreover, Λ(Γn)
are the same for all n ≥ 0.

Proof. We may assume that G is non-elementary, for otherwise the statement
is clear. Let µ be the Patterson-Sullivan measure for G. In particular, the dimension
of µ is e = ea(G) and supp(µ) coincides with the limit set Λ(G). Since µ is also
Γ-quasiconformal measure of the exponent e = ea(Γ), Theorem 3.6 and Lemma 3.7
assert that supp(µ) = Λ(Γ). Hence we have Λ(Γ) = Λ(G). ¤

Next we consider Γ∞ =
⋃

n≥0 Γn = limn→∞ Γn, which clearly contained in
Env{Γn}. For this limit, we have α−1Γ∞α = Γ∞.

Lemma 4.2. The subgroup Γ∞ acts properly discontinuously on X and its limit
set Λ(Γ∞) coincides with Λ(Γn) for all n ≥ 0. Hence Γ∞ is also quasiconvex
cocompact.

Proof. Since G is quasiconvex cocompact, it acts uniformly properly discon-
tinuously on X by Proposition 2.3. Hence Γn for all n ≥ 0 act uniformly properly
discontinuously on X with the uniformity independent of n, and Proposition 2.4
asserts that so does Γ∞ ⊂ Env{Γn}. We have only to consider the case that Γ∞ is
non-elementary, for otherwise the statement of the lemma is easily seen.

On the other hand, since the limit sets Λ(Γn) are the same Λ for all n ≥ 0 by
Proposition 4.1, they coincide with Env{Λ(Γn)}. Then we can apply Proposition 2.5
to see that Λ(Γ∞) ⊂ Λ. Since the converse inclusion is clear, we have Λ(Γ∞) = Λ.
This implies Q(Λ(Γ∞)) = Q(Λ(Γn)) for their hulls. Since Γ∞ includes quasiconvex
cocompact subgroups Γn, we see that Γ∞ is also quasiconvex cocompact. ¤

Since Γ∞ acts properly discontinuously on X by Lemma 4.2, Γ∞ is discrete in
Isom(X). This in particular implies that Γ∞ =

⋃
n≥0 Γn coincides with Env{Γn}.

Remark 4.3. There is an alternative proof of the fact Λ(Γ∞) = Λ through
showing a claim that ea(Γ∞) = e as follows. We take a Patterson-Sullivan measure
µn for each Γn with the normalization of total mass and consider a weak-∗ limit µ
of a subsequence of {µn}. Then µ is a Γ∞-quasiconformal measure of dimension
e. By Theorem 3.4, we have e ≥ ea(Γ∞) against the trivial inequality e ≤ ea(Γ∞).
Once we have ea(Γ∞) = e, the coincidence of the limit sets Λ(Γ∞) = Λ follows by
considering the supports of their Patterson-Sullivan measures as in Proposition 4.1.
Note that this proof makes no use of Proposition 2.5.

Conversely, Λ(Γ∞) = Λ yields ea(Γ∞) = e. Indeed, we take a Patterson-
Sullivan measure µ for Γ∞. The dimension of µ is ea(Γ∞) and supp(µ) is in
Λ(Γ∞) = Λ. Since µ is also Γn-quasiconformal measure with support in Λ = Λ(Γn),
Remark 3.8 gives ea(Γ∞) = e.
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Proof of Theorem 1.4. In order to prove that G has no proper conjugation, we will
show that the conjugate Γ = αGα−1 ⊂ G actually coincides with G. By Lemma 4.2,
we see that Γ∞ is quasiconvex cocompact with the same limit set as Γ = Γ0. Hence
the hull Q(Λ(Γ∞)) coincides with Q(Λ(Γ)) and the compact quotient Q(Λ(Γ))/Γ
finitely covers Q(Λ(Γ∞))/Γ∞. In particular, the index [Γ∞ : Γ] is finite. Since
Λ(G) = Λ(Γ) by Proposition 4.1, this is also true for G = Γ1, namely, the index
l = [G : Γ] is finite. Then we have [Γn : Γ] = ln for any subgroup Γn of Γ∞ for
n ≥ 0. However, since this is bounded by the finite index [Γ∞ : Γ] for every n, we
see that l = [G : Γ] = 1, that is, G = Γ. ¤

5. Proper conjugation in hyperbolic groups

We give some remarks on proper conjugation in (word) hyperbolic groups. A
finitely generated group H is called a hyperbolic group if the Cayley graph C(H)
of H with respect to some generating system is Gromov hyperbolic as a geodesic
space of the word metric. The canonical action of H on C(H) is isometric as well
as properly discontinuous and cocompact. We regard H itself as a subgroup of
Isom(C(H)).

Let G be a subgroup of a hyperbolic group H. As is mentioned in the in-
troduction, G is quasiconvex in H (i.e. the orbit of G on C(H) is quasiconvex,
or equivalently the vertices corresponding to the elements of G is quasiconvex in
C(H)) if and only if G acts quasiconvex cocompactly on C(H). It was first proved
by Mihalik and Towle [12] that if G is quasiconvex in a hyperbolic group H then G
has no proper conjugation in H. Since H acts properly discontinuously on C(H),
the result in Ranjbar-Motlagh [15] without extending to our Theorem 1.4 also im-
plies this claim. It also follows from a more general result due to Gitik, Mitra, Rips
and Sageev [7]. More generally, the aforementioned result in Yang [24] implies that,
if H is a relatively hyperbolic group and G is relatively quasiconvex in H, then G
has no proper conjugation in H. (The authors was informed of these literatures by
anonymous reviewers of this paper.)

Next we consider when a finitely generated subgroup G is quasiconvex in a
hyperbolic group H. In the case where H is the free group Fm of rank m ≥ 1, Short
[19] proved that G ⊂ Fm is finitely generated if and only if G is quasiconvex in
Fm. (See also Hersonsky and Hubbard [5] for the fact that every finitely generated
subgroup G of Fm acts quasiconvex cocompactly.) Hence this implies that a finitely
generated subgroup G of the free group Fm has no proper conjugation in Fm. On the
other hand, a concrete example of a finitely generated subgroup G of a hyperbolic
group H that has proper conjugation in H (which is not quasiconvex) was given
by Kapovich and Wise [10].

Remark 5.1. In Example 1.2 of proper conjugation in the introduction, the
Baumslag-Solitar group H = B(m,n) in (1) is not hyperbolic and the subgroup G
of H = F2 in (2) is not finitely generated.

We define H to be locally quasiconvex if every finitely generated subgroup
G ⊂ H is quasiconvex in H. This is well-defined independently of the choice of the
generating system of H. Free groups are locally quasiconvex. The above arguments
can be summarized as follows.

Proposition 5.2. Every finitely generated subgroup G of a locally quasiconvex
hyperbolic group H has no proper conjugation in H.
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There are several characterizations for local quasiconvexity (cf. Gitik [6] and
Kapovich [9]). In particular, a surface group H is locally quasiconvex and so is the
free product H of locally quasiconvex groups. On the contrary, the fundamental
group H of a mapping torus of a closed surface S by a pseudo-Anosov homeomor-
phism is not locally quasiconvex because G = π1(S) is not quasiconvex in H. (This
fact was pointed out to the authors by K. Ohshika.)

Note that, if G itself is a hyperbolic group and if it is torsion-free and indecom-
posable to a non-trivial free product, then G has no proper conjugation no matter
in what group H embedded is G. In fact, Sela [18] has shown that if a torsion-
free hyperbolic group G is indecomposable then it has the co-Hopf property and
vice versa. This is an opposite situation to the free group case but still prevents
proper conjugation. For example, this is the case for any G isomorphic to a surface
group. Potyagailo and Wang [14] investigated the case where G is isomorphic to a
3-manifold fundamental group. Further, Ohshika and Potyagailo [13] gave a suffi-
cient condition for the co-Hopf property when G is isomorphic to the fundamental
group of a hyperbolic manifold including higher dimensional cases.

Finally, we deal with a subgroup G which is not necessarily finitely generated.
Since the Cayley graph C(Fm) of the free group Fm with a free generating system
is a tree, we can apply Theorem 1.5 to look at proper conjugation of a subgroup in
a free group. Note that divergence type groups can be infinitely generated.

Corollary 5.3. If a subgroup G of the free group Fm is of divergence type,
then G has no proper conjugation in Fm.

This corollary shows that the subgroup G = 〈αnβα−n〉n≥0 of H = F2 in
Example 1.2 (2) is not of divergence type. On the other hand, it is possible to
show that G̃ = 〈αnβα−n〉n∈Z is of divergence type in spite of its being infinitely
generated.
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