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A study of the dynamics for a discontinuous group of linear fractional transfor-
mations on the Riemann sphere, often called Kleinian groups, was begun by Robert
Fricke and Felix Klein in [1911]. Fricke and Klein studied the set of accumulation
points (the limit set) of the orbit under the action of a discontinuous group. Its
complement, where the action is discontinuous, is called the ordinary set. In a
recent monograph [2002] — Indra’s Pearls, The vision of Felix Klein — by Mum-
ford, Series and Wright, many beautiful fractal pictures of limit sets are exhibited
with detailed expositions including Fricke and Klein’s original ones.

The properties of the limit set and the ordinary set, for Kleinian groups, have
strong similarities with those for the Julia set and the Fatou set, for the iterations
of a rational map. For example, chaotic behavior and density of the orbit on
the limit (Julia) set are the same. Actually, by means of the concept of normal
family introduced by Montel, these two sets can be defined in a unified way.
The ordinary (Fatou) set is a set of points in a neighborhood of which the linear
fractional transformations {gn} in a discontinuous group G, or the iterated maps
{fn}, of a rational map f , constitute a normal family. Hence several properties of
these holomorphic dynamics can be explained simultaneously by the normal family
arguments.

The theory of discontinuous groups developed in complex analysis as a branch
of the theory of Teichmüller spaces. A related powerful tool is the quasi-conformal
map which gives deformation on the dynamics. One of the monumental results in
this field was the Ahlfors finiteness theorem, obtained in the middle 1960s. About
two decades later, a new revolution in the theory of iteration of rational maps
was brought about by Dennis Sullivan, who imported quasi-conformal maps from
discontinuous group theories and proved the non-wandering domain theorem with
a method similar to that used in the proof of the Ahlfors finiteness theorem.

After this success, the similarity or the analogy between discontinuous groups
and the iteration of rational maps was recognized again through more sophisticated
analytic concepts, and it provided a sort of principle for new researches in these
fields. A list of the correspondence of concepts and theorems between the two
holomorphic dynamics is often called Sullivan’s dictionary, Sullivan [1985]. The
number of items in this dictionary is still increasing.
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The Denjoy-Wolff Theorem considers the iteration of a holomorphic function
f : ∆ → ∆ on the unit disk and asserts that, excluding a trivial exception where
f is the identity or an elliptic automorphism of ∆, there exists a unique point ξ in
the closure �∆ of the unit disk such that the orbit of every point z ∈ ∆ under the
n-times iteration fn(z) → ξ, as n → ∞. Since f is contracting with respect to the
hyperbolic metric, as the Schwarz-Pick Lemma states, if f has a fixed point in ∆,
the statement is easily obtained by taking the fixed point of f as ξ ∈ ∆. Hence, the
problem lies in the treatment of the case where f has no fixed points and especially
the uniqueness of the point ξ on the boundary ∂∆ = �∆−∆ is not so obvious.

The works of Fatou and Julia classify the periodic components D for the iter-
ation of rational maps g into several types and if D is simply connected and m is
the period of g for D, then either:

1. f = gm has an attracting fixed point in D;
2. f has a rationally indifferent fixed point on the boundary ∂D;
3. or f is a rotation of D with the fixed point inside.

By the Riemann Mapping Theorem, the situation can be transferred to the
unit disk ∆, and these three possibilities correspond to the above mentioned cases
for the iteration of a holomorphic function f : ∆ → ∆. However, the rational map
g is originally defined on the Riemann sphere, and f = gm is of course extendable
to the closure D̄. Hence, the existence of the fixed point of f is easily seen, and
the behavior of the orbit as in the assertion of the Denjoy-Wolff Theorem is then
clear. In other words, the Denjoy-Wolff Theorem localizes the problem on simply
connected periodic components of rational maps and generalizes the arguments of
Fatou and Julia. In fact, the statement of the theorem first appeared in Wolff’s
paper [1926a] under the assumption that f : ∆ → ∆ is continuously extendable to
the boundary.

Soon afterwards, Denjoy [1926] and Wolff [1926b] independently succeeded
in removing this assumption. Wolff utilized a general fact due to Fatou that a
bounded holomorphic function on ∆ has a non-tangential limit at almost every
point on ∂D and proved that the full statement of the theorem follows even from
this weaker continuity condition. In contrast, Denjoy’s approach is more geometric:
f is approximated by (1 − ε)f with ε → 0 in order to appeal to the stronger
contraction property for (1 − ε)f . This method later extended to an argument
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given by Wolff [1926c] proving the existence of a horoball tangent at ∂∆ that is
mapped by f into itself.

A historical survey of the proofs of Denjoy-Wolff Theorem as well as a concise
exposition on the related topics can be found in an article by Burckel [1981].
The second proof due to Wolff [1926c] was refined by Beardon [1990] in a very
simple geometric form. In a standard textbook on complex dynamics written by
Carleson and Gamelin [1993], the Denjoy-Wolff Theorem was introduced with this
proof attributed to Beardon; however, its origin is in the 1926 papers by Denjoy
and Wolff. Beardon’s paper also recognized the crucial points of the Denjoy-Wolff
Theorem as the investigation on the contraction and the ideal boundary of metric
spaces, and proposed the way to generalize the theorem to assertions for metric
spaces regardless of the analyticity of the mappings. The references for other such
generalizations, such as, to multiply connected domains, Riemann surfaces, higher
dimensional manifolds, and so on, can be found in the bibliography of Burckel
[1981] and Beardon [1990]. See also a survey given by Reich and Shoikhet [1997b].

The Denjoy-Wolff theorem was a prototype of hyperbolic dynamics and con-
tributed much to modern studies on dynamical systems even if the relationships
are not explicitly mentioned. Among them, we introduce two recent results on
1-dimensional holomorphic complex dynamics, which are directly related to the
Denjoy-Wolff Theorem.

The first one is the so called Snail Lemma, which asserts that the Denjoy-Wolff
Theorem forces an indifferent fixed point ξ ∈ ∂D where the orbit converges, to be
rationally indifferent for a holomorphic map f : D̄ → D̄ on a general domain D.
This can be used to prove the classification of Fatou components for rational maps
as well as to treat irrationally indifferent, non-linearizable fixed points. See, for
example, Pérez-Marco’s paper [1997].

The second one is a characterization of certain geometric properties of subdo-
mains D in the unit disk ∆ in terms of the convergence of the compositions of
holomorphic functions in a family F = {f |f : ∆ → D}. The Denjoy-Wolff Theo-
rem states that the iteration of a single function f : ∆ → ∆ (non-elliptic) always
converges to a constant function. Moreover, this happens for any sequence of com-
positions taken from the family F if the range D is degenerate in some sense. One
can review classical and recent results on this problem in an article by Lorentzen
[1999].


