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Abstract

After summarizing several concepts in the quasiconformal theory of the universal
Teichmüller space, we introduce the Teichmüller space of diffeomorphisms of the
circle with Hölder continuous derivatives as a subspace of the universal Teichmüller
space. This can be done by characterizing such a diffeomorphism in terms of the
complex dilatation of its quasiconformal extension and the Schwarzian derivative
given by the Bers embedding.
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1 Introduction

In this article, we survey the complex analytic theory of the universal Teichmül-
ler space and its subspaces. In particular, we define the Teichmüller space of
diffeomorphisms of the circle with Hölder continuous derivatives and provide this
space with a complex structure modeled on a certain complex Banach space.

The universal Teichmüller space T is an ambient space of all other Teichmüller
spaces. We can regard T as a quotient space of certain self-homeomorphisms of
the unit disk D or the unit circle S. For the Teichmüller space T (R) of a hyperbolic
Riemann surface R, we usually represent R by a Fuchsian group Γ acting on D and
take a subspace of T that consists of Γ-equivariant homeomorphisms. In this way,
T (R) is embedded into T . However, what we deal with here is a subspace which
spreads in a different direction of T . We restrict the self-homeomorphisms of D or S
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in various manners and consider the space of elements satisfying such conditions.
In this article, we mainly deal with the subspace of diffeomorphisms of S with
Hölder continuous derivatives. Along the same line, subspaces of quasiconformal
automorphisms with integrable complex dilatations with respect to the hyperbolic
metric have been studied by Cui [10] and Takhtajan and Teo [23]. They are closely
related to our Teichmüller spaces, but we do not treat them here.

We give a complex structure to the subspace of the diffeomorphisms of S in the
framework of the quasiconformal theory of Teichmüller spaces. To this end, the
first task we have is to characterize circle diffeomorphisms with Hölder continuous
derivatives in terms of their quasiconformal extension to D. This originated in the
work of asymptotically conformal maps by Carleson [9]. In the present article, we
review two of his important theorems in detail, which are both described via qua-
sisymmetric quotients of boundary mappings. Later, Gardiner and Sullivan [16]
developed the concept of symmetric automorphisms of S, which are the boundary
extension of asymptotically conformal automorphisms of D, using results on qua-
siconformal extension and Schwarzian derivatives of univalent functions. This has
been generalized to the theory of asymptotic Teichmüller spaces.

The subspace of circle diffeomorphisms with Hölder continuous derivatives is
contained in the Teichmüller space T0 of symmetric automorphisms of S. A com-
plex structure on this space is given by determining its image under the Bers em-
bedding in the space of Schwarzian derivatives of the developing maps of projective
structures. To put it briefly, the corresponding elements in the Bers embedding
have the property that their decay order at the boundary is dominated by the
order of the Hölder continuity. A more precise statement is the following.

Theorem 1.1. The Teichmüller space Tα
0 of circle diffeomorphisms with Hölder

continuous derivatives of order α is homeomorphic to a domain in the Banach
space of holomorphic functions on D∗ = Ĉ−D with supremum norm of weight
ρ−2+α

D∗ for the hyperbolic density ρD∗ .

A brief outline of this article is as follows. In the first part (Sections 2, 3
and 4), we review the theory of the universal Teichmüller space T in order to
understand how to put metric, group and complex structures on it. We begin
with the definition of quasisymmetric automorphisms of S and then look at their
quasiconformal extension to D. We also explain the conformally natural extension
of a quasisymmetric automorphism, a notion due to Douady and Earle [11]. The
most important step is to realize T in the Banach space of hyperbolically bounded
holomorphic functions by the Bers embedding. We refer to the canonical local
section of the Bers projection due to Ahlfors and Weill [2]. Quasisymmetric func-
tions on the real line and their quasisymmetric quotients are discussed in order to
introduce the classical quasiconformal extension of a quasisymmetric function due
to Beurling and Ahlfors [8]. Fundamental results stated in this part can be found
in standard monographs on Teichmüller spaces [15], [19] and [22].

In the second part (Sections 5 and 6), we focus on symmetric automorphisms
of S and the small subspace T0 of T made of these elements. This will be a
foundation for providing a complex structure for the Teichmüller space of circle
diffeomorphisms with Hölder continuous derivatives. We follow the framework
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due to Gardiner and Sullivan [16]. One of the aforementioned theorems due to
Carleson on the asymptotically conformal extension of a symmetric function is
given with an explicit estimate of the complex dilatation in terms of the qua-
sisymmetric quotient. This is based on the quasiconformal extension by Beurling
and Ahlfors. The Bers embedding of T0 is contained in the Banach space of hy-
perbolically bounded holomorphic functions that vanish at the boundary and the
converse is also true. This comes from the result on univalent functions and their
quasiconformal extension due to Becker and Pommerenke [6].

Finally, in the last part (Sections 7 and 8), we introduce a complex structure on
the Teichmüller space of circle diffeomorphisms with Hölder continuous derivatives
as in Theorem 1.1 above. A crucial step is to give conditions for a diffeomorphism
of S to have an α-Hölder continuous derivative in terms of the decay order of the
complex dilatation of its quasiconformal extension to D and the decay order of
the Schwarzian derivative of the developing map of the corresponding projective
structure on D∗. The other theorem of Carleson [9] plays an important role at this
stage, giving a connection between the Hölder continuity of the derivatives and
the quasisymmetric quotients. The equivalent conditions are given as follows.

Theorem 1.2. Let α be a constant with 0 < α < 1. For a quasisymmetric
automorphism g : S → S, the following conditions are equivalent:

(1) g is a diffeomorphism of S with Hölder continuous derivative of order α;

(2) g extends continuously to a quasiconformal automorphism of D whose com-
plex dilatation µ(z) decays in the order of O((1 − |z|)α) as z ∈ D tends to
the boundary;

(3) the Schwarzian derivative ϕ(z) of the conformal homeomorphism of D∗ de-
termined by g is of order O((|z| − 1)−2+α) as z ∈ D∗ tends to the boundary.

Certain directions of this equivalence were already known. For instance, by
using a harmonic quasiconformal extension of a diffeomorphism of S, Tam and
Wan [24] proved that the Schwarzian derivative has the exact decay order given
by the exponent α of the Hölder continuity. A complete proof of this equivalence
is not given here since we need further technical arguments but will appear in a
separate paper [21]. We also obtain certain quantitative estimates concerning the
indices involved in the equivalent conditions. In particular, the Hölder constant for
the exponent α dominates the weighted norms of the complex dilatation and the
Schwarzian derivative which catch their decay of exponent α. As an application
of this estimate and with the aid of our forthcoming result on the conjugation of
a diffeomorphism group to a Möbius group, we prove a rigidity phenomenon of a
group of circle diffeomorphisms.

The last part of this article is based on the author’s talk given in the conference
of Group Actions and Applications in Geometry, Topology and Analysis, held at
Kunming University of Science and Technology on July 21-29, 2012. The first
and the second parts are based on a part of the author’s lecture in the graduate
course at Waseda University in the Fall Semester 2012. In that lecture, the author
also gave a summary on Teichmüller spaces of quasiconformal automorphisms of
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integrable complex dilatations with respect to the hyperbolic metric, but this
topic is not included in this article. The formulation of the Teichmüller space of
diffeomorphisms with Hölder continuous derivatives was added recently.

The author would like to thank the organizers Professors L. Ji, A. Papadopoulos
and S. T. Yau for inviting him to the conference. He also thanks the referee of
this paper for suggesting a number of improvements.

2 Quasisymmetric automorphisms of the circle

In this section, we define a quasisymmetric automorphism of the unit circle and
observe that this is a boundary map of a quasiconformal automorphism of the unit
disk. We also introduce the barycentric quasiconformal extension of a quasisym-
metric automorphism to the unit disk. The quasisymmetry is defined by using a
variation of the cross ratio of four points on the circle.

Definition. For distinct complex numbers z1, z2, z3, z4 ∈ Ĉ = C∪{∞}, the cross
ratio is defined by

[z1, z2, z3, z4] =
(z1 − z3)(z2 − z4)
(z1 − z4)(z2 − z3)

.

It takes its values in Ĉ−{0, 1,∞}. We call the following modification alternative
cross ratio:

[z1, z2, z3, z4]∗ =
[z2, z3, z4, z1]
[z1, z2, z3, z4]

= − (z1 − z4)(z3 − z2)
(z1 − z2)(z3 − z4)

.

It takes its values in Ĉ−{−1, 0,∞}.

For a positively ordered quadruple of distinct points z1, z2, z3, z4 on the unit
circle S = {z ∈ C | |z| = 1}, the alternative cross ratio satisfies [z1, z2, z3, z4]∗ ∈
(0,∞).

Definition. An orientation-preserving automorphism g of S is defined to be M -
quasisymmetric if there exists a constant M ≥ 1 such that any positively ordered
quadruple of distinct points z1, z2, z3, z4 ∈ S with [z1, z2, z3, z4]∗ = 1 satisfy

1
M

≤ [g(z1), g(z2), g(z3), g(z4)]∗ ≤ M.

Remark. A cyclic permutation of the ordered points z1, z2, z3, z4 affects the al-
ternative cross ratio in [g(z2), g(z3), g(z4), g(z1)]∗ = [g(z1), g(z2), g(z3), g(z4)]−1

∗ .
Hence the upper estimate [g(z1), g(z2), g(z3), g(z4)]∗ ≤ M is enough for g to be
M -quasisymmetric.

We denote the set of all quasisymmetric automorphisms of S by QS.

Definition. An orientation-preserving homeomorphism f : D → D′ between
domains D and D′ of the Riemann sphere Ĉ is called K-quasiconformal if there
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exists a constant K ≥ 1 such that any quadrilateral Q(z1, z2, z3, z4) in D with
positively ordered vertices z1, z2, z3, z4 in ∂Q satisfies

1
K

≤ mod(f(Q(z1, z2, z3, z4)))
mod(Q(z1, z2, z3, z4))

≤ K.

Here mod(Q(z1, z2, z3, z4)) stands for the conformal modulus given by the ratio of
the length of [h(z2), h(z3)] to that of [h(z1), h(z2)] under any conformal homeo-
morphism h of Q(z1, z2, z3, z4) onto a rectangle Q(h(z1), h(z2), h(z3), h(z4)).

Remark. A cyclic permutation of the ordered points z1, z2, z3, z4 affects the con-
formal modulus in mod(Q(z2, z3, z4, z1)) = mod(Q(z1, z2, z3, z4))−1. Hence the
upper estimate of the ratio of the conformal moduli by K is enough for f to be K-
quasiconformal. Also, the definition of quasiconformality should be the same even
if we consider only quadrilaterals Q(z1, z2, z3, z4) satisfying mod(Q(z1, z2, z3, z4)) =
1.

From this definition, it is easy to see that (1) a conformal homeomorphism
is 1-quasiconformal; (2) the inverse map of a K-quasiconformal homeomorphism
is also K-quasiconformal; and (3) the composition of K1-quasiconformal and K2-
quasiconformal homeomorphisms is K1K2-quasiconformal.

We denote the set of all quasiconformal automorphisms of the unit disk D by
QC(D). By the above properties, QC(D) constitutes a group. Moreover, each
quasiconformal automorphism f ∈ QC(D) extends to the boundary S as a self-
homeomorphism and to a quasiconformal automorphism of Ĉ by reflection. For
every f ∈ QC(D), let q(f) denote the orientation-preserving self-homeomorphism
of S given by the extension.

For positively ordered distinct points z1, z2, z3, z4 on S, we can think of two
moduli which are invariant under the conformal automorphisms Conf(D) of D,
equivalently the Möbius transformations Möb(D) preserving D. One is the alter-
native cross-ratio and the other is the conformal modulus of D with the prescribed
four points. The distortion function λ : (0,∞) → (0,∞) defined by

λ(mod(D(z1, z2, z3, z4))) = [z1, z2, z3, z4]∗

serves as a transition between these two values. This is a continuous and monotone
increasing function satisfying λ(1/t) = 1/λ(t) for every t ∈ (0,∞); in particular
λ(1) = 1.

Proposition 2.1. For a K-quasiconformal automorphism f ∈ QC(D), the bound-
ary extension g = q(f) is an M -quasisymmetric automorphism of S for M = λ(K).

Proof. For any positively ordered quadruple of distinct points z1, z2, z3, z4 ∈ S
with [z1, z2, z3, z4]∗ = 1, we have

[g(z1), g(z2), g(z3), g(z4)]∗ = λ(mod(D(f(z1), f(z2), f(z3), f(z4))))
≤ λ(K mod(D(z1, z2, z3, z4)))
= λ(Kλ−1([z1, z2, z3, z4]∗)) = λ(K).

This shows that g = q(f) is λ(K)-quasisymmetric.
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This proposition in particular implies that the boundary extension defines a
map q : QC(D) → QS. Later, we will see that this is a homomorphism and that
QS is a group.

Conversely, every quasisymmetric automorphism g ∈ QS extends continuously
to a quasiconformal automorphism of D. In particular, q : QC(D) → QS is sur-
jective. The conformally natural extension defined below gives a canonical way of
quasiconformal extension.

Let m be a probability measure on S ⊂ C. The (complex) average of m viewed
at 0 ∈ D is defined by

ξm(0) =
∫

S
ζdm(ζ).

For an arbitrary point w ∈ D, we take a conformal automorphism

hw(ζ) =
ζ − w

1 − w̄ζ
∈ Conf(D) = Möb(D) (hw : w 7→ 0),

and define the average of m viewed at w by reducing the situation to the case at
the origin:

ξm(w) = h′
w(w)−1ξ(hw)∗m(0) = (1 − |w|2)

∫
S
hw(ζ)dm(ζ).

Here (hw)∗m is the push-forward of the measure m by hw. If m has no point
mass, it is known that there is a unique point w ∈ D such that ξm(w) = 0, which
is called the barycenter of m.

For a probability measure m on S, the conformal measure {mz}z∈D is a family
of probability measures satisfying

dmz

dm
(ζ) = |h′

z(ζ)| =
1 − |z|2

|ζ − z|2
.

If m has no point mass, by the correspondence of the barycenter w(z) ∈ D of mz

to each z ∈ D, we have the barycentric map wm : D → D.
For a homeomorphism g : S → S, we define a probability measure mg as the

push-forward of the normalized Lebesgue measure on S; dmg = g∗(dθ/2π). Then
the conformally natural extension of g is defined by wmg : D → D. Douady and
Earle [11] proved the following result especially for a quasisymmetric automor-
phism g ∈ QS.

Theorem 2.2. For an M -quasisymmetric automorphism g ∈ QS, the conformally
natural extension wmg : D → D is a K-quasiconformal automorphism of D that is
a continuous extension of g. Here K = K(M) can be estimated by M and tends
to 1 as K → 1. Moreover, wmg is a bi-Lipschitz diffeomorphism with respect to
the hyperbolic metric on D.

Let eDE : QS → QC(D) be the map defined by g 7→ wmg , which is a section
for the boundary extension q : QC(D) → QS, that is, q ◦ eDE = idQS. We also
call this map the conformally natural extension. By the existence of sections and
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Proposition 2.1, we see that if g1 and g2 are in QS, then so is g1 ◦ g2. This
implies that QS is a group and hence q is a surjective homomorphism. However,
the conformally natural extension eDE is not a homomorphism. Nevertheless, eDE

satisfies the following property due to the way of defining the barycentric map.
Let Möb(S) denote the group of all Möbius transformations preserving S, which

is a subgroup of QS. Since every element of Möb(S) is the restriction of an element
of Möb(D), we can identify Möb(S) with Möb(D). The conformally natural exten-
sion eDE(φ) of φ ∈ Möb(S) is nothing but the corresponding element of Möb(D)
under this identification. Then eDE satisfies

eDE(φ1 ◦ g ◦ φ2) = eDE(φ1) ◦ eDE(g) ◦ eDE(φ2)

for any φ1, φ2 ∈ Möb(S) and any g ∈ QS.
Although eDE(g1 ◦ g−1

2 ) 6= eDE(g1) ◦ eDE(g2)−1 in general, the dependence of
the maximal dilatation on the quasisymmetric constant is also proved in [11].

Proposition 2.3. If g1 ◦g−1
2 is M -quasisymmetric for g1, g2 ∈ QS, then eDE(g1)◦

eDE(g2)−1 is K-quasiconformal, where the constant K = K(M) depends only on
M and tends to 1 as M → 1.

3 The universal Teichmüller space

In this section, we define the universal Teichmüller space in terms of the group
of quasisymmetric automorphisms of the circle and then introduce a topological
and a complex structure on this space by using the quasiconformal theory, the
Beltrami equation and the Schwarzian derivative. The universal Teichmüller space
is realized as a bounded domain of a certain complex Banach space under the Bers
embedding. Basic results are stated without proof. We can consult Lehto [19] for
details.

Definition. The universal Teichmüller space T is defined to be the set of cosets
Möb(S)\QS. We denote the coset of g ∈ QS by [g].

A Beltrami coefficient µ on a domain D ⊂ Ĉ is a measurable function with
supremum norm ‖µ‖∞ less than 1. We denote the set of all Beltrami coefficients
on D by

Bel(D) = {µ ∈ L∞(D) | ‖µ‖∞ < 1}.

It is known from the analytic definition of a quasiconformal map that every qua-
siconformal homeomorphism f : D → D′ has partial derivatives ∂f and ∂̄f in
the distribution sense, and the ratio µf (z) = ∂̄f(z)/∂f(z), called the complex di-
latation, is a Beltrami coefficient on D. This property completely characterizes
K-quasiconformal homeomorphisms and the maximal dilatation defined by

K(f) =
1 + ‖µf‖∞
1 − ‖µf‖∞
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satisfies K(f) ≤ K.
The following measurable Riemann mapping theorem due to Ahlfors and Bers

[1] asserts that a Beltrami coefficient essentially determines a quasiconformal
homeomorphism.

Theorem 3.1. For every µ ∈ Bel(D), there exists a unique quasiconformal home-
omorphism f : D → Ĉ whose complex dilatation µf coincides with µ up to post-
composition by a conformal homeomorphism.

Applying this theorem to quasiconformal automorphisms of the unit disk D, we
see that Bel(D) can be identified with the set of cosets Möb(D)\QC(D). Then the
boundary extension q : QC(D) → QS induces a surjective map π : Bel(D) → T
by taking the quotient of Möb(D) = Möb(S). This is called the Teichmüller
projection. The topology of the universal Teichmüller space T is the quotient
topology of the unit ball Bel(D) of the Banach space L∞(D) by the projection π so
that π is continuous. Also, the conformally natural extension eDE : QS → QC(D)
induces a section sDE : T → Bel(D) of π by taking the quotient of Möb(S) =
Möb(D). Proposition 2.3 implies that sDE is continuous.

Theorem 3.1 implies that for every ν ∈ Bel(D) there is a unique normalized
quasiconformal automorphism f ∈ QC(D) whose complex dilatation coincides with
ν. Here the normalization is given, say, by fixing three boundary points 1, i and
−1 on S. We denote this normalized quasiconformal automorphism by fν . Given
a normalization, we can define a group structure on Bel(D) and T as follows.

For any ν1, ν2 ∈ Bel(D), set ν1 ∗ ν2 to be the complex dilatation of the com-
position fν1 ◦ fν2 . Then Bel(D) has a group structure with this operation ∗. We
denote the inverse element of ν ∈ Bel(D) by ν−1, that is, the complex dilatation
of (fν)−1. The chain rule of partial differentials yields the formula

ν1 ∗ ν−1
2 (ζ) =

ν1(z) − ν2(z)
1 − ν2(z)ν1(z)

· ∂fν2(z)
∂fν2(z)

(ζ = fν2(z)).

The inverse image π−1([id]) of the base point [id] of T under π : Bel(D) → T
is represented by

π−1([id]) = {ν ∈ Bel(D) | q(fν) = id}.

This shows that π−1([id]) is a normal subgroup of Bel(D) since q : QC(D) → QS
is a homomorphism. Having T = Bel(D)/π−1([id]), we see that T has a group
structure with the operation ∗ defined by π(ν1) ∗ π(ν2) = π(ν1 ∗ ν2). Then the
Teichmüller projection π : Bel(D) → T is a surjective homomorphism.

Each ν ∈ Bel(D) induces a right translation map rν : Bel(D) → Bel(D) defined
by µ 7→ µ ∗ ν−1. The projection under π yields a well-defined map Rπ(ν) : T → T
by

π(µ) 7→ π(µ ∗ ν−1) = π(µ) ∗ π(ν−1).

In this way, for every point τ ∈ T , we have the base point change map Rτ : T → T
sending τ to the base point. By the above formula, we see that rν and (rν)−1 =
rν−1 are continuous, hence rν is a homeomorphism onto Bel(D). For an arbitrary
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open subset U ⊂ Bel(D), we have

π−1(π(U)) =
⋃

ν∈π−1([id])

rν(U).

This shows that π is an open map. Since Rπ(ν) = π◦rν◦sDE and R−1
π(ν) = π◦(rν)−1◦

sDE are continuous, the base point change map of T is also a homeomorphism onto
T .

A distance on the universal Teichmüller space T is given as follows. First we
define a distance dBel on Bel(D) by

dBel(µ1, µ2) = log
1 +

∥∥∥ µ1−µ2
1−µ2µ1

∥∥∥
∞

1 −
∥∥∥ µ1−µ2

1−µ2µ1

∥∥∥
∞

.

Clearly the topology induced by this distance is the same as the topology on Bel(D)
induced by the norm ‖ · ‖∞. On the other hand, the right translation map rν is
an isometric automorphism of Bel(D).

The Teichmüller distance on T is the quotient distance induced from dBel by
the Teichmüller projection π : Bel(D) → T . That is, for any τ1, τ2 ∈ T ,

dT (τ1, τ2) = inf {dBel(µ1, µ2) | µ1 ∈ π−1(τ1), µ2 ∈ π−1(τ2)}.

In general, this gives a pseudo-distance. If we set τ1 = [g1] and τ2 = [g2] for
g1, g2 ∈ QS, then this can be written as

dT ([g1], [g2]) = inf {log K(g̃1 ◦ g̃−1
2 ) | g̃1 ∈ q−1(g1), g̃2 ∈ q−1(g2)}

= inf {log K(g̃) | g̃ ∈ q−1(g1 ◦ g−1
2 )},

where K(·) stands for the maximal dilatation.
Due to the compactness property of normalized K-quasiconformal homeomor-

phisms, we see that the above infimum is actually attained and is a minimum. In
addition, by the Weyl lemma which says that a 1-quasiconformal homeomorphism
is conformal (holomorphic), we can prove the requirement for the pseudo-distance
dT to be a distance: dT (τ1, τ2) = 0 implies τ1 = τ2. Furthermore, T is complete
with respect to this Teichmüller distance dT . Since the right translation map is
an isometric automorphism of Bel(D), the base point change map Rτ for τ ∈ T is
an isometric automorphism of T .

Proposition 3.2. The universal Teichmüller space (T, dT ) is a contractible metric
space.

Proof. The contractibility follows from the contractibility of the unit ball Bel(D)
of L∞(D) and the continuity of the Teichmüller projection π : Bel(D) → T and its
section sDE : T → Bel(D).

The universal Teichmüller space has a complex structure modeled on a certain
complex Banach space. This is done through the Bers embedding defined as follows.
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For µ ∈ Bel(D), we extend µ(z) to Ĉ by setting µ(z) ≡ 0 for z ∈ D∗ = Ĉ−D. By
Theorem 3.1, there exists a quasiconformal automorphism fµ of Ĉ whose complex
dilatation coincides with the extended Beltrami coefficient µ. Take the Schwarzian
derivative

Sf (z) =
{

f ′′(z)
f ′(z)

}′

− 1
2

{
f ′′(z)
f ′(z)

}2

of the conformal homeomorphism f(z) = fµ|D∗(z) on D∗. Note that fµ is only
defined up to post-composition by a Möbius transformation of Ĉ, but taking the
Schwarzian derivative ignores this ambiguity because of the identity Sh◦f (z) =
Sf (z) for every h ∈ Möb(Ĉ).

We equip the Banach space of holomorphic functions on D∗ with the finite
hyperbolic supremum norm, that is:

B(D∗) = {ϕ ∈ Hol(D∗) | ‖ϕ‖∞ = sup
z∈D∗

ρ−2
D∗ (z)|ϕ(z)| < ∞},

where ρD∗(z) = 2/(|z|2 − 1) is the hyperbolic density on D∗. The Nehari-Kraus
theorem says that ‖ϕ‖∞ ≤ 3/2 for the Schwarzian derivative ϕ(z) = Sf (z) of
any conformal homeomorphism f of D∗. If f = fµ|D∗ as above, then the strict
inequality ‖ϕ‖∞ < 3/2 holds. We have a map Φ : Bel(D) → B(D∗) by the
correspondence of µ ∈ Bel(D) to Sfµ|D∗ , which is called the Bers projection. We
will see later that the image of Φ is a bounded domain of B(D∗).

Now we have two projections from Bel(D): the Teichmüller projection π :
Bel(D) → T and the Bers projection Φ : Bel(D) → B(D∗). It can be proved
that π(µ1) = π(µ2) if and only if Φ(µ1) = Φ(µ2). Therefore we have a well-defined
injection β : T → B(D∗) that satisfies β ◦π = Φ. This is called the Bers embedding
of the universal Teichmüller space T .

The Bers projection Φ : Bel(D) → B(D∗) is continuous. Indeed, an improve-
ment of the Nehari-Kraus theorem for a conformal homeomorphism that is qua-
siconformally extendable to the Riemann sphere gives an estimate ‖Φ(µ)‖∞ ≤
3‖µ‖∞/2. For arbitrary two points µ, ν ∈ Bel(D), applying the right translation
map rν to µ, we transfer the situation to the previous case to obtain

‖Φ(µ) − Φ(ν)‖∞ ≤ 3
∥∥∥∥ µ − ν

1 − νµ

∥∥∥∥
∞

.

In fact, the Bers projection Φ is holomorphic. Once we have Φ is continuous,
then the holomorphy is a consequence of the holomorphic dependence of the nor-
malized solution fµ(z) of the Beltrami equation on a Beltrami coefficient µ, which
comes from the arguments for the measurable Riemann mapping theorem due to
Ahlfors and Bers [1]. In addition, the following result was first proved by Bers [7].

Theorem 3.3. The Bers projection Φ : Bel(D) → B(D∗) is a holomorphic sub-
mersion.

The condition for Φ to be a holomorphic submersion is equivalent to the exis-
tence of a local holomorphic section σ for Φ at every ϕ ∈ Φ(Bel(D)) that maps ϕ
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to an arbitrary µ ∈ Φ−1(ϕ). This implies that Φ is an open map and in particular
the image Φ(Bel(D)) in B(D∗) is open (hence it is a bounded domain).

A holomorphic local section of Φ at the origin 0 ∈ B(D∗) can be given explicitly
in the following form by Ahlfors and Weill [2].

Theorem 3.4. Let V0(1/2) be the open ball of the Banach space B(D∗) centered
at the origin with radius 1/2. For every ϕ ∈ V0(1/2), set

σ0(ϕ)(z) = −2ρ−2
D∗ (z∗)(zz∗)2ϕ(z∗).

Then µ(z) = σ0(ϕ)(z) belongs to Bel(D) and satisfies Φ(µ) = ϕ. Here z∗ = 1/z̄ ∈
D∗ is the reflection of z ∈ D with respect to S. Hence σ0 : V0(1/2) → B(D∗) is a
holomorphic local section of Φ at 0.

Since both π and Φ are continuous and have continuous sections, the Bers
embedding β = Φ ◦π−1 : T → B(D∗) is a homeomorphism onto the image β(T ) =
Φ(Bel(D)). By identifying T with a bounded domain β(T ) ⊂ B(D∗), we provide T
with the complex structure. Then the base point change map Rτ for every τ ∈ T
is a biholomorphic automorphism of T . Indeed, for an arbitrary point ϕ ∈ β(T ),
take a local holomorphic section σ of Φ. Also, take ν ∈ Bel(D) such that π(ν) = τ .
Represent Rτ at β−1(ϕ) by

Rτ = β−1 ◦ Φ ◦ rν ◦ σ ◦ β.

Since Φ◦rν ◦σ is holomorphic, this shows that Rτ is holomorphic. By R−1
τ = Rτ−1 ,

R−1
τ is also holomorphic, namely, Rτ is biholomorphic.

4 Quasisymmetric functions on the real line

Quasisymmetry can be also defined by using quasisymmetric quotients. We in-
troduce a quasisymmetric function on the real line having a uniformly bounded
quasisymmetric quotient and show that the lift of our quasisymmetric automor-
phism of the circle to the real line is precisely a quasisymmetric function. We
also give a relationship between certain quantities characterizing quasisymmetry.
The advantage of considering quasisymmetric functions on the real line is to apply
the canonical quasiconformal extension due to Beurling and Ahlfors to the upper
half-plane, which is convenient for the computation of the complex dilatation.

Definition. An increasing (continuous) bijection h : R → R is called an M̃ -
quasisymmetric function if there exists a constant M̃ ≥ 1 such that

1

M̃
≤ h(x + t) − h(x)

h(x) − h(x − t)
≤ M̃

holds for every x ∈ R and for every t > 0. The ratio in the middle term is called
the quasisymmetric quotient of h and is denoted by mh(x, t).
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By setting h(∞) = ∞, we may regard a quasisymmetric function h as an
orientation-preserving self-homeomorphism of the circle R̂ = R∪{∞}. If h is an
M -quasisymmetric automorphism of R̂ in the previous sense, then h is an M -
quasisymmetric function on R since

[x − t, x, x + t,∞]∗ = 1; [h(x − t), h(x), h(x + t), h(∞)]∗ = mh(x, t).

Conversely, we will see later that every quasisymmetric function h : R → R is a
quasisymmetric automorphism of R̂ with h(∞) = ∞.

Let f : H → H be a K-quasiconformal automorphism of the upper half-plane H.
By Proposition 2.1 (applied after conjugation by a Möbius transformation D → H),
it extends to a λ(K)-quasisymmetric automorphism f̄ of R̂. If f̄(∞) = ∞, then
h = f̄ |R is a λ(K)-quasisymmetric function on R by the same reason as above.
Conversely, every quasisymmetric function h : R → R extends continuously to a
quasiconformal automorphism of H. This can be done as follows..

For a quasisymmetric function h : R → R, set

α(x, y) =
∫ 1

0

h(x + ty)dt; β(x, y) =
∫ 1

0

h(x − ty)dt

and define

F
(r)
h (z) =

1
2
{α(x, y) + β(x, y)} +

ir

2
{α(x, y) − β(x, y)}

for z = x + iy ∈ H, which is called the Beurling-Ahlfors extension of h with
parameter r > 0. The following result was originally given in [8] and the estimate
for the maximal dilatation K has been improved in Lehtinen [18] among others
(In fact, K ≤ min{M̃3/2, 2M̃ − 1} is obtained).

Theorem 4.1. For an M̃ -quasisymmetric function h of R, its Beurling-Ahlfors
extension F

(r)
h is a K-quasiconformal automorphism of H whose boundary exten-

sion is h. Here K depends only on M̃ and r, and it can be estimated as K ≤ M̃2

for some suitable choice of r.

This in particular shows that an M̃ -quasisymmetric function h : R → R is a
λ(M̃2)- quasisymmetric automorphism of R̂ with h(∞) = ∞. Also, conjugation
by a Möbius transformation D → H yields the following consequence, which may
have an advantage for an estimate of the maximal dilatation over the conformally
natural extension.

Corollary 4.2. Every M -quasisymmetric automorphism g ∈ QS extends contin-
uously to an M2-quasiconformal automorphism of D.

Proof. Conjugation of g by some Möbius transformation D → H yields an M -
quasisymmetric automorphism h of R̂ with h(∞) = ∞. This is in particular an
M -quasisymmetric function on R. Then there is an M2-quasiconformal extension
of h by Theorem 4.1, which turns out to be an M2-quasiconformal automorphism
of D by conjugation.
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Let g : S → S be an orientation-preserving self-homeomorphism. Take a lift g̃
of g to the universal cover u : R → S given by u(x) = e2πix, that is, g̃ : R → R
is the uniquely determined continuous function with u ◦ g̃ = g ◦ u up to additive
constants. Clearly g̃ satisfies g̃(x + 1) = g̃(x) + 1.

Lemma 4.3. For a quasisymmetric automorphism g ∈ QS, its lift g̃ : R → R
is a quasisymmetric function on R. Moreover, if g is M -quasisymmetric, then
there is a Möbius transformation φ ∈ Möb(S) such that the lift φ̃ ◦ g of φ ◦ g is a
λ(M2)-quasisymmetric automorphism of R̂ with φ̃ ◦ g(∞) = ∞ and hence φ̃ ◦ g is
a λ(M2)-quasisymmetric function on R.

Proof. By Corollary 4.2, an M -quasisymmetric automorphism g ∈ QS extends
continuously to an M2-quasiconformal automorphism f of D. We modify f in the
following two ways to make it fix the origin 0 ∈ D. (1) Take a quasiconformal
extension j ∈ QC(D) of the identity id |S such that j(f(0)) = 0; (2) Take a Möbius
transformation φ ∈ Möb(D) such that φ(f(0)) = 0. In both cases, we consider the
lifts f̃1 and f̃2 of the quasiconformal automorphisms j ◦ f and φ ◦ f respectively
under the universal cover u : H → D−{0} defined by u(z) = e2πiz. Note that since
φ ◦ f is M2-quasiconformal, f̃2 is an M2-quasiconformal automorphism of H. By
Proposition 2.1, the boundary extensions g̃1 and g̃2 of f̃1 and f̃2 are quasisymmetric
automorphisms of R̂ and g̃2 is λ(M2)-quasisymmetric. Here g̃1|R is the lift of g
and g̃2|R is the lift of φ ◦ g under the universal cover u : R → S.

The converse statement of this lemma is also true and actually the quasisym-
metry of the lift of g : S → S can characterize that of g itself.

Theorem 4.4. An orientation-preserving self-homeomorphism g : S → S is quasi-
symmetric if and only if its lift g̃ : R → R is quasisymmetric. Moreover, if g̃ is
M̃ -quasisymmetric, then φ ◦ g is λ(M̃2)-quasisymmetric for every φ ∈ Möb(S).

Proof. For an M̃ -quasisymmetric function g̃ on R satisfying g̃(x + 1) = g̃(x) + 1,
its Beurling-Ahlfors extension gives an M̃2-quasiconformal automorphism f̃ of H
by Theorem 4.1. Moreover, it satisfies f̃(z + 1) = f̃(z) + 1 due to the form of
the Beurling-Ahlfors extension. Then f̃ projects down by u : H → D−{0} to an
M̃2-quasiconformal automorphism f of D−{0}. Since f extends continuously to
0 by f(0) = 0, f is actually an M̃2-quasiconformal automorphism of D. Moreover,
φ ◦ f is also M̃2-quasiconformal for every Möbius transformation φ ∈ Möb(D).
The boundary extension q(φ ◦ f) is λ(M̃2)-quasisymmetric, which coincides with
φ ◦ g.

As an application of this theorem, we characterize the quasisymmetry of g :
S → S by using just three points on S. Any positively ordered triple of distinct
points z1, z2, z3 ∈ S with an equal interval can be represented by z1 = e2πi(x−t),
z2 = e2πix and z3 = e2πi(x+t) for some x ∈ R and 0 < t < 1/2. Set

`g(e2πix, t) =
`(g(e2πix)g(e2πi(x+t)))

`(g(e2πi(x−t))g(e2πix))
,
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where `(z1z2) is the length of the arc in S with initial point z1 and terminal point
z2. We consider such g : S → S that `g(e2πix, t) is uniformly bounded above and
below. To be more precise, define

L(g) = sup{`g(e2πix, t), `g(e2πix, t)−1 | x ∈ R, 0 < t < 1/2}.

Correspondingly, for the quasisymmetric quotient m
eg(x, t) of the lift g̃ : R → R of

g, set
M̃(g̃) = sup{m

eg(x, t), m
eg(x, t)−1 | x ∈ R, t > 0}.

Proposition 4.5. A quasisymmetric automorphism g of S and its lift g̃, which is
a quasisymmetric function on R, satisfy L(g) = M̃(g̃).

Proof. Since m
eg(x, t) = `g(e2πix, t) for any x ∈ R and 0 < t < 1/2, we have

M̃(g̃) ≥ L(g). For the converse inequality, we will prove that m
eg(x, t)±1 ≤ L(g)

by induction.
Clearly m

eg(x, t)±1 = `g(e2πix, t)±1 ≤ L(g) for 0 < t < 1/2. By taking the limit
as t ↗ 1/2, we also have m

eg(x, 1/2)±1 ≤ L(g). Hence m
eg(x, t)±1 ≤ L(g) is true

for 0 < t ≤ 1/2. Assume that m
eg(x, t)±1 ≤ L(g) is true for 0 < t ≤ 2n−1 with

n ∈ N∪{0}. Note that g̃ satisfies g̃(x + 1) = g̃(x) + 1. Then, by using

g̃(x + t) − g̃(x) = {g̃(x + t) − g̃(x + 2n−1)} + {g̃(x + 2n−1) − g̃(x)}
= {g̃(x + t − 2n) − g̃(x − 2n−1)} + {g̃(x + 2n−1) − g̃(x)};

g̃(x) − g̃(x − t) = {g̃(x) − g̃(x − 2n−1)} + {g̃(x − 2n−1) − g̃(x − t)},

we have

m
eg(x, t) =

{g̃(x + 2n−1) − g̃(x)} + {g̃((x − 2n−1) + (t − 2n−1)) − g̃(x − 2n−1)}
{g̃(x) − g̃(x − 2n−1)} + {g̃(x − 2n−1) − g̃((x − 2n−1) − (t − 2n−1))}

≤ L(g)

for any t with 2n−1 < t ≤ 2n. The lower estimate of m
eg(x, t) is similar and hence

M̃(g̃) ≤ L(g) is obtained.

Remark. Suppose that `g(e2πix, t)±1 for 0 < t < 1/2 is dominated by some
increasing function 1 + ε(t). Then m

eg(x, t)±1 ≤ 1 + ε(t) holds for t > 0. Indeed,
this is obvious for 0 < t < 1/2. Since L(g) = M̃(g̃) by Proposition 4.5, we have

m
eg(x, t)±1 ≤ M̃(g̃) = L(g) ≤ 1 + ε(1/2) (t > 0).

Therefore m
eg(x, t)±1 ≤ 1 + ε(t) holds also for t ≥ 1/2.

By Theorem 4.4 and Proposition 4.5, we see that an orientation-preserving self-
homeomorphism g of S is quasisymmetric if and only if L(g) ≥ 1 is bounded. If
we define the infimum of the constant M ≥ 1 to be M(g) for which any positively
ordered quadruple of distinct points z1, z2, z3, z4 ∈ S with [z1, z2, z3, z4]∗ = 1
satisfies

1
M

≤ [g(z1), g(z2), g(z3), g(z4)]∗ ≤ M,

then a quantitative version of the above characterization can be formulated as
follows.



Teichmüller spaces of circle diffeomorphisms 15

Proposition 4.6. An orientation-preserving self-homeomorphism g : S → S sat-
isfies √

λ−1(M(g)) ≤ inf {L(φ ◦ g) | φ ∈ Möb(S)} ≤ λ(M(g)2).

Proof. By Proposition 4.5, L(g) can be replaced by M̃(g̃). Theorem 4.4 implies
that M(g) ≤ λ(M̃(g̃)2). This gives the first inequality even if we take the infimum
over all post-composition of Möb(S). The second inequality follows from the latter
statement of Lemma 4.3.

5 Symmetric automorphisms and functions

If the quasisymmetric quotient mh(x, t) of a quasisymmetric function h uniformly
tends to 1 as t → 0, we call h symmetric. As the corresponding concept for
quasiconformal maps, there are asymptotically conformal maps whose complex
dilatations vanish at the boundary. In this section, we review the relation of
these two maps, symmetric and asymptotically conformal. Especially, a certain
quantitative estimate of the complex dilatation of the quasiconformal extension in
terms of the quasisymmetric quotient is given, which is originally due to Carleson
[9].

Definition. A quasisymmetric automorphism g ∈ QS is called symmetric if there
exists a non-negative increasing function ε(t) for t > 0 with limt→0 ε(t) = 0 such
that `g(e2πix, t)±1 ≤ 1+ε(t) for all x ∈ R. Equivalently, m

eg(x, t)±1 ≤ 1+ε(t) holds
for the lift g̃ : R → R of g. We denote the set of all symmetric automorphisms of
S by Sym.

We will see later that Sym is a subgroup of QS.
A quasisymmetric function h : R → R is also called symmetric if there exists

a non-negative increasing function ε(t) for t > 0 with limt→0 ε(t) = 0 such that
mh(x, t)±1 ≤ 1 + ε(t) for all x ∈ R. We call such a function ε(t) the gauge for
h. Concerning the Beurling-Ahlfors extension of symmetric functions, there is a
fundamental result by Carleson [9, Lemma 3]. We improve the result slightly by
computing explicitly the constants involved.

Theorem 5.1. Let h : R → R be a symmetric function such that mh(x, t)±1 ≤
1 + ε(t) for the gauge function ε(t). Let f(z) = F

(2)
h (z) be the Beurling-Ahlfors

extension with parameter r = 2, which is a quasiconformal automorphism of H.
Then the complex dilatation µf of f satisfies |µf (z)| ≤ 4ε(y) for every z = x+iy ∈
H.

Proof. Let H(t) be a primitive function of h(t). Then

α(x, y) =
∫ 1

0

h(x + ty)dt =
1
y

∫ y

0

h(x + s)ds =
1
y
(H(x + y) − H(x));

β(x, y) =
∫ 1

0

h(x − ty)dt =
1
y

∫ y

0

h(x − s)ds =
1
y
(H(x) − H(x − y)).
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Their partial derivatives with respect to x are

αx(x, y) =
1
y
(h(x + y) − h(x));

βx(x, y) =
1
y
(h(x) − h(x − y)) = αx(x, y)mh(x, y)−1.

Hence they satisfy

(1 − ε(y))αx(x, y) ≤ βx(x, y) ≤ (1 + ε(y))αx(x, y).

On the other hand, concerning the partial derivative with respect to y, we have

αy(x, y) =
1
y
h(x + y) − 1

y2

∫ y

0

h(x + s)ds

=
1
y
(h(x + y) − h(x)) − 1

y

∫ 1

0

(h(x + ty) − h(x))dt

= αx(x, y)
{

1 −
∫ 1

0

ψ(t)dt

}
,

where we set
ψ(t) =

1
αx(x, y)y

(h(x + ty) − h(x)).

This is a continuous increasing function with ψ(0) = 0 and ψ(1) = 1. Moreover,
the dyadic decomposition of [0, 1] and the quasisymmetry of h yield(

1
2
− ε(y)

2(2 + ε(y))

)k

≤ ψ((n + 1)2−k) − ψ(n2−k) ≤
(

1
2

+
ε(y)

2(2 + ε(y))

)k

for any k ∈ N and for any n = 0, 1, . . . , 2k − 1.
We will show that the above function ψ satisfies

−ε(y)
(

1 +
ε(y)
2

)−1

≤ ψ(t) − t ≤ ε(y)
(

1 +
ε(y)
2

)
.

For each t ∈ [0, 1], its dyadic expansion t =
∑∞

k=1 τk2−k (τk = 0, 1) and the above
inequalities for ψ give

∞∑
k=1

τk

(
1
2
− ε(y)

2(2 + ε(y))

)k

≤ ψ(t) ≤
∞∑

k=1

τk

(
1
2

+
ε(y)

2(2 + ε(y))

)k

.

Then the upper estimate is obtained as follows:

ψ(t) − t ≤
∞∑

k=1

τk

{(
1
2

+
ε(y)

2(2 + ε(y))

)k

−
(

1
2

)k
}

≤
∞∑

k=1

ε(y)
2(2 + ε(y))

∑
i+j=k−1

(
1
2

+
ε(y)

2(2 + ε(y))

)i (
1
2

)j

≤ ε(y)
2(2 + ε(y))

∞∑
k=1

k

(
1 + ε(y)
2 + ε(y)

)k−1

= ε(y)
(

1 +
ε(y)
2

)
.



Teichmüller spaces of circle diffeomorphisms 17

Similarly, the lower estimate is obtained as follows:

ψ(t) − t ≥
∞∑

k=1

τk

{(
1
2
− ε(y)

2(2 + ε(y))

)k

−
(

1
2

)k
}

≥
∞∑

k=1

−ε(y)
2(2 + ε(y))

∑
i+j=k−1

(
1
2
− ε(y)

2(2 + ε(y))

)i (
1
2

)j

≥ −ε(y)
2(2 + ε(y))

∞∑
k=1

k

(
1
2

)k−1

= −ε(y)
(

1 +
ε(y)
2

)−1

.

The integration of the above inequalities for ψ(t) − t over t ∈ [0, 1] yields

1
2
− ε(y)

(
1 +

ε(y)
2

)−1

≤
∫ 1

0

ψ(t)dt ≤ 1
2

+ ε(y)
(

1 +
ε(y)
2

)
.

Therefore

1
2
αx(x, y)

(
1 − 2ε(y)

(
1 +

ε(y)
2

))
≤ αy(x, y)

≤ 1
2
αx(x, y)

(
1 + 2ε(y)

(
1 +

ε(y)
2

)−1
)

.

The estimate for −βy(x, y) can be carried out in similar arguments. We repre-
sent

−βy(x, y) = βx(x, y)
{

1 −
∫ 1

0

ψ(t)dt

}
; ψ(t) =

1
βx(x, y)y

(h(x) − h(x − ty)).

Then we can conclude that

1
2
βx(x, y)

(
1 − 2ε(y)

(
1 +

ε(y)
2

))
≤ −βy(x, y)

≤ 1
2
βx(x, y)

(
1 + 2ε(y)

(
1 +

ε(y)
2

)−1
)

.

Finally, we will estimate the complex dilatation µf (z) of

f(z) =
1
2
{α(x, y) + β(x, y)} + i{α(x, y) − β(x, y)}.

By simple calculation,

|µf (z)| =
∣∣∣∣{1

2 (αx + βx) − (αy − βy)} + i{(αx − βx) + 1
2 (αy + βy)}

{1
2 (αx + βx) + (αy − βy)} + i{(αx − βx) − 1

2 (αy + βy)}

∣∣∣∣
≤

√
2

max {| 12 (αx + βx) − (αy − βy)|, |(αx − βx) + 1
2 (αy + βy)|}

max {| 12 (αx + βx) + (αy − βy)|, |(αx − βx) − 1
2 (αy + βy)|}

.
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Here we can replace αy = αy(x, y), βx = βx(x, y) and βy = βy(x, y) with
αx = αx(x, y) by the following estimates when ε(y) ≤ 1/4. Using βx(x, y) =
αx(x, y)mh(x, y)−1, we obtain

4
5
αx(x, y) ≤ βx(x, y) ≤ 5

4
αx(x, y).

Also, the above two inequalities turn out to be

1
2
αx(x, y)

(
1 − 9

4
ε(y)

)
≤ αy(x, y) ≤ 1

2
αx(x, y) (1 + 2ε(y)) ;

1
2
βx(x, y)

(
1 − 9

4
ε(y)

)
≤ −βy(x, y) ≤ 1

2
βx(x, y) (1 + 2ε(y)) .

Thus, for ε(y) ≤ 1/4, we have

|µf (z)| ≤
√

2
(

81αx(x, y)ε(y)
32

) /(
207αx(x, y)

160

)
≤ 4ε(y).

Since |µf (z)| < 1, we see that this is true even if ε(y) > 1/4.

In particular, this theorem shows that a symmetric function h : R → R extends
continuously to a quasiconformal automorphism f : H → H with f(∞) = ∞ whose
complex dilatation µf (z) tends to 0 as y → 0 independently of x ∈ R. More
precisely, this means that

ess. supx∈R,y≤t |µf (z)| → 0 (t → 0).

Conversely, such a quasiconformal automorphism f of H extends to a symmetric
function on R.

Theorem 5.2. If a quasiconformal automorphism f : H → H with f(∞) = ∞
satisfies µf (z) → 0 as y → 0 independently of x ∈ R, then its boundary extension
f̄ : R → R is a symmetric function.

Proof. Suppose that |µf (z)| ≤ ε(y) for a non-negative increasing function ε(t) with
limt→0 ε(t) = 0. For each t with 0 < t < 1/2, define a Beltrami coefficient µt(z)
by letting µt(z) = µf (z) on {z ∈ H | y >

√
t} and µt(z) ≡ 0 elsewhere. Let ft be

the quasiconformal automorphism of H with complex dilatation µt and with 0, 1
and ∞ fixed, and gt the quasiconformal automorphism of H such that f = gt ◦ ft.
Since gt = f ◦ f−1

t , the complex dilatation of gt satisfies

|µgt(z)| =
|µf (z) − µt(z)|
|1 − µt(z)µf (z)|

≤ ε(
√

t)
1 − ‖µf‖2

∞
.

In particular, the maximal dilatation of gt is estimated as Kgt ≤ 1+ε1(t) for some
non-negative increasing function ε1(t) with limt→0 ε1(t) = 0.

By reflection with respect to R, we may assume that ft is a quasiconformal
automorphism of C. The restriction of ft to the strip domain {z ∈ C | |y| <

√
t}
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is conformal. For each x ∈ R, consider the ball of radius
√

t with center x and
apply the Koebe distortion theorem to the conformal map ft on this disk. Then,
for every ξ in the interval [x − t, x + t] ⊂ R, we have

1 −
√

t

(1 +
√

t)3
≤ |f ′

t(ξ)|
|f ′

t(x)|
≤ 1 +

√
t

(1 −
√

t)3
.

This leads us to the following estimate for the quasisymmetric quotient mft
(x, t)

of ft restricted to R:

1 −
√

t

(1 +
√

t)3
(1 −

√
t)3

1 +
√

t
≤ mft(x, t) =

ft(x + t) − ft(x)
ft(x) − ft(x − t)

≤ 1 +
√

t

(1 −
√

t)3
(1 +

√
t)3

1 −
√

t
.

In particular, we have a non-negative increasing function ε2(t) with limt→0 ε2(t) =
0 such that mft(x, t)±1 ≤ 1 + ε2(t).

Next, we apply the quasiconformal automorphism gt to the points ft(x − t),
ft(x) and ft(x + t), which are mapped to f(x− t), f(x) and f(x + t) respectively.
Note that the quasisymmetric quotients can be given by the conformal moduli
through the alternative cross ratios:

mft(x, t) = [ft(x − t), ft(x), ft(x + t),∞]∗
= λ(mod H(ft(x − t), ft(x), ft(x + t),∞));

mf (x, t) = [f(x − t), f(x), f(x + t),∞]∗
= λ(mod H(f(x − t), f(x), f(x + t),∞)).

On the other hand, the ratio of the conformal moduli are bounded by the maximal
dilatation Kgt ≤ 1 + ε1(t):

1
Kgt

≤ mod H(f(x − t), f(x), f(x + t),∞)
mod H(ft(x − t), ft(x), ft(x + t),∞)

≤ Kgt .

Plugging the quasisymmetric quotients in this inequality gives

mf (x, t) = λ(mod H(f(x − t), f(x), f(x + t),∞))
≤ λ(Kgt mod H(ft(x − t), ft(x), ft(x + t),∞))
= λ(Kgtλ

−1(mft(x, t)))
≤ λ{(1 + ε1(t))λ−1(1 + ε2(t))}.

The last term can be represented as 1+ ε̃(t) for a non-negative increasing function
ε̃(t) with limt→0 ε̃(t) = 0. The lower bound is obtained similarly, which concludes
that the boundary extension f̄ of f is a symmetric function with gauge function
ε̃(t).

Remark. Carleson [9, Lemma 2] proved that the gauge function ε̃(t) can be taken
as ε̃(t) = O(ε(

√
t)) (t → 0). In the above proof, we see that ε1(t) = O(ε(

√
t)) and

ε2(t) = O(
√

t). Hence, using the behavior of the distortion function λ(K) near
K = 1, we would have a similar estimate for ε̃(t).
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As in the arguments of the previous section, the universal cover u : R → S
together with the universal cover u : H → D−{0} can transform the symmetric
functions on R to the symmetric automorphisms of S. We consider the converse.
Note that for a given point z in D, there is a quasiconformal automorphism j with
j(z) = 0 and q(j) = id |S whose complex dilatation vanishes outside some com-
pact subset in D. Post-composition of j makes the quasiconformal extension of a
symmetric automorphism of S a quasiconformal automorphism of D−{0} and lifts
it to a quasiconformal automorphism of the universal cover H without changing
the property of vanishing on R. Thus we have the following result attributed to
Fehlmann [14]. See Gardiner and Sullivan [16].

Corollary 5.3. A quasisymmetric automorphism g ∈ QS is symmetric if and only
if g extends continuously to a quasiconformal automorphism f of D whose complex
dilatation µf vanishes at the boundary, that is,

lim
t→1

ess. supt<|z| |µf (z)| = 0.

We say that a quasiconformal automorphism f ∈ QC(D) is asymptotically
conformal if the complex dilatation µf (z) vanishes at the boundary. We denote
the subset of QC(D) consisting of all asymptotically conformal automorphisms by
AC(D).

Remark. It was proved by Earle, Markovic and Saric [13] that the conformally
natural extension eDE(g) of a symmetric automorphism g ∈ Sym is asymptotically
conformal.

By the chain rule of complex dilatations, the composition of asymptotically
conformal automorphisms of D is also asymptotically conformal. Hence AC(D) is
a subgroup of QC(D). Accordingly, Corollary 5.3 shows that Sym is a subgroup
of QS.

6 The small subspace

Before moving to the Teichmüller space of diffeomorphisms of S, we review here
the Teichmüller space of symmetric automorphisms, which is already well-known
in the theory of asymptotic Teichmüller spaces. This will be a prototype for our
construction of the Teichmüller space of circle diffeomorphisms.

Definition. The small subspace T0 of T = Möb(S)\QS (or the Teichmüller space
of symmetric automorphisms) is defined to be T0 = Möb(S)\Sym.

We define the subset Bel0(D) of Bel(D) consisting of all Beltrami coefficients
vanishing at the boundary. Since Möb(D)\AC(D) can be identified with Bel0(D),
Corollary 5.3 implies that the image of Bel0(D) under the Teichmüller projection
π : Bel(D) → T is T0. This implies that its Bers embedding is β(T0) = Φ(Bel0(D))
for the Bers projection Φ : Bel(D) → B(D∗). Under the group structure ∗ of
Bel(D), Bel0(D) is a subgroup. Correspondingly, T0 is a subgroup of (T, ∗).
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As mentioned in the remark at the end of the previous section, it was shown
in [13] that the conformally natural section sDE : T → Bel(D) induced by eDE

sends T0 into Bel0(D). Note that Bel0(D) is the unit ball of the Banach subspace
L∞

0 (D) ⊂ L∞(D) consisting of bounded measurable functions vanishing at the
boundary. In particular, Bel0(D) is contractible. Therefore, T0 is also contractible
as a topological subspace of T (cf. Proposition 3.2).

To consider the complex structure of T0, we introduce the Banach subspace
B0(D∗) of B(D∗) as follows:

B0(D∗) = {ϕ ∈ B(D∗) | lim
|z|→1

ρ−2
D∗ (z)|ϕ(z)| = 0}.

An element in B0(D∗) is also said to be vanishing at the boundary. The following
theorem was given by Becker and Pommerenke [6]. The proof below contains an
argument in Gardiner and Sullivan [16].

Theorem 6.1. For the Bers projection Φ : Bel(D) → B(D∗),

Φ(Bel0(D)) = β(T ) ∩ B0(D∗)

is satisfied.

Proof. For the inclusion Φ(Bel0(D)) ⊂ β(T )∩B0(D∗), we consider a dense subspace
Belc(D) of Bel0(D) consisting of Beltrami coefficients whose essential support is in
some compact subset of D. We will show that Φ(Belc(D)) ⊂ B0(D∗). Then, by
the continuity of Φ, we have Φ(Bel0(D)) ⊂ B0(D∗).

For every µ ∈ Belc(D), take the quasiconformal automorphism fµ of Ĉ as
before. Then, there is some t > 0 such that fµ is conformal on

D∗
1−t = {|z| > 1 − t} ∪ {∞}.

By the Nehari-Kraus theorem, the Schwarzian derivative of fµ on D∗
1−t satisfies

ρ−2
D∗

1−t
(z)|Sfµ

(z)| ≤ 3
2
.

Here the hyperbolic density of D∗
1−t is given by

ρD∗
1−t

(z) =
2(1 − t)

|z|2 − (1 − t)2
= ρD∗(z) · (|z|2 − 1)(1 − t)

|z|2 − (1 − t)2
.

Then we see that Φ(µ) ∈ B0(D∗) from

ρ−2
D∗ (z)|Sfµ(z)| ≤ 3

2
·
{

(|z|2 − 1)(1 − t)
|z|2 − (1 − t)2

}2

→ 0 (|z| → 1).

The other inclusion Φ(Bel0(D)) ⊃ β(T ) ∩ B0(D∗) is a consequence of the next
lemma, which we can also obtain from Becker [4, Theorem 5.4] and [5, Theorem
3]. Namely, for each ϕ ∈ β(T ) ∩ B0(D∗), the quasiconformal automorphism of Ĉ
defined in this lemma is conformal on D∗ with Schwarzian derivative ϕ and with
complex dilatation in Bel0(D).
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Lemma 6.2. For an arbitrary element ϕ ∈ β(T )∩B0(D∗), take a quasiconformal
automorphism f of Ĉ such that f is conformal on D∗ and Sf (z) = ϕ(z) for z ∈ D∗.
Set

F (z) = f(z∗) − (z∗ − z)f ′(z∗)
1 + (z∗ − z)f ′′(z∗)/(2f ′(z∗))

for z ∈ D, where z∗ = 1/z̄ is the reflection of z with respect to S. Then there is
some t > 0 such that f |D∗ extends to a quasiconformal automorphism of Ĉ that
coincides with F on the annulus {1−t < |z| < 1} and which has complex dilatation

µF (z) =
∂̄F (z)
∂F (z)

= −2ρ−2
D∗ (z∗)(zz∗)2Sf (z∗) = σ0(ϕ)(z).

In particular, the complex dilatation of the quasiconformal extension of f |D∗ be-
longs to Bel0(D).

By this theorem, we have β(T0) = β(T ) ∩ B0(D∗). Hence T0 is identified with
a bounded contractible domain of the complex Banach space B0(D∗).

Next, we consider how T0 is mapped by the base point change map Rτ : T →
T for τ ∈ T . Since Rτ is a biholomorphic automorphism of T , T0 is mapped
biholomorphically onto the image Rτ (T0). Recall that T0 is a subgroup of (T, ∗)
and Rτ is defined by Rτ (σ) = σ ∗ τ−1 for every σ ∈ T . By a property of subgroup,
we have the following.

Proposition 6.3. For each τ ∈ T0, Rτ is a biholomorphic automorphism of T0.
Conversely, Rτ (T0) = T0 for τ ∈ T implies τ ∈ T0. Moreover, T is represented as
a disjoint union of mutually biholomorphically equivalent subspaces:

T =
⊔

τ∈T/T0

Rτ (T0).

Remark. Although T is not a topological group since the left translation and
the inverse operation are not continuous, the subgroup T0 is a topological group.
Actually, T0 is a maximal subgroup having this property in a suitable sense. See
[16].

The image of the decomposition T =
⊔

τ∈T/T0
Rτ (T0) under the Bers embed-

ding β : T → B(D∗) gives a foliation of β(T ) by the family of Banach affine
subspaces {ψ + B0(D∗)}ψ. This is seen from the following theorem, which is a
generalization of Theorem 6.1. The fact that β(T )∩ {ψ + B0(D∗)} is contained in
Φ◦ rν(Bel0(D)) can be obtained as a consequence of a property of the conformally
natural section sDE : T → Bel(D), which was given by Earle, Markovic and Saric
[13].

Theorem 6.4. For each ν ∈ Bel(D), set ψ = Φ(ν−1) ∈ B(D∗). Then

Φ ◦ rν(Bel0(D)) = β(T ) ∩ {ψ + B0(D∗)}.

Hence β ◦ Rτ (T0) = β(T ) ∩ {β(τ−1) + B0(D∗)} for every τ ∈ T .
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Proof. We only show that Φ ◦ rν(Bel0(D)) is contained in ψ + B0(D∗). It suffices
to show that Φ(µ∗ν−1) ∈ ψ+B0(D∗) for every µ ∈ Belc(D) with compact support
because Belc(D) is dense in Bel0(D) and Φ◦rν is continuous. Hereafter we exchange
ν and ν−1 for the simplicity of notation. Take the quasiconformal automorphisms
fν and fµ∗ν of Ĉ with normalization fixing 0, 1 and ∞ whose complex dilatations
are 0 on D∗, ν and µ∗ ν on D respectively. Set Ω = fν(D) and Ω∗ = fν(D∗). Then
the quasiconformal automorphism f̂ = fµ∗ν ◦ f−1

ν is conformal off some compact
subset W in Ω. Indeed, the complex dilatations µ ∗ ν and ν coincides off the
compact support of µ. Then f̂ restricted to W ∗ = Ĉ−W , which can be assumed
to be a simply connected domain containing Ω∗, is conformal.

By the Nehari-Kraus theorem, the Schwarzian derivative of f̂ satisfies

ρ−2
W∗(ζ)|S

bf (ζ)| ≤ 3,

where ρ denotes the hyperbolic density on the domain in question. On the other
hand, since ∂Ω∗ ⊂ W ∗ we see that limζ→∂Ω∗ ρW∗(ζ)/ρΩ∗(ζ) = 0. Hence

ρ−2
Ω∗ (ζ)|S

bf (ζ)| =
ρ−2
Ω∗ (ζ)

ρ−2
W∗(ζ)

ρ−2
W∗(ζ)|S

bf (ζ)| ≤ 3
(

ρW∗(ζ)
ρΩ∗(ζ)

)2

→ 0 (ζ → ∂Ω∗).

The Cayley identity for the Schwarzian derivative with Sfν |D∗ = Φ(ν) = ψ gives

Φ(µ ∗ ν)(z) = S
bf◦fν

(z) = S
bf (fν(z))f ′

ν(z)2 + ψ(z)

for z ∈ D∗. For ϕ(z) = S
bf (fν(z))f ′

ν(z)2, we have

ρ−2
D∗ (z)|ϕ(z)| = ρ−2

Ω∗ (ζ)|S
bf (ζ)| (ζ = fν(z)).

Thus ϕ ∈ B0(D∗), which shows that Φ(µ ∗ ν) ∈ ψ + B0(D∗).

Remark. For the converse inclusion, we propose the following method, which
might give a direct construction by using quasiconformal reflection. The quasi-
conformal automorphism fν defines the quasiconformal reflection λ : Ĉ → Ĉ with
respect to the quasicircle ∂Ω = fν(S) by λ(ζ) = fν(f−1

ν (ζ)∗). We may assume that
fν is diffeomorphic on D and hence λ is diffeomorphic off ∂Ω. Take an arbitrary
ϕ ∈ B0(D∗) with ψ + ϕ ∈ β(T ). Then there is a quasiconformal automorphism f

of Ĉ whose restriction to Ω∗ is conformal and whose Schwarzian derivative satisfies
Sf (fν(z))f ′

ν(z)2 = ϕ(z) for z ∈ D∗. In this situation, as in Lemma 6.2, consider
the function

F (ζ) = f(λ(ζ)) − (λ(ζ) − ζ)f ′(λ(ζ))
1 + (λ(ζ) − ζ)f ′′(λ(ζ))/(2f ′(λ(ζ)))

for ζ ∈ Ω, which is a continuous extension of f |Ω∗ beyond ∂Ω. By an estimate
of |λ(ζ) − ζ| in terms of the hyperbolic density (see Lehto [19, Section II.4.1])
and by the vanishing of ϕ at the boundary, it can be shown that µF (ζ) → 0 as
ζ → ∂Ω. We expect that F should be a quasiconformal homeomorphism in some
neighborhood of ∂Ω. Here is the problem. If this is true, then a quasiconformal
extension of F to Ω gives a required extension of f |Ω∗ .
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By Theorem 6.4, we have the following decomposition of the Bers embedding:

β(T ) =
⊔

τ∈T/T0

β ◦ Rτ (T0) =
⊔

ψ∈B(D∗)/B0(D∗)

β(T ) ∩ (ψ + B0(D∗)).

The base point change map Rτ preserves the affine foliation of the Bers embedding
by B0(D∗). Each component β(T )∩ (ψ + B0(D∗)) is biholomorphically equivalent
to T0. In particular, it is contractible.

The asymptotic universal Teichmüller space AT is defined by AT = Sym \QS,
and it was first introduced by Gardiner and Sullivan [16]. Since Sym ⊂ Möb(S), we
have a projection α : T → AT . With the group structure of T , AT is represented
by the set of cosets T/T0.

In correspondence with the quotient by Sym, we consider the unit ball B̂el(D)
of the quotient Banach space L∞(D)/L∞

0 (D), which coincides with the set of cosets
Bel(D)/Bel0(D). Then, since the Teichmüller projection π : Bel(D) → T is a con-
tinuous open surjection compatible with the group structure (i.e. homomorphism),
it induces a continuous open surjection π̂ : B̂el(D) → AT .

We also consider the quotient Banach space B̂(D∗) = B(D∗)/B0(D∗). Theorem
6.4 implies that the Bers projection Φ : Bel(D) → B(D∗) is compatible with the
foliated structures. Hence it induces a continuous open map Φ̂ : B̂el(D) → B̂(D∗).
Also, the Bers embedding β : T → β(T ) ⊂ B(D∗) induces a bijection β̂ : AT →
β̂(AT ) ⊂ B̂(D∗) satisfying β̂ ◦ π̂ = Φ̂. Since we see that β̂ is homeomorphic and
β̂(AT ) is a domain in B̂(D∗), this provides AT with a complex structure. As the
quotient map B(D∗) → B(D∗)/B0(D∗) is holomorphic, the projection α : T → AT
is also holomorphic.

The base point change map Rτ : T → T for τ ∈ T is projected down to the
base point change map Rα(τ) : AT → AT . Since α : T → AT is continuous
and open, it is easy to see that Rα(τ) is a homeomorphic automorphism. In fact,
Rα(τ) is a biholomorphic automorphism. To see this, we regard the differential
dRτ as a complex linear map B(D∗) → B(D∗) between the tangent spaces of the
Bers embedding β(T ) ⊂ B(D∗). Since Rτ preserves the affine foliation of the Bers
embedding by B0(D∗), the differential dRτ preserves B0(D∗). Hence it descends
to a linear map B̂(D∗) → B̂(D∗) which gives the differential of Rα(τ). For details,
see Earle, Gardiner and Lakic [12].

7 Diffeomorphisms of the circle with Hölder con-
tinuous derivatives

This section is devoted to a set-up for the Teichmüller space of diffeomorphisms of
S with Hölder continuous derivatives. We will establish the relationship among the
following three indices: the power of Hölder continuity of the derivative of a circle
diffeomorphism; the decay order of the complex dilatation of its quasiconformal
extension; and the decay order of the norm of the Schwarzian derivative given by
the Bers embedding.
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Definition. An orientation-preserving diffeomorphism g of S belongs to a class
Diff1+α(S) for some α (0 < α < 1) if its derivative is α-Hölder continuous. This
means that the lift g̃ : R → R of g satisfies

|g̃′(x) − g̃′(y)| ≤ c|x − y|α (x, y ∈ R)

for some c ≥ 0.

It is well-known that Diff1+α(S) is a subgroup of Sym. We will characterize an
element g of Diff1+α(S) in terms of the quasisymmetric quotient of g. An essential
part was done by Carleson [9, Lemma 5] and his result can be arranged in the
following statement. See also Gardiner and Sullivan [16, Section 9]. Remark that
the Hölder continuity of g is defined for its lift g̃ and hence the condition is given
for symmetric functions on R.

Theorem 7.1. Let h : R → R be a symmetric function with gauge function ε(t),
that is, the quasisymmetric quotient satisfies mh(x, t)±1 ≤ 1+ε(t) for every x ∈ R
and for every t > 0. If

a =
∫ 1

0

ε(t)
t

dt < ∞,

then h is continuously differentiable. Moreover, if h(x + 1) = h(x) + 1 for every
x ∈ R, then the derivative h′(x) is uniformly bounded away from 0 and +∞ and
satisfies

|h′(x) − h′(y)| ≤ A

∫ |x−y|

0

ε(t)
t

dt,

where A > 0 is a constant depending only on a.

Proof. Fix a constant δ > 0. Take an interval I0 ⊂ R with length |I0| = δ
arbitrarily. Set ε0(t) = ε(δt). Divide I0 into two equal intervals denoted by I1.
Continue this process to obtain 4 sub-intervals I2, 8 sub-intervals I3 and so on.
Then the quasisymmetry of h gives

|h(I0)| ·
1
2

(1 + ε0 (1/2))−1 ≤ |h(I1)| ≤ |h(I0)| ·
1
2

(1 + ε0 (1/2)) .

Similarly, we have

|h(I2)| ≤ |h(I1)| ·
1
2

(
1 + ε0

(
1/22

))
≤ |h(I0)| ·

1
2

(1 + ε0 (1/2)) · 1
2

(
1 + ε0

(
1/22

))
,

and also the lower estimate for |h(I2)|. In general,

|h(In)| ≤ |h(I0)| ·
1
2n

n∏
i=1

(
1 + ε0

(
1/2i

))
=

|h(I0)|
δ

|In| ·
n∏

i=1

(
1 + ε0

(
1/2i

))
;

|h(In)| ≥ |h(I0)| ·
1
2n

n∏
i=1

(
1 + ε0

(
1/2i

))−1
=

|h(I0)|
δ

|In| ·
n∏

i=1

(
1 + ε0

(
1/2i

))−1
.
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To estimate the last term in the above inequalities independently of n, we take
the logarithm of the infinite product. Then

log
∞∏

i=1

(
1 + ε0

(
1/2i

))
=

∞∑
i=1

log
(
1 + ε0

(
1/2i

))
≤

∞∑
i=1

ε0

(
1/2i

)
=

∞∑
i=1

δ

2i
ε
(
δ/2i

)
/

δ

2i

≤
∫ δ

0

ε(t)
t

dt.

We denote the last integral by ε̃(δ). This integral is finite and bounded by a = ε̃(1)
when δ ≤ 1. In particular, ε̃(δ) → 0 as δ → 0. An estimate of the exponential
yields

∞∏
i=1

(
1 + ε0

(
1/2i

))
≤ 1 + e(δ)ε̃(δ),

where the constant e(δ) > 0 is bounded by e(1) when δ ≤ 1, which depends on a.
First we prove the differentiability of h. For an arbitrary x ∈ R, we choose

an interval I so that x is in the interior of I. Take t > 0 so that both the closed
intervals [x − t, x] and [x, x + t] are in I. Set |I| = δ. Representing [x, x + t] by a
union of some dyadic sub-intervals {In} for I, we have

|h(I)|
δ

t(1 + e(δ)ε̃(δ))−1 ≤ h(x + t) − h(x) ≤ |h(I)|
δ

t(1 + e(δ)ε̃(δ)).

The argument for [x − t, x] is similar and we omit it.
Fix I = I0 and δ = δ0. Dividing the above inequalities by t gives

|h(I0)|
δ0

(1 + e(δ0)ε̃(δ0))−1 ≤ h(x + t) − h(x)
t

≤ |h(I0)|
δ0

(1 + e(δ0)ε̃(δ0)).

Then by taking lim and lim of the middle term as t → 0, we see that the upper
derivative h′(x) and the lower derivative h′(x) exist and are bounded by the first
and the last terms.

The same estimate holds for an arbitrary interval I with |I| = δ containing x
as an interior point:

|h(I)|
δ

(1 + e(δ)ε̃(δ))−1 ≤ h′(x) ≤ h′(x) ≤ |h(I)|
δ

(1 + e(δ)ε̃(δ)).

Keeping that condition, we move I so that δ = |I| → 0. Since e(δ)ε̃(δ) → 0, we
have

limδ→0
|h(I)|

δ
≤ h′(x) ≤ h′(x) ≤ limδ→0

|h(I)|
δ

.

This shows that the derivative h′(x) exists and coincides with limδ→0 |h(I)|/δ
which also exists.
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Next, we show the continuity of h′. Once we know the existence of the deriva-
tive of h, the above inequalities turn out to be

|h(I)|
δ

(1 + e(δ)ε̃(δ))−1 ≤ h′(x), h′(y) ≤ |h(I)|
δ

(1 + e(δ)ε̃(δ))

for any interior points x and y of I with |I| = δ. From this, we have

|h′(x)− h′(y)| ≤ |h(I)|
δ

(1 + e(δ)ε̃(δ))− |h(I)|
δ

(1 + e(δ)ε̃(δ))−1 ≤ |h(I)|
δ

· 2e(δ)ε̃(δ).

Fix x ∈ R arbitrarily. Take an interval I with |I| = δ having x as an interior point
and then consider an interior point y of I. Then

lim
y→x

|h′(x) − h′(y)| ≤ lim
δ→0

|h(I)|
δ

· 2e(δ)ε̃(δ).

Since limδ→0 |h(I)|/δ = h′(x) and limδ→0 e(δ)ε̃(δ) = 0, this converges to 0. There-
fore h′ is continuous.

Finally, under the assumption that h(x + 1) = h(x) + 1 for every x ∈ R, we
show the uniform boundedness of the derivative h′ and we give the modulus of
continuity of h′. For every x ∈ R, take an interval I = [ξ, ξ + 1] having x in its
interior. In this case, δ = |I| = 1. Also, the assumption implies |h(I)| = 1. The
substitution of these values to the obtained inequalities together with ε̃(1) = a
yields

(1 + ae(1))−1 ≤ h′(x) ≤ 1 + ae(1),

which says the uniform boundedness of h′.
To verify the modulus of continuity of h′, we take x, y ∈ R arbitrarily. Note

that h′(y + 1) = h′(y) by assumption, which reduces the argument to the case
where |x − y| ≤ 1. Approximating the interval [x, y] by larger intervals I with
|x − y| < δ = |I|, we can derive the following inequality from the previous one:

|h′(x) − h′(y)| ≤ |h(x) − h(y)|
|x − y|

· 2e(|x − y|)ε̃(|x − y|).

Here the mean value theorem shows that for some η ∈ [x, y] we have

|h(x) − h(y)|
|x − y|

= h′(η) ≤ 1 + ae(1).

Hence

|h′(x) − h′(y)| ≤ 2(1 + ae(1))e(1)
∫ |x−y|

0

ε(t)
t

dt.

Setting A = 2(1 + ae(1))e(1) completes the proof.
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Corollary 7.2. Fix α ∈ (0, 1). Suppose that for some b ≥ 0, the lift g̃ of g ∈ Sym
satisfies

(1 + btα)−1 ≤ m
eg(x, t) ≤ 1 + btα

for every x ∈ R and for every t > 0. Then g belongs to Diff1+α(S). More precisely,
g̃ satisfies

|g̃′(x) − g̃′(y)| ≤ c|x − y|α

for any x, y ∈ R, where the constant c ≥ 0 depends only on b and tends to 0 as
b → 0.

Proof. We apply Theorem 7.1 for the lift g̃ with the gauge function ε(t) = btα.
Note that g̃ satisfies g̃(x + 1) = g̃(x) + 1. Then

|g̃′(x) − g̃′(y)| ≤ A

∫ |x−y|

0

btα

t
dt =

Ab

α
|x − y|α.

Set c = Ab/α. The proof of Theorem 7.1 shows that A depends only on α and
b, and A is bounded when b tends to 0 with α fixed. Then the property of the
constant c as in the statement follows.

Remark. We can replace the assumption of Corollary 7.2 with

(1 + btα)−1 ≤ `g(e2πix, t) ≤ 1 + btα,

as is seen in the remark after Proposition 4.5.

Conversely, every element g ∈ Diff1+α(S) (0 < α < 1) is a symmetric automor-
phism of S with gauge function of order O(tα).

Proposition 7.3. Fix α ∈ (0, 1). Suppose that for some c ≥ 0, the lift g̃ of
g ∈ Diff1+α(S) satisfies

|g̃′(x) − g̃′(y)| ≤ c|x − y|α

for any x, y ∈ R. Then there is some b ≥ 0 such that

(1 + btα)−1 ≤ m
eg(x, t) ≤ 1 + btα

for every x ∈ R and for every t > 0. Here the constant b can be taken to be
dependent only on c when c ≤ 1 and tends to 0 as c → 0.

Proof. Since g̃ satisfies
∫ 1

0
g̃′(x)dx = 1, there exists some x0 ∈ [0, 1] such that

g̃′(x0) ≥ 1. The Hölder continuity of g̃′ implies that

|g̃′(x) − g̃′(x0)| ≤ c|x − x0|α ≤ c(1/2)α

for every x ∈ R with |x− x0| ≤ 1/2. Then using the periodicity g̃′(x + 1) = g̃′(x),
we have g̃′(x) ≥ 1 − c(1/2)α for every x ∈ R. If c ≤ 1 then 1 − c(1/2)α > 0. Even
if 1 − c(1/2)α ≤ 0, there is some c0 > 0 depending on the circle diffeomorphism g
such that g̃′(x) ≥ c0 for every x ∈ R.
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The mean value theorem says that there are ξ+ and ξ− such that

g(x + t) − g(x) = tg′(ξ+) (x < ξ+ < x + t);
g(x) − g(x − t) = tg′(ξ−) (x − t < ξ− < x).

This gives

m
eg(x, t) = 1 +

g̃′(ξ+) − g̃′(ξ−)
g̃′(ξ−)

; m
eg(x, t)−1 = 1 +

g̃′(ξ−) − g̃′(ξ+)
g̃′(ξ+)

.

Here we have
|g̃′(ξ+) − g̃′(ξ−)| ≤ c|ξ+ − ξ−|α ≤ c(2t)α

by the Hölder continuity of g̃′. Combined with the lower estimate of g̃′, this yields

m
eg(x, t)±1 ≤ 1 +

2αc

max{1 − c(1/2)α, c0}
tα.

Setting the coefficient of tα by b, we obtain the statement.

Remark. With the same reasoning, the upper estimate g̃′(x) ≤ 1 + c(1/2)α is
obtained in the proof of Proposition 7.3. Now assume that both g ∈ Diff1+α(S) and
its inverse g−1 satisfy the α-Hölder continuous derivative condition for a constant
c ≥ 0. In this case, a lower bound of |g̃′(x)| is given in terms of c without the
assumption c ≤ 1 because

|g̃′(x)| =
1

|(g̃−1)′(g̃(x))|
≥ 1

1 + c(1/2)α
.

Hence the constant b can always be taken depending only on c.

Next we characterize the elements of Diff1+α(S) by their quasiconformal ex-
tension to D through the order of gauge functions of quasisymmetric quotients.
Recall that since Diff1+α(S) ⊂ Sym, the quasiconformal extension is asymptoti-
cally conformal. We look at the decay order of its complex dilatation close to the
boundary.

Proposition 7.4. Suppose that for some b ≥ 0, the lift g̃ of g ∈ Sym satisfies

(1 + btα)−1 ≤ m
eg(x, t) ≤ 1 + btα

for every x ∈ R and for every t > 0. Then there exists a quasiconformal extension
f ∈ AC(D) of g whose complex dilatation µf satisfies

|µf (ζ)| ≤ min
{

4b

(2π)α
(− log |ζ|)α, 1

}
for every ζ ∈ D.
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Proof. By Theorem 5.1, the complex dilatation µ(z) of the Beurling-Ahlfors ex-
tension F

(2)
eg (z) of g̃ satisfies |µ(z)| ≤ 4byα for every z = x + iy ∈ H. Since

g̃(x + 1) = g̃(x) + 1, F
(2)
eg also satisfies F

(2)
eg (z + 1) = F

(2)
eg (z) + 1. Then the

universal cover u : H → D−{0} defined by z 7→ ζ = e2πiz descends F
(2)
eg to a

quasiconformal automorphism f of D−{0}. Note that f extends to a quasicon-
formal automorphism of D and its boundary extension to S coincides with g. The
complex dilatation µf of f satisfies

|µf (ζ)| = |µ(z)| = |µ((log ζ)/(2πi))|.

Since Im {(log ζ)/(2πi)} = − log |ζ|/(2π), the condition |µ(z)| ≤ 4byα yields

|µf (ζ)| ≤ 4b

(2π)α
(− log |ζ|)α

for every ζ ∈ D.

Propositions 7.3 and 7.4 conclude the following.

Theorem 7.5. For every g ∈ Diff1+α(S), there exists a quasiconformal extension
f ∈ AC(D) of g whose complex dilatation µf satisfies

|µf (ζ)| ≤ d(1 − |ζ|)α

for some constant d ≥ 0 and for every ζ ∈ D.

Proof. By Proposition 7.3, the lift g̃ : R → R of g satisfies m
eg(x, t)±1 ≤ 1+ btα for

some b ≥ 0. Then we choose the quasiconformal extension f ∈ AC(D) of g as in
Proposition 7.4. Since − log |ζ| is comparable to 1 − |ζ| near |ζ| = 1, we can find
a constant d ≥ 0 such that |µf (ζ)| ≤ d(1 − |ζ|)α.

We will investigate the converse of Theorem 7.5. In Theorem 5.2 and Corollary
5.3, we saw that an asymptotically conformal automorphism f ∈ AC(D) extends
to a symmetric automorphism g ∈ Sym of S and actually showed a certain estimate
of the gauge function for g in terms of the decay order of the complex dilatation µf

of f . The order of the gauge function and the Hölder continuity of the derivative
are related to each other as in Corollary 7.2 and Proposition 7.3. The converse
of Theorem 7.5 turns out to be a statement that if the complex dilatation of
f ∈ AC(D) satisfies

|µf (ζ)| = O((1 − |ζ|)α)

then the boundary extension g = q(f) belongs to Diff1+α(S). If we use the result of
Carleson [9, Lemma 2] mentioned in the remark after Theorem 5.2, we can obtain
a weaker consequence, namely, g ∈ Diff1+α/2(S) from the same assumption. To
explain the arguments for the full converse statement, we begin with the following
definition.



Teichmüller spaces of circle diffeomorphisms 31

Definition. Let α be a fixed constant with 0 < α < 1. For a Beltrami coefficient
µ ∈ Bel(D), we define a new norm by

‖µ‖∞,α = ess. supz∈D ρα
D(z)|µ(z)|.

The space of Beltrami coefficients with finite norm is denoted by

Belα0 (D) = {µ ∈ Bel(D) | ‖µ‖∞,α < ∞} ⊂ Bel0(D).

Correspondingly, for a hyperbolically bounded holomorphic function ϕ ∈ B(D∗),
we define a new norm by

‖ϕ‖∞,α = sup
z∈D∗

ρ−2+α
D∗ (z)|ϕ(z)|.

The Banach space of hyperbolically bounded holomorphic functions with respect
to this norm is

Bα
0 (D∗) = {ϕ ∈ B(D∗) | ‖ϕ‖∞,α < ∞} ⊂ B0(D∗).

Theorem 7.6. Let α be a constant with 0 < α < 1. For a quasisymmetric
automorphism g ∈ QS, the following conditions are equivalent:

(1) g belongs to Diff1+α(S);

(2) there is µ ∈ Belα0 (D) such that π(µ) = [g] ∈ T ;

(3) β([g]) ∈ β(T ) is in Bα
0 (D∗).

The implication (1) ⇒ (2) is a reformulation of the statement of Theorem 7.5.
To give the converse (2) ⇒ (1), we will prove (2) ⇒ (3) and (3) ⇒ (1). Note
that the implication (3) ⇒ (2) follows from Lemma 6.2 and (1) ⇒ (3) will be seen
below. We present a sketch of the proof here. Complete arguments will appear
elsewhere ([21]).

Outline of the proof of Theorem 7.6. For the implication (2) ⇒ (3), a weaker result
has been obtained by Becker [5, Theorem 2], which asserts that Φ(µ) ∈ Bα+ε

0 (D∗)
for every µ ∈ Belα0 (D) and for every ε > 0. The elimination of the constant
ε leads to our desired result since β ◦ π = Φ. To this end, we decompose a
Beltrami coefficient µ ∈ Belα0 (D) into a finite number of coefficients whose supports
are in mutually disjoint concentric annular domains of D. Then a computation
of the Schwarzian derivative of the composition of the corresponding conformal
homeomorphisms establishes the estimate.

For the implication (3) ⇒ (1), we represent g by conformal welding as follows.
First of all, for ϕ = β([g]) ∈ β(T ), there is a conformal homeomorphism w of
D∗ quasiconformally extendable to Ĉ with Sw = ϕ. Then a suitable choice of
a Riemann map w∗ : D → w(D) quasiconformally extendable to Ĉ gives the
conformal welding g = w−1

∗ ◦ w on S.
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Lemma 6.2 shows that the assumption ϕ ∈ Bα
0 (D∗) implies that there is a qua-

siconformal extension of w whose complex dilatation µ on D belongs to Belα0 (D).
Then in a similar way to the proof of Sw = Φ(µ) ∈ Bα

0 (D∗) above, we have

sup
ζ∈D∗

ρ−1+α
D∗ (ζ)|{log w′(ζ)}′| < ∞.

We can also show the corresponding result for w∗. Actually, this is defined by
considering µ−1. Then the complex derivatives (w|D∗)′ and (w∗|D)′ have non-
vanishing continuous extensions to S. Hence the derivative g′ of g along S is
represented by

g′(e2πix) = w′(e2πix)/w′
∗(g(e2πix)).

In particular, g is continuously differentiable.
According to arguments by Anderson, Becker and Lesley [3], the modulus of

continuity of |g′(e2πix)| = g̃′(x) can be estimated as follows. Put

I(t; |g′|) = sup
|x−y|≤t

|g̃′(x) − g̃′(y)|.

Since g̃′(x) is bounded by some constant L > 0,

|g̃(x) − g̃(y)| ≤ L|x − y|

is satisfied. Then it follows that

1
L

I(t; |g′|) ≤ I(t; log |g′|) ≤ I(t; log |w′|) + I(t; log |w′
∗ ◦ g|)

≤ I(t; log |w′|) + I(Lt; log |w′
∗|).

By using the estimates for {log w′}′ and {log w′
∗}′ as above, we have I(t; log |w′|) =

O(tα) and I(t; log |w′
∗|) = O(tα). Hence I(t; |g′|) = O(tα), which implies that

g ∈ Diff1+α(S).

As we have mentioned above, the implication (1) ⇒ (3) has been already
proved in Tam and Wan [24] by using harmonic extension of diffeomorphisms of
S. A C2-map f : D → D is harmonic with respect to the hyperbolic metric if it
satisfies the Euler-Lagrange equation

∂∂̄f(z) + ∂ζ(log ρD(ζ)) ◦ f(z) · ∂f(z)∂̄f(z) ≡ 0.

In this case, the Hopf differential ρD(f(z))∂f(z)∂f(z) of f is holomorphic. Con-
versely, for every φ ∈ B(D) there exists a unique harmonic quasiconformal diffeo-
morphism f of D whose Hopf differential is φ. The boundary extension of f to S
yields a quasisymmetric automorphism g ∈ QS. However, it is not known whether
every g ∈ QS is obtained in this way, or conversely, whether every g ∈ QS has a
harmonic quasiconformal extension to D. The Schoen conjecture asserts that this
should be always true and this is affirmative if g is a diffeomorphism of S. In fact,
in the case where g ∈ Sym, this has been solved by Markovic [20].

For every g ∈ Sym, we choose a harmonic quasiconformal diffeomorphism f
of D and set µ = µf in Bel(D), which can be described by its Hopf differential.
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Then take the quasiconformal diffeomorphism fµ of Ĉ that is conformal on D∗.
For g ∈ Diff1+α(S), Tam and Wan [24] gave an estimate of the decay order of
the Schwarzian derivative Sfµ|D∗ in terms of the regularity of g and in particular
obtained the following.

Proposition 7.7. If g ∈ Diff1+α(S) then β([g]) ∈ Bα
0 (D∗).

8 The Teichmüller space of circle diffeomorphisms

Now we are ready to realize the Teichmüller space of circle diffeomorphisms with
Hölder continuous derivatives as a subspace of the universal Teichmüller space.
Then we will give some application of the structure of this space at the end of this
section.

Definition. For a constant α ∈ (0, 1), the Teichmüller space of diffeomorphisms
of S with Hölder continuous derivatives is defined by Tα

0 = Möb(S)\Diff1+α(S).

Theorem 7.6 implies that, for the Teichmüller projection π : Bel(D) → T , we
have

π(Belα0 (D)) = Tα
0 ,

and for the Bers embedding β : T → B(D∗), we have

β(Tα
0 ) = β(T ) ∩ Bα

0 (D∗),

which coincides with Φ(Belα0 (D)) for the Bers projection Φ : Bel(D) → B(D∗).
Here, we see that β(T ) ∩ Bα

0 (D∗) is an open subset of the Banach space Bα
0 (D∗).

Indeed, this follows from the fact that β(T ) is open in B(D∗) and from the norm
inequality ‖ϕ‖∞ ≤ ‖ϕ‖∞,α for ϕ ∈ Bα

0 (D∗)．
We restrict π, Φ and β to the above spaces and consider continuity and openness

of these maps. We provided Tα
0 with the quotient topology of Belα0 (D) by π, which

is so defined that π is continuous. Then, from the facts listed below, we are able
to prove the following.

Theorem 8.1. The Bers embedding β : Tα
0 → β(T ) ∩ Bα

0 (D∗) is a homeomor-
phism.

Hence the Teichmüller space Tα
0 of circle diffeomorphisms with Hölder con-

tinuous derivative is equipped with a complex structure modeled on the complex
Banach space Bα

0 (D∗).
For the proof of this theorem, it suffices to show the following:

(1) π : Belα0 (D) → Tα
0 is open;

(2) Φ : Belα0 (D) → β(T ) ∩ Bα
0 (D∗) is continuous;

(3) Φ : Belα0 (D) → β(T ) ∩ Bα
0 (D∗) has a continuous local section.
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Details will be given elsewhere ([21]). Here we only mention an outline of the
arguments. We need some distortion estimate of quasiconformal automorphisms
of D as in the next proposition, which is a variant of the Mori theorem.

Proposition 8.2. Let f be a quasiconformal automorphism of D with f(0) = 0 and
with complex dilatation µ in Belα0 (D). Then there is a constant A ≥ 1 depending
only on α and ‖µ‖∞,α such that

1
A

(1 − |z|) ≤ 1 − |f(z)| ≤ A(1 − |z|)

for every z ∈ D.

From this estimate, we see that for any µ and ν in Belα0 (D), µ∗ν−1 also belongs
to Belα0 (D); we apply Proposition 8.2 to ζ = fν(z) in the formula

µ ∗ ν−1(ζ) =
µ(z) − ν(z)
1 − ν(z)µ(z)

· ∂fν(z)
∂fν(z)

.

Hence Belα0 (D) is a subgroup of Bel(D). Moreover, the right translation map rν :
Belα0 (D) → Belα0 (D) for ν ∈ Belα0 (D) defined by µ 7→ µ ∗ ν−1 is a homeomorphism
with respect to the topology induced by the norm ‖ · ‖∞,α.

(1) The openness of π : Belα0 (D) → Tα
0 is proved as follows. Take an open

subset U ⊂ Belα0 (D). To see that π(U) is open, we consider

π−1(π(U)) =
⋃

ν∈Ker π∩Belα0 (D)

rν(U).

This is also open in Belα0 (D) and hence π(U) is open. Note that the right trans-
lation map rν for ν ∈ Belα0 (D) projects down to the base point change map
Rπ(ν) : Tα

0 → Tα
0 and then the openness of π guarantees that Rπ(ν) is a homeo-

morphism.
(2) The continuity of Φ : Belα0 (D) → β(T ) ∩ Bα

0 (D∗) can be proved in the
following assertion. Proposition 8.2 is also necessary for the proof of this result.

Lemma 8.3. For any µ and ν in Belα0 (D),

‖Φ(µ) − Φ(ν)‖∞,α ≤ C‖µ − ν‖∞,α

is satisfied for a constant C > 0 depending on α, ‖µ‖∞, ‖ν‖∞ and ‖ν‖∞,α.

Remark. Similarly, for any µ and ν in Belα0 (D),

‖Φ(rν(µ))‖∞,α ≤ C ′‖µ − ν‖∞,α

is satisfied for a constant C ′ > 0 depending on α, ‖µ‖∞, ‖ν‖∞ and ‖ν‖∞,α.

To consider the norm ‖Φ(µ)‖∞,α of the Schwarzian derivative Φ(µ) = Sfµ|D∗ ,
we need an estimate of the derivative of the conformal homeomorphism fµ of D∗

defined by µ ∈ Belα0 (D). We use the following distortion result for this purpose.
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Proposition 8.4. Let f be a conformal homeomorphism of D∗ with f(∞) = ∞
and with limz→∞ f ′(z) = 1 whose quasiconformal extension to D has complex
dilatation µ in Belα0 (D). Then there is a constant B ≥ 1 depending only on α and
‖µ‖∞,α such that

1
B

≤ |f ′(z)| ≤ B

for every z ∈ D∗.

(3) The existence of a local continuous section for Φ : Belα0 (D) → β(T )∩Bα
0 (D∗)

is verified by using a local continuous section for the original Bers projection Φ
defined by quasiconformal reflection. For each ψ ∈ β(T ) ∩ Bα

0 (D∗), take ν ∈
Belα0 (D) such that Φ(ν) = ψ. Let fν be the quasiconformal automorphism of Ĉ
with Sfν |D∗ = ψ. We may assume that fν |D is diffeomorphic. The quasiconformal
reflection λ : fν(D) → fν(D∗) with respect to the quasicircle fν(S) is defined by
λ(ζ) = fν(f−1

ν (ζ)∗). Then we generalize the Ahlfors-Weill local section as follows.
There is a constant ε > 0 depending on ‖ν‖∞ such that if ϕ ∈ Bα

0 (D∗) satisfies
‖ϕ‖∞ ≤ ‖ϕ‖∞,α < ε then there is a quasiconformal automorphism f̂ of Ĉ confor-
mal on fν(D∗) such that S

bf◦fν |D∗ = ψ + ϕ. Here the Beltrami coefficient µ
bf of f̂

is given by

µ
bf (ζ) =

ϕ(f−1
ν (λ(ζ))){(f−1

ν )′(λ(ζ))}2(ζ − λ(ζ))2∂̄λ(ζ)
2 + ϕ(f−1

ν (λ(ζ))){(f−1
ν )′(λ(ζ))}2(ζ − λ(ζ))2∂λ(ζ)

for ζ ∈ fν(D). See Lehto [19, Section II.4.2]. The arguments there with the aid
of Propositions 8.2 and 8.4 can be used to prove that the complex dilatation of
f̂ ◦ fν on D belongs to Belα0 (D), which we may denote by µ ∗ ν. Then we have
Φ(µ ∗ ν) = ψ + ϕ. By the correspondence ψ + ϕ 7→ µ ∗ ν, we have a local section
of Φ at ψ. By the formula of µ

bf in terms of ϕ, we see that the local section is
continuous at ψ.

Now we have obtained the continuity of π, Φ, β and β−1 restricted to the
related spaces to Tα

0 with respect to the norm ‖ · ‖∞,α. Also, we know that these
maps are holomorphic on the larger spaces with respect to the norm ‖ · ‖∞. Once
we are in this situation, to see that these maps are actually holomorphic is a matter
of general argument. Hence the Bers projection Φ : Belα0 (D) → β(T ) ∩ Bα

0 (D∗)
is holomorphic and the base point change map Rτ : Tα

0 → Tα
0 for τ ∈ Tα

0 is
biholomorphic, too.

We have defined the Teichmüller space Tα
0 as a parameter space of Diff1+α(S).

For this parametrization, the quasiconformal extension of an element of Diff1+α(S)
plays an essential role. Here we consider the relationship between the topology of
Tα

0 and the following quantity for an element of Diff1+α(S) regarded as a mapping
of S itself.

Definition. For g ∈ Diff1+α(S), we define

cα(g) = inf {c ≥ 0 | |g̃′(x) − g̃′(x)| ≤ c|x − y|α},

and for [g] ∈ Tα
0 = Möb(S)\Diff1+α(S),

cα([g]) = inf {cα(φ ◦ g) | φ ∈ Möb(S)}.
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Proposition 8.5. If g ∈ Diff1+α(S) satisfies cα([g]) < 1, then there exists µ(g) ∈
Belα0 (D) with π(µ(g)) = [g] such that ‖µ(g)‖∞,α is bounded and 1 − ‖µ(g)‖∞
is bounded away from zero by constants depending only on cα([g]). Moreover,
‖β([g])‖∞,α = ‖Φ(µ(g))‖∞,α is bounded by a constant depending only on cα([g]).

Proof. By post-composition of an element of Möb(S), we may assume that the lift
g̃ of g satisfies |g̃′(x) − g̃′(x)| ≤ c|x − y|α for some c ≥ cα([g]) arbitrarily close to
cα([g]) < 1. By Proposition 7.3, there is a constant b ≥ 0 depending only on c
such that m

eg(x, t)± ≤ 1 + btα for every x ∈ R and for every t > 0. In particular,
M̃ = M̃(g̃) ≤ 1 + b(1/2)α by Proposition 4.5 and the remark after that.

We take the complex dilatation of the quasiconformal extension f ∈ AC(D)
of g as µ(g) by using Proposition 7.4. Then ‖µ(g)‖∞,α is bounded by a constant
depending only on b. On the other hand, Theorem 4.1 implies that 1−‖µ(g)‖∞ is
bounded away from zero by a constant depending only on M̃ . Hence both norms
are estimated by cα([g]). Moreover, Lemma 8.3 in the case where ν = 0 shows
that

‖β([g])‖∞,α = ‖Φ(µ(g))‖∞,α ≤ C‖µ(g)‖∞,α

is satisfied for a constant C > 0 depending only on ‖µ(g)‖∞. Thus we see that
‖β([g])‖∞,α is bounded by a constant depending only on cα([g]).

As an application of this result, we consider an infinite non-abelian subgroup
G of Diff1+α(S) such that cα([g]) are sufficiently small for all g ∈ G. With the aid
of the fixed point theorem proved in the forthcoming paper [21], we can conclude
that such a subgroup G must be in Möb(S).

Theorem 8.6. Let G be an infinite non-abelian subgroup of Diff1+α(S). There
is a constant δ > 0 depending only on α ∈ (0, 1) such that if cα([g]) < δ for all
g ∈ G, then G is a subgroup of Möb(S).

Proof. Choose p > 1/α and consider the Banach space Ap(D∗) of p-integrable
holomorphic functions on D∗ with respect to the hyperbolic metric:

Ap(D∗) = {ϕ ∈ B(D∗) | ‖ϕ‖p
p =

∫
D∗

ρ2−2p
D∗ (z)|ϕ(z)|pdxdy < ∞}.

We will show that for every g ∈ Diff1+α(S), β([g]) belongs to Ap(D∗) and ‖β([g])‖p

is estimated in terms of cα([g]). As in the proof of Proposition 8.5, we take the
complex dilatation µ(g) of the quasiconformal extension of g. Proposition 7.4
asserts that

|µ(g)(ζ)| ≤ min
{

4b

(2π)α
(− log |ζ|)α, 1

}
for every ζ ∈ D. Here the constant b tends to 0 as cα([g]) → 0 by Proposition 7.3.
Moreover, 1 − ‖µ(g)‖∞ is bounded away from zero by a constant depending only
on cα([g]).

We consider the p-integrable norm of µ ∈ Bel(D) with respect to the hyperbolic
metric:

‖µ‖p
p =

∫
D
|µ(ζ)|pρ2

D(ζ)dξdη.



Teichmüller spaces of circle diffeomorphisms 37

For the complex dilatation µ(g) as above, this norm satisfies

‖µ(g)‖p ≤ 4b

(2π)α

(∫
D
(− log |ζ|)pαρ2

D(ζ)dξdη

)1/p

,

where the integral is finite due to the condition pα > 1. Hence ‖µ(g)‖p → 0 when
cα([g]) → 0. It was proved by Cui [10] and Guo [17] that for each p ≥ 2 there is a
constant C > 0 depending only on ‖µ‖∞ such that

‖Φ(µ)‖p ≤ C‖µ‖p.

Applying this inequality for Φ(µ(g)) = β([g]), we see that ‖β([g])‖p tends to 0 as
cα([g]) → 0.

The following result will be proved in [21]. There is a constant ε > 0 depending
only on p such that if ‖β([g])‖p < ε for all g ∈ G, then there is h ∈ Diff1+α(S) such
that the conjugate Ĝ = hGh−1 belongs to Möb(S). Note that h corresponds to
some ν ∈ Belα0 (D) with π(ν) = [h] by Theorem 7.6. For this ε, the above argument
shows the existence of a constant δ with 0 < δ < 1 such that if cα([g]) < δ then
‖β([g])‖p < ε. Since we choose p according to α, the constant δ can be taken to
be dependent only on α.

For every φ ∈ Möb(D∗) and for every ϕ ∈ B(D∗), we set

(φ∗ϕ)(z) = ϕ(φ(z))φ′(z)2.

Then
ρ−2

D∗ (φ(z))|ϕ(φ(z))| = ρ−2
D∗ (z)|(φ∗ϕ)(z)|.

Moreover, the Cayley identity for the Schwarzian derivative implies φ∗β([g]) =
β([g ◦ φ]). For each g ∈ G, we set ϕg = β([g ◦ h−1]) and ĝ = hgh−1 ∈ Möb(D∗),
which satisfy ĝ∗ϕid = ϕg. This gives an equality

ρ−2+α
D∗ (ĝ−1(z))|ϕg(ĝ−1(z))| = ρα

D∗(ĝ−1(z))ρ−2
D∗ (ĝ−1(z))|(ĝ∗ϕid)(ĝ−1(z))|

= ρα
D∗(ĝ−1(z))ρ−2

D∗ (z)|ϕid(z)|.

We will show that ϕid = 0. Then [h−1] = [id], which implies that G ⊂ Möb(S).
Suppose to the contrary that ϕid 6= 0; there is some z0 ∈ D∗ such that ϕid(z0) 6= 0.
Since Ĝ ⊂ Möb(D∗) is infinite non-abelian, there is a sequence of elements ĝn in Ĝ
such that |ĝ−1

n (z0)| → 1 as n → ∞. Then the above equality in particular yields

‖ϕgn‖∞,α ≥ ρα
D∗(ĝ−1

n (z0))ρ−2
D∗ (z0)|ϕid(z0)|,

whereas the second term tends to ∞ as n → ∞.
On the other hand, if cα([g]) < δ for all g ∈ G by assumption, then Proposition

8.5 asserts that ‖µ(g)‖∞,α are uniformly bounded and 1−‖µ(g)‖∞ are uniformly
bounded away from zero. Under these conditions, we consider the norm of

ϕg = β([g ◦ h−1]) = Φ(µ(g) ∗ ν−1) = Φ(rν(µ(g))).
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The remark after Lemma 8.3 shows that

‖ϕg‖∞,α = ‖Φ(rν(µ(g)))‖∞,α ≤ C ′‖µ(g) − ν‖∞,α ≤ C ′(‖µ(g)‖∞,α + ‖ν‖∞,α).

Taking the dependence of the constant C ′ into account, we see that these norms
are uniformly bounded for all g ∈ G. This is a contradiction and we conclude that
ϕid = 0.
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