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Growth and cogrowth tightness

of Kleinian and hyperbolic groups
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Abstract

Let G be a non-elementary discrete isometry group of the hyperbolic space or more gen-

erally a proper geodesic Gromov hyperbolic space X. We say that G is growth tight if for any

non-trivial normal subgroup H the critical exponent κ(H\G) of the quotient group is strictly

smaller than κ(G). Moreover, G is cogrowth tight if the critical exponent δ(H) of any such

H is strictly greater than δ(G)/2. We review recent results on these properties of G with the

addition of certain new observation. In particular, we see that a non-elementary quasi-convex

cocompact discrete isometry group G of X is growth tight.

§ 1. Introduction

In this paper, we survey a recent progress on problems of the spectra of critical

exponents defined by normal subgroups of a discrete isometry group of the hyperbolic

space both in the classical sense and in the modern sense. More precisely, we first

consider the hyperbolic space Hn+1 of dimension n+1 and Kleinian groups acting on it

isometrically. Then, we extend them to a proper geodesic metric space X hyperbolic in

the sense of Gromov and discrete isometry groups acting on X. In particular, hyperbolic

groups themselves can be our objects of study by considering their Cayley graphs.

For a discrete isometry group G acting on X, the critical exponent δ(G) of its

Poincaré series is an important index which characterizes geometric properties of G.

For any normal subgroup H of G, we can think of two kinds of critical exponents: δ(H)
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for H itself acting on X and κ(H\G) for the quotient group acting on the quotient space

H\X. There are interesting researches on the spectra of these critical exponents taken

over all normal subgroups. Among them, we focus on growth tightness in this paper,

which is a concept introduced by Grigorchuk and de la Harpe [12]. It is said that G is

growth tight if the spectra {κ(H\G)}H◁G has multiplicity one at δ(G) = κ(G). Section

2 is devoted to basic definitions of these concepts in a general setting.

In Section 3, we summarize necessary facts for considering the problem on the crit-

ical exponents of Kleinian groups and introduce a recent result on the growth tightness

of geometrically finite Kleinian groups by Dal’bo et al. [9]. In Section 5, we generalize

this to the Gromov hyperbolic space. Especially, Theorem 5.2 is the corresponding as-

sertion to the above result for Kleinian groups and we provide a proof for it (Section

7) following the arguments in [9]. This is one of new ingredients of this paper which

contribute to our subject matter.

On the other hand, researches on the spectra {δ(H)}H◁G have longer history, and

the characterization of amenability of H\G by the equality δ(H) = δ(G) is well known.

However in this paper, we are interested in a different direction, namely, the lower

bound of δ(H) for non-trivial normal subgroups H of G. In Section 4, we review several

results on this problem for Kleinian groups and state that the lower bound is δ(G)/2.

Then, in analogy to the growth tightness, we define newly the cogrowth tightness of G,

which means that δ(H) > δ(G)/2 for every non-trivial normal subgroup H of G. The

introduction of this concept is another feature of this paper. The result of Roblin [19]

implies that a Kleinian group of divergence type is cogrowth tight. In Section 6, we

state our recent result on the Gromov hyperbolic space, which generalizes the cogrowth

tightness for Kleinian groups.

Both for the growth and the cogrowth tightness, the existence of a sequence of

non-trivial normal subgroups H of G whose critical exponents converge to the upper

and the lower bounds, in other words, the non-isolation of κ(G) and δ(G)/2 in the

spectra, is investigated in company with the original problems. In Sections 3–6, we also

touch on this problem. In particular, we mention our expectation that there is a certain

relation between κ(H\G) and δ(H), which might be useful for dealing with this kind of

problems.

Acknowledgements. The author learnt problems on the growth tightness from lectures

by Wenyuan Yang based on his paper [25] at Waseda University on March 16–20, 2015.

The contents of the present paper is based on the author’s talk in the conference “Ge-

ometry and Analysis of Discrete Groups and Hyperbolic Spaces” held at RIMS, Kyoto

University on June 22–26, 2015. This research project is partially being developed

jointly with Johannes Jaerisch.
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§ 2. Basic concepts

Let (X, d) be a proper metric space. The group of all isometric automorphisms of

(X, d) is denoted by Isom(X, d). A subgroup G ⊂ Isom(X, d) is discrete if it acts on X

properly discontinuously.

The critical exponent δ(G) of a discrete group G ⊂ Isom(X, d) is defined by

δ(G) = lim sup
r→∞

1

r
log#{g ∈ G | d(x, g(x)) ≤ r} (x ∈ X).

This coincides with the infimum of exponents s ≥ 0 such that the Poincaré series

P s
G(x) =

∑
g∈G e−sd(x,g(x)) converges. We say that G is of divergence type if δ(G) < ∞

and P
δ(G)
G (x) = ∞. Otherwise, it is of convergence type.

We consider a normal subgroup H of a discrete group G ⊂ Isom(X, d). Clearly

δ(H) ≤ δ(G). The quotient group H\G acts on the quotient space NH = H\X properly

discontinuously. Then, we define the critical exponent of H\G in the same way as above

and denote it by κ(H\G):

κ(H\G) = lim sup
r→∞

1

r
log#{[g] ∈ H\G | dH\X([x], [g(x)]) ≤ r} ([x] ∈ NH),

where dH\X is the quotient distance. We call κ(H\G) the growth of H relative to G for

the reason mentioned below.

Suppose that (X, d) admits a non-trivial Radon measure (volume) V invariant

under every isometric automorphism of (X, d). If G is cocompact, then κ(H\G) gives

the exponential growth rate of the volume of NH . Actually, this exponential growth

rate for a quotient space NH is defined as the volume entropy

ω(NH) = lim sup
r→∞

1

r
log VH\X(B([x], r)),

where B([x], r) denotes the ball of center [x] ∈ NH and radius r > 0 and VH\X is the

volume on NH induced from V . Then, κ(H\G) ≤ ω(NH) in general, and the equality

holds if G is cocompact.

The following concept was introduced by Grigorchuk and de la Harpe [12] for a

finitely generated group G equipped with the word metric dA with respect to some

generating system A.

Definition 2.1. A discrete group G ⊂ Isom(X, d) is said to be growth tight if

κ(H\G) < κ(G) for every infinite normal subgroup H of G. Moreover, if supκ(H\G)

taken over all such H is strictly less than δ(G), then G is called uniformly growth tight.

A recent paper by Arzhantseva, Cashen and Tao [1] shows that a large class of

isometry groups possess the growth tightness. On the other hand, we expect that few
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of them have uniform growth tightness. Hence, there remain problems of finding a

sequence of normal subgroups Hi such that limi→∞ κ(Hi\G) = δ(G). We call such

{Hi} an asymptotic sequence.

§ 3. Growth tightness for Kleinian groups

We consider the hyperbolic space X = Hn+1 of dimension n + 1 with the hyper-

bolic metric dh. We note here that several results cited in this paper can be extended

to the spaces of variable negative curvature. We always assume an isometric automor-

phism to be orientation-preserving and denote the group of all such automorphisms by

Isom+(Hn+1, dh). A discrete subgroup G of Isom+(Hn+1, dh) is called a Kleinian group.

The limit set Λ(G) of G is the set of accumulation points of the orbit of G, which is

located on the sphere at infinity ∂X ∼= Sn. If #Λ(G) ≤ 2, then G is called elementary.

Let Hull(Λ(G)) ⊂ Hn+1 be the convex hull of Λ(G). If the hyperbolic volume of the

ε-neighborhood (ε > 0) of the convex core CG = G\Hull(Λ(G)) is finite, then G is called

geometrically finite. Moreover, if CG is compact, or equivalently, if G is geometrically

finite without parabolic elements, then G is called convex cocompact. It is known that

a geometrically finite Kleinian group is of divergence type.

We see that the critical exponent δ(G) of a non-elementary Kleinian group G ⊂
Isom+(Hn+1, dh) satisfies 0 < δ(G) ≤ n. When G is geometrically finite, we have that

δ(G) = n if and only if G is of finite covolume.

The critical exponent can be interpreted by a geometric invariant of the hyperbolic

manifold NG = G\Hn+1. Let λ0(NG) be the bottom of spectra of the hyperbolic Lapla-

cian on NG. Then, the Elstrodt-Patterson-Sullivan [23] theorem asserts the following.

See Roblin and Tapie [20] for a recent account on this theorem.

Theorem 3.1. For a Kleinian group G ⊂ Isom+(Hn+1, dh), if δ(G) ≥ n/2 then

λ0(NG) = (n− δ(G))δ(G), and if δ(G) ≤ n/2 then λ0(NG) = (n/2)2.

On the other hand, the volume entropy ω(NG) can be estimated by λ0(NG) as

Brooks [5] proved.

Theorem 3.2. Any Kleinian group G ⊂ Isom+(Hn+1, dh) satisfies λ0(NG) ≤
(ω(NG)/2)

2.

The combination of these two theorems immediately derives:

Corollary 3.3. If a Kleinian group H ⊂ Isom+(Hn+1, dh) satisfies δ(H) ≥ n/2,

then

δ(H) +
1

2
ω(NH) ≥ n.
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Note that when H is a normal subgroup of a Kleinian group G ⊂ Isom+(Hn+1, dh),

the growth κ(H\G) does not necessarily coincide with the volume entropy ω(NH). For

instance, if G is geometrically finite with infinite covolume, then κ(H\G) < n whereas

ω(NH) = n.

Now, we start considering growth tightness for Kleinian groups. For geometrically

finite groups, the problem has been settled by Dal’bo et al. [9].

Theorem 3.4. A non-elementary geometrically finite Kleinian group G is growth

tight.

One might expect that this can be generalized to any Kleinian group of divergence

type. Towards this problem, the following theorem was proved in the same paper [9].

We remark that any non-trivial normal subgroup of a non-elementary Kleinian group

is non-elementary; in particular, it is infinite.

Theorem 3.5. Let H be a non-trivial normal subgroup of a non-elementary

Kleinian group G. If H\G is of divergence type as acting on NH , then κ(H\G) < κ(G).

We note that if G is convex cocompact, then H\G is always of divergence type

(which will be proved in Lemma 5.3 later in a more general setting), and hence Theorem

3.4 follows from Theorem 3.5 in this case. However, when G is geometrically finite with

parabolic elements, the divergence of H\G does not necessarily hold true.

The existence of an asymptotic sequence of normal subgroups Hi of a geometrically

finite Kleinian group G can be seen from a more general result by Yang [25], which is

concerning relatively hyperbolic group action.

Theorem 3.6. For a torsion-free geometrically finite Kleinian group G, there is

a sequence of normal subgroups H of G such that limi→∞ κ(Hi\G) = κ(G).

§ 4. Cogrowth tightness for Kleinian groups

Originally, the cogrowth of a normal subgroup H ◁ G is defined by the ratio of

δ(H) to δ(G) in relation to the growth κ(H\G). See Cohen [6]. Here, we refer to δ(H)

itself as the cogrowth of H making the comparison with δ(G) in mind.

For the critical exponent δ(H) of a normal subgroup H of a Kleinian group G ⊂
Isom+(Hn+1, dh), Falk and Stratmann [10] obtained its lower bound as a consequence

of a result in [15].

Theorem 4.1. A non-trivial normal subgroup H of a non-elementary Kleinian

group G satisfies δ(H) ≥ δ(G)/2.
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Inspired by this result, we introduce the concept of cogrowth tightness as follows.

Actually, for a free group G acting on its Cayley graph, the lower bound was previously

known in [6] as well as in Grigorchuk [11]. Our definition is given in a more general

setting for a discrete isometry group of a proper metric space (X, d).

Definition 4.2. Suppose that a discrete group G ⊂ Isom(X, d) satisfies

inf
1 ̸=H◁G

δ(H) ≥ δ(G)/2.

Under this assumption, we say that G is cogrowth tight if δ(H) > δ(G)/2 for every

infinite normal subgroup H of G.

Returning to Kleinian groups, we find a criterion for the cogrowth tightness by the

result of Roblin [19].

Theorem 4.3. Let G be a non-elementary Kleinian group of divergence type

and H its non-trivial normal subgroup. Then δ(H) > δ(G)/2. This implies that G is

cogrowth tight.

We note that for a special case where G is convex cocompact, the assertion of the

above theorem was shown in [3] by a different proof. Recently, Jaerisch [13] found a

simple argument for Theorems 4.1 and 4.3 by using the following result in [16].

Lemma 4.4. If a normal subgroup H of a Kleinian group G is of divergence

type, then δ(H) = δ(G).

When a Kleinian group G is of convergence type, we do not know whether it is

cogrowth tight or not. In fact, we have no example of a Kleinian group G that is not

cogrowth tight.

Problem 4.5. Find a non-elementary Kleinian group G and its non-trivial nor-

mal subgroup H such that δ(H) = δ(G)/2.

As in the case of growth tightness, we can also ask a problem of finding a sequence

of non-trivial normal subgroups Hi such that limi→∞ δ(Hi) = δ(G)/2. We also call such

{Hi} an asymptotic sequence for cogrowth tightness.

The existence of an asymptotic sequence for cogrowth tightness is known only for

the following special case as investigated in [3].

Theorem 4.6. Let G ⊂ Isom+(H2, dh) be a cocompact Fuchsian group. Then,

there is a sequence of non-trivial normal subgroups Hi of G such that limi→∞ δ(Hi) =

δ(G)/2 = 1/2.
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An interesting fact is that this sequence also plays the role of an asymptotic se-

quence for growth tightness at the same time.

Proposition 4.7. Let G ⊂ Isom+(Hn+1, dh) be a cocompact Kleinian group. If

a sequence of non-trivial normal subgroups Hi of G satisfies limi→∞ δ(Hi) = δ(G)/2 =

n/2, then limi→∞ κ(Hi\G) = κ(G) = n.

Proof. Since G is cocompact, the growth κ(H\G) coincides with the volume en-

tropy ω(NH) for any normal subgroup H of G. Then, we apply Corollary 3.3. Noting

that δ(Hi) ≥ n/2 by Theorem 4.1, we have

δ(Hi) +
1

2
κ(Hi\G) ≥ n.

Hence, limi→∞ δ(Hi) = n/2 implies limi→∞ κ(Hi\G) = n.

§ 5. Growth tightness for hyperbolic groups

As a generalization of the hyperbolic space (Hn+1, dh), we consider a proper geodesic

Gromov hyperbolic space (X, d). It equips the boundary ∂X at infinity, and hence a

lot of concepts on Kleinian groups can be similarly introduced to discrete subgroups of

Isom(X, d).

A finitely generated group G is said to be a hyperbolic group if its Cayley graph

Cay(G,A) for some generating system A equipped with the path metric dA is a Gromov

hyperbolic space. SinceG acts on (X, d) = Cay(G,A) isometrically, properly discontinu-

ously, and cocompactly, it can be regarded as a cocompact discrete group of Isom(X, d).

Hence, the results on discrete groups acting on the Gromov hyperbolic space are also

applicable to hyperbolic groups as special cases.

We consider growth tightness for a discrete group G ⊂ Isom(X, d). The follow-

ing result was proved by Sabourau [21], generalizing the previous theorems for a non-

elementary hyperbolic group by Arzhantseva and Lysënok [2] and for a cocompact

discrete group G ∼= π1(R) ⊂ Isom(X, d) acting on a negatively curved Riemannian

universal cover X of R by Sambusetti [22].

Proposition 5.1. Let (X, d) be a proper geodesic Gromov hyperbolic space. If

G ⊂ Isom(X, d) is cocompact, then G is growth tight.

On the other hand, the proof in Dal’bo et al. [9] for Theorem 3.5 can be generalized

to the Gromov hyperbolic space and the following theorem should be also obtained.

There is no essential difference in the argument (see also the comment in the remark
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after [25, Theorem 1.4]), but we give a proof adapted to the Gromov hyperbolic space

in the appendix of this paper. In particular, Proposition 5.1 follows from Corollary 5.4

to this theorem combined with Lemma 5.3 below.

Theorem 5.2. Let (X, d) be a proper geodesic Gromov hyperbolic space. Let H

be a non-trivial normal subgroup of a non-elementary discrete group G ⊂ Isom(X, d).

If H\G is of divergence type as acting on NH , then κ(H\G) < κ(G).

A sufficient condition for H\G to be of divergence type was also given in [9]. Here,

we only deal with the parabolic-free case for the sake of simplicity, and borrow the proof

from [9] and adapt it to our situation. We say that a discrete group G ⊂ Isom(X, d) is

quasi-convex cocompact if the union of all geodesic lines joining any two points of the

limit set Λ(G) modulo the action of G is compact. This condition is equivalent to that

the orbit G(x) ⊂ X of any x ∈ X is quasi-convex, i.e., there is a constant L ≥ 0 such

that for every point z on any geodesic segment connecting any two points of G(x), there

exists g ∈ G such that d(z, g(x)) ≤ L. See Swenson [24] for equivalent conditions of

quasi-convexity.

Lemma 5.3. Let (X, d) be a proper geodesic Gromov hyperbolic space. Let H be

a normal subgroup of a discrete group G ⊂ Isom(X, d). If G is quasi-convex cocompact,

then H\G is of divergence type.

Proof. The quotient group H\G acts on NH = H\X properly discontinuously.

For any [x] ∈ NH , r > 0, and L ≥ 0, we consider the following subset of the orbit of [x]

under H\G:

A([x], L, r) = {[g(x)] ∈ H\G(x) | r − L < dH\X([x], [g(x)]) < r + L}.

Since G is quasi-convex cocompact, the orbit G(x) is quasi-convex for some constant

L ≥ 0. Then, we will show the following sub-multiplicativity of the number of the

elements in the above set:

#A([x], 2L, r1 + r2) ≤ #A([x], 2L, r1) ·#A([x], 2L, r2) (r1, r2 > 0).

Take any [y] ∈ A([x], 2L, r1 + r2) and set dH\X([x], [y]) = r1 + r2 +2ℓ with |ℓ| < L.

Take a point [z] on a geodesic segment connecting [x] and [y] with dH\X([x], [z]) = r1+ℓ

and dH\X([y], [z]) = r2 + ℓ. We lift them to X; there are x ∈ X, y ∈ G(x), and z on

the geodesic segment connecting x and y with d(x, z) = r1 + ℓ and d(y, z) = r2 + ℓ. By

the quasi-convexity of G(x), there is some g0 ∈ G such that d(z, g0(x)) ≤ L. Then, we

have [g0(x)] ∈ A([x], 2L, r1) and [y] ∈ A([g0(x)], 2L, r2). This implies that

A([x], 2L, r1 + r2) ⊂
∪

[g(x)]∈A([x],2L,r1)

A([g(x)], 2L, r2).
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Since #A([g(x)], 2L, r2) = #A([x], 2L, r2), we obtain the required inequality.

The Poincaré series P s
H\G([x]) for H\G of exponent s ≥ 0 satisfies

1

4L

∑
n≥0

#A([x], 2L, n)e−s(n+2L) ≤ P s
H\G([x]) ≤

∑
n≥0

#A([x], 2L, n)e−s(n−2L).

Hence, P s
H\G([x]) and

∑
n≥0 #A([x], 2L, n)e−sn have the same critical exponent s =

κ(H\G) and either diverge or converge at this exponent simultaneously. Moreover, by

setting vn = #A([x], 2L, n), we have

κ(H\G) = lim sup
n→∞

1

n
log vn.

By Fekete’s lemma, the sub-multiplicativity vn+m ≤ vnvm implies that vn ≥ eκ(H\G)n

for all n. Hence, P
κ(H\G)
H\G ([x]) diverges.

Corollary 5.4. Let (X, d) be a proper geodesic Gromov hyperbolic space. If

G ⊂ Isom(X, d) is non-elementary and quasi-convex cocompact, then G is growth tight.

Concerning the existence of an asymptotic sequence of non-trivial normal sub-

groups Hi ◁ G, Coulon [8] proved that for a non-elementary torsion-free hyperbolic

group G, a sequence of normal subgroups Hi = Gi generated by {gi | g ∈ G} satisfies

limi→∞ κ(Hi\G) = κ(G). Recently, Yang [25] obtained an asymptotic sequence for a

relatively hyperbolic group G. His results in particular include the following theorem,

which can be generalized to any cusp-uniform relatively hyperbolic group action.

Theorem 5.5. Let (X, d) be a proper geodesic Gromov hyperbolic space. For a

quasi-convex cocompact discrete group G ⊂ Isom(X, d), there is a sequence of non-trivial

normal subgroups Hi such that limi→∞ κ(Hi\G) = κ(G).

§ 6. Cogrowth tightness for hyperbolic groups

We consider the lower bound of the critical exponents of non-trivial normal sub-

groups and the cogrowth tightness of a discrete group G ⊂ Isom(X, d) for a proper

geodesic Gromov hyperbolic space (X, d). We can generalize the results for Kleinian

groups as follows, which is proved in [17].

Theorem 6.1. Let G ⊂ Isom(X, d) be a non-elementary discrete group for a

proper geodesic Gromov hyperbolic space (X, d). Then, δ(H) ≥ δ(G)/2 for a non-

trivial normal subgroup H of G. Moreover, if G is of divergence type in addition, then

δ(H) > δ(G)/2, which implies that G is cogrowth tight.
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The proof of this theorem in [17] is given by generalizing the argument of Jaerisch

[13] for Kleinian groups. For the strict inequality, we use the generalization of Lemma

4.4 in this case.

Concerning the problem of asymptotic sequence, Grigorchuk [11] gave such a se-

quence of non-trivial normal subgroups Hi for the free group G = ⟨g1, . . . , gn⟩ (n ≥ 2).

Here, Hi is the normal closure generated by {gi1, . . . , gin}. Recently, a simple proof for

this fact is given in [14] and this also shows that Hi is an asymptotic sequence for the

growth tightness at the same time. Namely, limi→∞ κ(Hi\G) = κ(G). More generally,

the following result is proved in [14].

Theorem 6.2. Let G be a free group of rank ≥ 2. If a sequence of non-trivial

normal subgroups Hi of G satisfies that each quotient graph Hi\Cay(G,A) is planar and

the girth of Hi\Cay(G,A) tends to ∞ as i → ∞, then both

lim
i→∞

δ(Hi) = δ(G)/2 and lim
i→∞

κ(Hi\G) = κ(G)

are satisfied. Here, A is the set of free generators of G and the girth of a graph means

the minimal number of edges consisting of a non-trivial cycle.

Finally, we touch on a problem of whether or not an asymptotic sequence for the

cogrowth tightness becomes that for the growth tightness. Intuitively speaking, an

asymptotic sequence consists of “small” normal subgroups in some sense. Hence, there

is no surprise even if one plays both roles. In Proposition 4.7, we have seen a certain

condition under which this is the case for Kleinian groups by using the inequality of

Corollary 3.3. We expect that the same inequality holds true for discrete isometry

groups of the Gromov hyperbolic space.

Conjecture 6.3. Let (X, d) be a proper geodesic Gromov hyperbolic space and

G ⊂ Isom(X, d) a cocompact discrete group. Then, a non-trivial normal subgroup H of

G satisfies

δ(H) +
1

2
κ(H\G) ≥ δ(G).

This has been proved in [14] for any free group G of finite rank.

§ 7. Appendix: Proof of Theorem 5.2

Let (X, d) be a proper geodesic Gromov hyperbolic space with hyperbolicity con-

stant ∆ ≥ 0. Hereafter, a multiple of ∆ by a uniformly bounded positive integer is de-

noted by ∆̃, ∆̃1, ∆̃2, and so on without specifying the multiplicity. Let G ⊂ Isom(X, d)

be a non-elementary discrete group and H a non-trivial normal subgroup of G. Since
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H is non-elementary, it contains a hyperbolic element h. We fix this h and also fix a

base point o ∈ X. Let ξ+ and ξ− be the attracting and the repelling fixed point of h,

respectively.

Take a geodesic segment [o, h(o)] connecting o and h(o), and make a piecewise

geodesic curve β =
∪

n∈Z h
n([o, h(o)]) connecting ξ+ and ξ− with arc length parameter.

Actually, β : (−∞,∞) → X is a quasi-geodesic line, i.e., there are constants µ ≥ 1 and

ν ≥ 0 such that

|s− t| ≤ µd(β(s), β(t)) + ν

for all s, t ∈ R (see [7, Lemme 6.5]). Assuming that β(0) = o, we set β+ = β[0,∞) and

β− = β[0,−∞).

For each x ∈ X, let P+(x) ⊂ β+ and P−(x) ⊂ β− denote the sets of all nearest

points from x to β+ and β−, respectively. We see that the diameter of P±(x) is uniformly

bounded independent of x (cf. [4, III.Γ.3.11]). Indeed, choose y1 and y2 in P±(x) and

consider a geodesic segment [y1, y2]. The Gromov product

(y1 | y2)x =
1

2
(d(y1, x) + d(y2, x)− d(y1, y2))

satisfies d([y1, y2], x) ≤ (y1 | y2)x + ∆̃. Moreover, by stability of quasi-geodesics (see [4,

III.H.1.7]), there is a constant c = c(∆, µ, ν) ≥ 0 such that the geodesic segment [y1, y2]

is within distance c of the subarc of β with end points y1 and y2. Hence, we have

d(y1, x) = d(y2, x) = d(β±, x) ≤ d([y1, y2], x) + c ≤ (y1 | y2)x + ∆̃ + c.

This inequality yields that d(y1, y2) ≤ 2∆̃ + 2c. The uniform boundedness of the diam-

eter of P±(x) also implies that of the set of parameters β−1(P±(x)) ⊂ R.
The Gromov product can be extended to the boundary ∂X at infinity by taking the

limit infimum of all convergent sequences. Concerning the Gromov product at infinity,

we refer to Ohshika [18, §2.6.1]. For ξ ∈ ∂X and b > 0, set

U(ξ, b) = {x ∈ X | (x | ξ)o > b}.

It is known that {U(ξ, b)}b>0 is a neighborhood basis of X = X ∪ ∂X at ξ. We also

consider

V (ξ±, r) = {x ∈ X | P±(x) ∩ β(±r,±∞) ̸= ∅}

for ξ+ and ξ− respectively and for r > 0.

Proposition 7.1. (i) For any r < ∞, there exists some b < ∞ such that

U(ξ±, b) ⊂ V (ξ±, r); (ii) for any b < ∞, there exists some r < ∞ such that V (ξ±, r) ⊂
U(ξ±, b).
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Proof. (i) We will show that d(β[0, r], x) > d(β+, x) for every x ∈ U(ξ+, b) by

choosing a suitable b. This implies that P+(x) ⊂ β(r,∞), which yields that x ∈ V (ξ+, r).

The case for ξ− is similarly treated. We use an inequality d(o, x) ≥ (x | ξ+)o + (ξ+ | o)x.
As before (but ∆̃ might be different), the Gromov product at infinity also satisfies

(ξ+ | o)x ≥ d(β+, x)− ∆̃− c, where c = c(∆, µ, ν) is the constant for stability of quasi-

geodesics. Then, by the assumption (x | ξ+)o > b, we have

d(o, x) > d(β+, x) + b− ∆̃− c.

Hence, d(β[0, r], x) ≥ d(o, x)− r > d(β+, x) by taking b = r + ∆̃ + c.

(ii) We will show that x /∈ U(ξ+, b) implies x /∈ V (ξ+, r) by choosing a suitable r.

Take any y ∈ P+(x), which satisfies d(β+, x) = d(y, x). For this, we use the opposite

inequalities

d(o, x) ≤ (x | ξ+)o + (ξ+ | o)x + ∆̃1; (ξ+ | o)x ≤ d(β+, x) + c.

By the assumption (x | ξ+)o ≤ b, we have that d(o, x) ≤ d(y, x) + b + ∆̃1 + c. On the

other hand, (o | y)x ≥ d([o, y], x) − ∆̃2 ≥ d(y, x) − ∆̃2 − c. From these estimates, we

obtain that

d(y, x)− ∆̃2 − c ≤ 1

2
(d(o, x) + d(y, x)− d(o, y))

≤ d(y, x) +
1

2
(b+ ∆̃1 + c− d(o, y)).

Hence, d(o, y) ≤ b + ∆̃1 + 2∆̃2 + 3c. If we choose r = µ(b + ∆̃1 + 2∆̃2 + 3c) + ν, then

y /∈ β(r,∞), and thus x /∈ V (ξ+, r).

By the uniform boundedness of the diameter of P±(x), we see that there is r0 > 0

such that V (ξ+, r) ∩ V (ξ−, r) = ∅ for every r ≥ r0. Moreover, there is p = p(r) ∈ N
such that

hn(X − V (ξ−, r)) ⊂ V (ξ+, r) and h−n(X − V (ξ+, r)) ⊂ V (ξ−, r)

for every n ≥ p.

Now, we take a family GH ⊂ G of minimal representatives of H\G, which is a

system of representatives consisting of g ∈ [g] ∈ H\G with d(o, g(o)) = dH\X([o], [g(o)]).

Since H is normal in G, g ∈ GH if and only if g−1 ∈ GH . Clearly id ∈ GH .

Lemma 7.2. For a sufficiently large r ≥ r0, V+ = V (ξ+, r) and V− = V (ξ−, r)

satisfy the following properties:

(1) The Gromov product (g(o) |x)o is uniformly bounded for every x ∈ V+ ∪V− and for

every g ∈ GH ;
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(2) g(x) /∈ V+ ∪ V− for every x ∈ V+ ∪ V− and for every g ∈ GH − {id}.

Proof. We first show that the set P±(g(o)) of the nearest points from g(o) to β±

respectively is within a uniformly bounded distance from o for all g ∈ GH . Take any

y ∈ P±(g(o)), which satisfies d(y, g(o)) ≤ d(o, g(o)). We consider a geodesic segment

[o, y]. The Gromov product satisfies d([o, y], g(o)) ≤ (o | y)g(o) + ∆̃. Choosing some

orbit point hm(o) (m ∈ Z), we have that d(hm(o), g(o)) ≤ d([o, y], g(o)) + c + ℓ, where

c = c(∆, µ, ν) ≥ 0 is the constant for stability of quasi-geodesics and ℓ = d(o, h(o)).

Then, by the minimality of the elements of GH and by summing up the above estimates,

we obtain that

d(o, g(o)) ≤ d(hm(o), g(o))

≤ (o | y)g(o) + ∆̃ + c+ ℓ

=
1

2
(d(o, g(o)) + d(y, g(o))− d(o, y)) + ∆̃ + c+ ℓ

≤ d(o, g(o))− 1

2
d(o, y) + ∆̃ + c+ ℓ.

This implies that d(o, y) ≤ 2∆̃ + 2c+ 2ℓ.

The above fact asserts that g(o) /∈ V (ξ+, r) ∪ V (ξ−, r) for all sufficiently large

r > 0. In particular, we see that (g(o) | ξ±)o is uniformly bounded for every g ∈ GH by

Proposition 7.1 (i).

(1) Suppose to the contrary that we cannot choose such an r. Then, by Proposition

7.1 (ii), there are sequences {xn} ⊂ X and {gn} ⊂ GH such that either (xn | ξ+)o → ∞
or (xn | ξ−)o → ∞, and (gn(o) |xn)o → ∞ as n → ∞. Since the Gromov products

satisfy

(gn(o) | ξ±)o ≥ min{(gn(o) |xn)o, (xn | ξ±)o} − ∆̃

(see [18, Lemma 2.57]), we have (gn(o) | ξ±)o → ∞. However, this contradicts the fact

shown above.

(2) Suppose to the contrary that we cannot choose such an r. Then, Proposition

7.1 (ii), there are sequences {xn} ⊂ X and {gn} ⊂ GH such that either (xn | ξ+)o → ∞
or (xn | ξ−)o → ∞, and either (gn(xn) | ξ+)o → ∞ or (gn(xn) | ξ−)o → ∞ as n → ∞.

Moreover, we may assume that d(o, g−1
n (o)) → ∞. By statement (1), we see that both

(gn(o) | gn(xn))o and (g−1
n (o) |xn)o are uniformly bounded. However, by the equality

(gn(o) | gn(xn))o + (g−1
n (o) |xn)o = (o |xn)g−1

n (o) + (g−1
n (o) |xn)o = d(o, g−1

n (o)),

this is impossible.

The remainder of the proof is essentially the same as that for [9, Theorem 1.1]. For

the sake of completeness, we extract it from the original paper. We take a sufficiently
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large constant r > 0 as in Lemma 7.2, and then set p = p(r) ∈ N. By [9, Proposition

3.2] which can be verified by the above arguments also in our case, there is λ > 0 such

that for any l, l′ ≥ 1 and g1, . . . , gl, g
′
1, . . . , g

′
l′ in GH satisfying

g1h
p · · ·hpgl = g′1h

p · · ·hpg′l′ ,

we have that d(g1(o), g
′
1(o)) ≤ λ.

We consider a maximal λ-separated net of GH , which is a subset A ⊂ GH including

id that satisfies (i) d(a(o), a′(o)) > λ for any distinct a, a′ ∈ A; (ii) for every g ∈ GH ,

there is some a ∈ A such that d(g(o), a(o)) ≤ λ. The existence of such a subset A

is guaranteed by the Zorn lemma. A repeated application of the fact in the previous

paragraph implies that if

g1h
p · · ·hpgl = g′1h

p · · ·hpg′l′

for g1, . . . , gl, g
′
1, . . . , g

′
l′ ∈ A, then l = l′ and gi = g′i (1 ≤ i ≤ l). We call this property

the injectivity of reduced words generated by A∗ = A− {id} and {h̃} for h̃ = hp.

By considering the Poincaré series for GH and A, we can similarly define the critical

exponents δ(GH) and δ(A), though they are not groups. Then, we have δ(GH) = δ(A).

Indeed, δ(GH) ≥ δ(A) is clear by GH ⊃ A, and the inverse inequality can be seen by∑
g∈GH

e−sd(o,g(o)) ≤
∑
a∈A

∑
g∈GH

d(g(o),a(o))≤λ

e−sd(o,g(o)) ≤ Mesλ
∑
a∈A

e−sd(o,a(o)),

where M is the number of the orbit G(o) within distance λ of o. By the assumption

that H\G is of divergence type, we see that∑
g∈GH

e−sd(o,g(o)) =
∑

[g]∈H\G

e−sdH\X([o],[g(o)])

diverges at s = δ(GH) = κ(H\G). Hence,
∑

a∈A e−sd(o,a(o)) diverges at s = δ(A).

Finally, we estimate the Poincaré series P s
G(o) by using the injectivity of reduced

words generated by A∗ and {h̃}. It follows that

P s
G(o) ≥

∑
k≥1

∑
a1,...,ak∈A∗

exp(−sd(o, a1h̃a2h̃ · · · akh̃(o))

≥
∑
k≥1

∑
a1,...,ak∈A∗

exp(−s(d(o, a1h̃(o)) + · · ·+ d(o, akh̃(o))))

≥
∑
k≥1

(
exp(−sd(o, h̃(o)))

∑
a∈A∗

exp(−sd(o, a(o)))

)k

.

Since the Poincaré series for A diverges at the critical exponent s = δ(A), we can find

s0 > δ(A) such that
∑

a∈A∗ e−s0d(o,a(o)) ≥ exp(s0d(o, h̃(o))).
1 By the above estimate,

1The last line of the above formula and this condition in the published paper should be corrected
in the present form.
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this implies that P s0
G (o) diverges. Therefore, we have δ(G) ≥ s0 > δ(A) = κ(H\G).

This completes the proof of Theorem 5.2.
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ture Notes in Math., 1441, Springer-Verlag, 1990.

[8] Coulon, R., Growth of periodic quotients of hyperbolic groups, Algebr. Geom. Topol., 13

(2013), 3111–3133.
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